
Received: Added at production Revised: Added at production Accepted: Added at production

DOI: xxx/xxxx

MANUSSCRIPT

A flow handover protocol to support state migration in
softwarized networks

Manuel Peuster* | Hannes Küttner | Holger Karl

1Computer Networks Group, Paderborn
University, Paderborn, Germany

Correspondence
*Manuel Peuster, Paderborn University,
Warburgerstr. 100, 33098 Paderborn,
Germany. Email:
manuel.peuster@uni-paderborn.de

Summary

Softwarized networks are the key enabler for elastic, on-demand service deployments
of virtualized network functions. They allow to dynamically steer traffic through
the network when new network functions are instantiated or old ones are termi-
nated. These scenarios become in particular challenging when stateful functions
are involved, necessitating state management solutions to migrate state between the
functions. The problem with existing solutions is that they typically embrace state
migration and flow rerouting jointly, imposing a huge set of requirements on the
on-boarded VNFs, e.g., solution-specific state management interfaces.
To change this, we introduce the seamless handover protocol (SHarP). An easy-to-
use, loss-less, and order-preserving flow rerouting mechanism that is not fixed to a
single state management approach. Using SHarP, VNF vendors are empowered to
implement or use the state management solution of their choice. SHarP supports
these solutions with additional information when flows are migrated. In this paper,
we present SHarP’s design, its open source prototype implementation, and show how
SHarP significantly reduces the buffer usage at a central (SDN) controller, which is
a typical bottleneck in state-of-the-art solutions. Our experiments show that SHarP
uses a constant amount of controller buffer, irrespective of the time taken to migrate
the VNF state.

KEYWORDS:
network function virtualization, software defined networks, flowmigration, prototype implementation and
testbed experimentation

1 INTRODUCTION

The upcoming generations of networks will heavily rely on network softwarization concepts such as network function virtual-
ization (NFV) and software-defined networking (SDN)1. Those concepts allow the dynamic deployment of virtualized network
functions (VNFs) in different locations of the network2,3. Its main benefit is the possibility to add or remove additional resources
on-demand, a process usually referred to as (automated) scaling. In such an elastic system, resources are not only added to exist-
ing VNF instances but new, replicated instances can also be started as needed (horizontal scaling). This leads to the problem
that a NFV platform needs to dynamically reroute flows that are processed by the VNFs to distribute the load to new instances
or to consolidate existing flows if instances are removed. While such traffic steering processes are executed, services should be
interrupted as briefly as possible and no additional packet loss or reordering should occur4.

Manuel Peuster
The full/final version of this article is published at:
Peuster M, Küttner H, Karl H. A flow handover protocol to support state migration in softwarized networks. International Journal of Network Management. 2019. doi:10.1002/nem.2067�

Manuel Peuster
PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT

2 Peuster ET AL

Such elastic deployments become even more challenging when the involved VNFs are stateful and are required to maintain
information about single or groups of flows, e.g., an intrusion detection systems (IDS) that maintains counters to keep track of the
malicious packets it has seen. To tackle this problem, several state management solutions, like Split/Merge5 orOpenNF 4, exists.
They jointly manage the state migration between VNF instances and the traffic rerouting between them. The downside of these
approaches is that they impose complex modifications of the VNF implementations in order to provide the required interfaces
to extract and inject state information into the involved instances. We argue that this is a major obstacle for an interoperable
and open NFV landscape. It requires VNF vendors to custom-tailor their VNFs to the NFV platform on which they should be
on-boarded if they want to benefit from the state management solutions offered by these platforms.
To remove this obstacle, we present SHarP, a very lightweight traffic-steering solution for elastic VNF deployments that

supports state management solutions (e.g. triggers for handover start) but leaves the actual choice of the state migration solution
to the VNF vendor. The resulting system provides a clearer separation of concerns than existing solutions, making it a better fit
for practical, real-world deployments.
The key contributions of this paper, which is based on a conference paper presented at IEEE NetSoft 20186, are as follows:

We introduce our seamless flow handover protocol design that does not require a dedicated control interconnection between the
SDN controller and the involved VNFs. Our handover protocol assigns the packet buffering tasks, required to provide a loss-free
and order-preserving flow rerouting mechanism, to the destination VNF instances and thus reduces the load to the centralized
SDN controller. In addition, we introduce the handover support layer (HSL): a helper component that can easily be integrated
into existing VNF implementations and requires fewer modifications than existing approaches, like the FreeFlow library used
by Split/Merge5. Finally, we provide an extensive evaluation that first analyses the theoretic scaling behavior of our solution and
compares it to OpenNF 4 before backing the theoretic expectations with a set of testbed experiments. These experiments verify
that the controller buffer usage of the proposed approach scales well with the packet rate of the data plane and stays constant
irrespective of the time required for state transfers between the VNFs. The results also show that our handover solution has only
minimal impact, e.g., in terms of introduced delays, to the moved flows.

2 RELATEDWORK

Steering and moving flows between dynamically allocated VNFs is already well studied and several approaches, targeting
different use cases like load balancing, service chaining, or scaling exist7,8,9. However, none of them provides supporting infor-
mation and triggers to integrate with additional state management mechanisms and not all of them provide seamless handover
mechanisms that do not introduce additional packet loss. As a result, the usefulness of these approaches for stateful VNFs is
limited.
Other solutions that are designed to migrate state of virtual machine instances exist. But they come with a large overhead

because they move much more state information than needed to operate a VNF10. In addition, more specific approaches that
focus on joint traffic steering and state migration of VNFs have been proposed. The most prominent ones are Split/Merge5 and
its extension called Pico Replication11, OpenNF 4 with its extensions12,13, CoGS 14, as well as a novel approach called SliM 15

and a tagging-based solution presented in16.
With Split/Merge5, an orchestrator can migrate flows and move the corresponding function state using a simple API call.

However, its failure recovery and migrate operation can cause lost or out-of-order state updates at the network function as flow
processing is stopped during handover and arriving packets are dropped. In Pico Replication11, the internal function state is
cloned to other network functions at policy-defined intervals using modules that manage the packet flow of individual instances.
The system uses OpenFlow to provide flow-level failure recovery by dynamically rerouting flows. Its focus is high availability
rather than dynamic scaling of VNFs. While providing limited control over the desired functions, both systems fail at executing
seamless handovers that are required to guarantee service availability and accuracy.
OpenNF 4 provides coordinated control of network function state and network forwarding rules. This framework consists of

a central management application that uses a manager component to move state and flows from one instance to another. To
integrate a VNF into the system, it has to implement a set of API functions that are used by the management component to
pull and push state information. When the central control application decides to move a flow from one instance to another, it
fetches the state from the source instance and pushes it to the destination instance. During this process, arriving packets are sent
to a buffer at the controller until the state is transferred to the destination. The buffered packets are then forwarded to the SDN

Manuel Peuster
PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT

Peuster ET AL 3

switch and from there to the destination instance. By using these mechanisms, OpenNF is able to perform loss-free and order-
preserving flow move operations. A key concern with OpenNF is that it buffers the majority of the packets at the controller.
The controller starts the buffering of all packets destined for the VNF as soon as the state is exported from the source VNF and
only starts releasing the packets when the state is imported in the destination instance. This extensive usage of the controller as
a proxy prevents OpenNF from scaling well with increasing amount of state and traffic volume. In the worst case, it can result
in buffer overflow and lost packets at the controller, compromising the handover’s safety.
To prevent buffer overflows the creators of OpenNF introduced an extension to OpenNF allowing the controller to drop

packets from its internal buffer by utilizing a different method of packet buffering and state transfer12. Packets are duplicated at
the source VNF, applied to the state, and sent to the controller to be buffered and then processed a second time at the destination
VNF. This allows the controller to drop the packets from the buffer and simply restart the handover process since all packets are
still applied to the state and the process of redirecting and buffering can be repeated. However, the reprocessing of the packets
requires extensive modifications to the packet processing part of the VNF implementation as all output of the packet processing
has to be suppressed12 and therefore presents a bigger challenge for adopting the system than desirable. Additionally, duplicating
packets at the source VNF and sending them to the controller uses the network path to the source VNF twice as much as it would
previously. This can present a problem if the handover was executed to prevent a data plane overload at the source VNF.
DiST 13 improves onOpenNF by a peer-to-peer approach of transferring packets and states betweenVNFs. Instead of buffering

packets and processing the state at the controller, the VNFs interact directly with each other over the data plane, reducing the
controller link utilization to control messages only. This reduces the risk of overloading the controller or the control network.
DiST uses the source VNF to redirect packets that cannot be applied to the state anymore to the destination instance where
they are buffered. It generates additional load on the source VNF and the network plane as packets during the handover need to
traverse the network path between source and destination VNF.
The authors of16 present an in-depth analysis of OpenNF and propose small improvements to the system to reduce migration

times. They also introduce a mechanism that follows similar ideas as SHarP. Their mechanism tags packets by utilizing the
capability of SDN switches to modify unused packet header fields. The tags are used to identify affected flows and ensure a
loss-free, order-preserving handover that only buffers packets at the VNFs. The number of parallel VNF migrations is however
limited by the size of unused header fields that can be used for tagging. Their work is more theoretical and backs our findings
of drastically reduced controller load when the majority of buffering tasks is moved to the destination VNF. In contrast to our
SHarP prototype, their solution does not provide a flow detection mechanism to support the selection of the right parts of the
overall state to be migrated. Further, the presented system relies on changes of the VNF implementations to export state, like
OpenNF does, but its architecture appears to be compatible to the handover support layer approach introduced in this paper that
removes this requirement.
In contrast to these approaches, which focus on joint state management and traffic steering, our approach (SHarP) focuses on

the latter only. As a result, SHarP integrates much more flexibly by leaving the choice of the used state management approach
to the VNF vendor instead of fixing it for the complete execution environment; even different state management schemes for
different VNFs or groups ofVNFs are possible. This simplifies the on-boarding ofVNFs to different platforms since the platforms
do not introduce any requirements for specific state-management interfaces. An example for a complementary state management
solution is our E-State17; it works seamlessly with SHarP. Other distributed state management solutions, like the recently
introduced CoGS 14, SliM 15 or FogStore18 approaches, are also complementary to SHarP and could benefit from its loss-less
flow migration procedures. In contrast to OpenNF, our system distributes the buffering process required for loss-less handovers
to the destination VNF instances; this heavily reduces the controller load and provides better scalability.
Recent work by Yikai Lin et al.19 proposes the concept of programmable buffers added to SDN switches to pause and resume

network flows. They show how their solution can be used for mobility management as well as for flow migration in NFV
scenarios. Future versions of SHarP could benefit from their concepts and programming abstractions by utilizing the additional
buffering capabilities of the presented SDN switch solution. Sun et al.20 focus on the question which flows are suitable for
migration and propose control solutions for optimized migration decisions. This work focuses on the orchestration level and
could utilize SHarP as migration mechanism.
This paper is an extended version of our conference paper6. Besides smaller improvements in all parts of the paper and

the updated related work, we focused on extending our design and prototype descriptions in Section 3, highlighting SHarP’s
integration with the involvedVNFs, its order-preserving features, and its support for bidirectional traffic. Finally, we substantially
extended our evaluation in Section 4, analyzing not only the behavior of single handovers but also the overall system behavior
to show that SHarP performs well even in agile environments in which services are reconfigured multiple times per second.

Manuel Peuster
PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT

4 Peuster ET AL

3 SEAMLESS HANDOVER PROTOCOL (SHARP)

The design of our handover protocol follows two main goals. First, the flow handover mechanism has to explicitly support state
migration procedures but should not mandate any specific state migration solution. Second, our solution will offer improved
scalability compared to existing approaches, specifically it should reduce the load on the central controller by minimizing the
number of packets the controller has to buffer to ensure a loss-less and order-preserving handover.
To achieve these design goals, we defined the following set of requirements: The first requirement for a handover mechanism

is a flexible flow selection (R1) interface that allows to select single flows as well as groups of flows that shall be moved from
one VNF to another. These handovers should be performed as fast as possible to minimize service interruption times (R2) and
they have to ensure that they do not introduce additional packet loss or packet reordering (R3). To be able to handle many flows,
the scalability (R4) in terms of control load and buffer usage is important. Finally, a handover mechanism has to be designed for
compatibility (R5) and not require specific modifications from VNF implementations to accommodate a wide range of different
VNFs.

3.1 Handover scenario
SHarP is designed to work with networks that contain at least two SDN switches: an ingress and an egress switch as shown
in Figure 1. Our design extends to any number of switches, yet to simplify presentation, we limit ourselves here to only two
switches; evaluation results do not depend on number of switches. Between the switches, multiple VNF instances are located
and their dataplane interfaces are connected with one port to either switch. In addition to this, the VNFs are connected to a
management network that allows them to exchange information in a peer-to-peer manner. Data flows enter the SHarP-enabled
VNF deployment from a source (Host1) through the ingress switch, traverse one VNF instance (or a chain of multiple VNF
instances), and leave the system through the egress switch towards the destination (Host2). Bi-directional flows in which packets
are sent from the destination (Host2) to the source (Host1) are also supported (Figure 1). Flows can be moved between VNF
instances using the proposed handover mechanism by triggering the handover procedure through the northbound API of the
controller. For example, the flow shown in Figure 1 will be moved from VNF1 to VNFn.

FIGURE 1 Example network with multiple VNF instances, ingress and egress switch as wells as a data flow processed by VNF1

The involved VNFs do not need a direct connection to the controller as this is not commonly the case and thus would impose a
needless requirement. Instead, control messages sent by the controller to the VNFs are forwarded by the switches and intercepted
by an intermediate software layer that is running inside the VNF’s container (or VM). This layer also buffers packets as required
to ensure loss-free and order-preserving handovers (described in Section. 3.2). We assume that the links of the example networks
do not introduce any additional packet loss or packet reordering.

Manuel Peuster
PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT

Peuster ET AL 5

(a) Unix socket-based setup (b) DPDK-based setup

FIGURE 2 Handover support layer (HSL) sitting between VNFC and VNF implementation

3.2 Transparency towards VNF and state management
One of the main requirements for SHarP is to be as transparent as possible towards VNF implementations that operate in a
SHarP-enabled environment (R5). This also means that SHarP does not enforce the use of a particular state management or state
sharing framework. Instead, it provides the means to assist state sharing solutions, like E-State17, with functionalities to pause
and buffer incoming flows or to inform the actual state migration solutions when a handover is performed by the network. This
functionality is completely encapsulated in an additional software layer, called handover support layer (HSL), that is located
between the actual VNF implementation and the network interfaces of the VNF container (VNFC) as shown in Figure 2. This
software layer acts as a bridge and is able to forward packets between the interfaces of the VNFC and the VNF implementation. In
addition, it implements a control logic that intercepts control messages sent by the SHarP controller through an SDN switch over
the data plane of the system. Those control messages allow the SHarP controller to trigger events, like preparing the destination
VNF for a handover, without requiring a direct connection between controller and VNF. Besides this control logic, packet buffers
are implemented and used to buffer incoming packets when the destination VNF is not yet ready to process them, i.e., the state
transfer from the source VNF has not completed. Optionally, the HSL offers a control channel to the VNF implementation used
to inform the VNF about the status of the handover, e.g., to trigger its state migration mechanism. We leave it to the VNF to
prepare and migrate all state belonging to the flows that are handed over. This allows us to transparently handle multiple VNF
implementations without needing information about the internal state structure, a major difference to OpenNF 4.
All interfaces of HSL are implemented as modular, plugin-like components (shims) that can easily be replaced to make the

HSL agnostic to different data layer interfaces. Besides the standard UNIX socket shim shown in Figure 2a, more NFV-specific
implementations are possible; for example, HSL shims that are based on DPDK21 as shown in Figure 2b.

3.3 Handover procedure
SHarP’s handover procedure can be split into three main phases. They are shown in Figure 3 for handing over a single unidirec-
tional flow from VNF1 (source VNF) to VNFn (destination VNF); it also shows the forwarding table entries of the ingress switch
(IngrSw). We decided to show the handover of an unidirectional flow to keep the figures clean and understandable. SHarP sup-
ports the handover of bidirectional flows by performing symmetric handover steps on the ingress and the egress switch at the
same time as described in Section 3.7.
At the beginning of the first phase, the scenario looks like the one shown in Figure 1 in which all flows between Host1 and

Host2 are processed by VNF1. A handover is triggered by a request to the northbound API of the SHarP controller (Ctrl) and
contains an OpenFlow-like matching rule for a flow (or a group of flows) to be moved, a priority r for the handover request, as
well as the identifier (e.g., MAC address or switch port ID) of the destination VNF to which the flows should be moved. The
priority r allows our system to organize the handover procedure among multiple handover requests and allows the user of the
system, e.g., an NFV orchestrator, to overwrite existing handover rules. A SHarP handover request does not require any further

Manuel Peuster
PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT

6 Peuster ET AL

knowledge about the state of the network, in particular, the requesting external entity, e.g., an NFV orchestrator, does not need
to know by which VNFs the flows matching the request are currently processed (R1/R5). In the example given in Figure 1, the
handover request will move all flows from VNF1 to VNFn by using a wildcard (*) in its match field.
Once the request arrives at Ctrl, it installs a so-called flow detection table entry on IngrSw that matches all flows specified

by the handover request and forwards their packets to Ctrl. The priority of this entry pt is set to pt = 2r + 1 so that there
is room for another table entry belonging to this handover request with priority r. Using this fixed mapping of handover rule
priorities r to forwarding table entry priorities tp on the switch ensures a clear separation of forwarding entries belonging to
different handover requests. Next, a second table entry is installed that matches the same flows but forwards their packets to the
destination VNFn. This entry has priority 2r + 0 such that it will only be used once the detection table entry is removed.
Figure 3a shows how incoming packets from Host1 are matched and forwarded to Ctrl, which buffers them. Packets that

are still processed by VNF1 leave the system via EgrSw. In this state, the controller learns about all flows that are affected by
the handover and can generate exact match entries for each of these flows to hand them over one by one. To do so, one exact
table entry for each flow is installed in IngrSw which forwards all packets of this particular flow to Ctrl. These exact entries
implicitly have the highest priority since no wildcard fields are used anymore†. The detection phase stays active until amaximum
silence time, which is set as the idle timeout of the detection entry is reached and the detection entry is removed from IngrSw.
Flows that have not been detected during this time are treated as new flows by our system. They are directly forwarded to VNFn
by the table entry with priority 2r+0. When the detection phase is over, Ctrl sends START_HOmessages to the involved VNFs
using a PACKET_OUT event on IngrSw to inject them into the data plane. The controller knows the destination VNF from the
handover request and the source VNF by utilizing the controller internal knowledge about the previous network configuration.
The HSL in the VNFs intercepts the control message and can, e.g., trigger the preparation of the state transfer before replying
with acknowledgments as shown in Figure 3a.
Once Ctrl receives the ACKs it enters the second phase of the handover procedure that is shown in Figure 3b. Immediately

after this phase has started, Ctrl starts to mark (e.g. by VLAN tag or encapsulation) and release the packets from its buffer and
sends them towards the destination VNFn via IngrSw. VNFn detects the marked packets and puts them in its internal ctrl_buff
because it knows that they have been buffered at Ctrl before. At the same time, Ctrl updates the exact forwarding table entry
to forward all new packets of the flow arriving at IngrSw directly to VNFn. At VNFn, the packets are buffered in the internal
sw_buff of the VNF to not mix them up with the packets previously buffered at the controller (important for R3).
One problem at this point is that Ctrl needs to know when it has received all packets that are not already forwarded to VNFn.

But there may be packets that are still in flight between IngrSw and Ctrl. To solve this, Ctrl instructs IngrSw for a short time
to duplicate and flag packets (BUFFER_FOLLOW_UP) that are forwarded to VNFn and to send the flagged copy of them also to
Ctrl. In this configuration, Ctrl can inject a test packet into the data plane at IngrSw and will immediately know that it has
seen all packets not yet forwarded to VNFn once it sees the test packet. Thus, Ctrl knows that it does not need to buffer any
new packets and removes the packet duplication configuration from IngrSw.
During the entire second phase shown in Fig 3b, no traffic is processed by any of the VNFs and all arriving packets are buffered

in the two buffers of the destination VNFn. In this state, the VNFs can trigger their state management solutions, which can
transfer the VNF’s internal states in a peer-to-peer fashion over the management network between the VNFs. HSL can support
these state management solutions by giving them information about the source and destination VNF as well as the exact flow
identifier.
The third phase of the handover, shown in Figure 3c, is entered once Ctrl has released all its buffered packets and the state

management mechanism at the VNFs indicates that all state has been moved. The HSL then immediately starts to release the
buffered packets towards the VNF implementation of VNFn to be processed using the state that has been moved from VNF1 to
VNFn in the previous step. It first releases its ctrl_buff and afterwards its sw_buff to ensure that all packets are processed
by VNFn in the same order as they have entered the SHarP system (see Section 3.6). Finally, Ctrl can remove the additional
handover table entries from IngrSw and reach a stable system state in which all flows involved in the handover are processed
by VNFn. More details, like control packet formats and handover rule removal procedures are described in22.

†http://openvswitch.org/support/dist-docs/ovs-ofctl.8.txt

http://openvswitch.org/support/dist-docs/ovs-ofctl.8.txt
Manuel Peuster
PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT

Peuster ET AL 7

(a) Phase 1: Flow detection and handover initialization. New packets are buffered at the controller.

(b) Phase 2: Installed temp. forwarding entry to destination VNFn. Buffering done at destination VNFn to allow early controller buffer
release and load distribution. Trigger of state transfer solution.

(c) Step 3: Final forwarding state reached and state migration finished. Release and replay of buffered packets at destination VNFn.

FIGURE 3 Three phases of SHarP’s handover procedure for a flow moved from VNF1 to VNFn

3.4 Handover from a VNF’s perspective
As described in the last section, SHarP relies mainly on the destination VNF instance to buffer incoming packets during state
transfers. To do so, it uses the HSL, which is able to communicate with Ctrl over control messages exchanged using the data
plane of the system. We present this in more detail using Figure 4 which shows the detailed flow of our example handover
from the perspective of the involved VNFs. The figure shows how the involved components interact with each other, starting
with Ctrl that informs the involved VNFs about the start of the handover, by sending them START_HO messages, once the flow
detection is completed and all incoming packets are buffered at the controller (see Phase 1 in Figure 3).When the control message

Manuel Peuster
PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT

8 Peuster ET AL

START_HO arrives at VNF1 (1), the HSL running inside that VNF (VNF1_HSL) intercepts it and notifies the VNF implementation
(VNF1_IMPL) about the handover and about the flows that will be moved away from VNF1 (2). VNF1_IMPL can then freeze its
state, prepare it for migration (3), and acknowledge this action. At this point, no more packets are arriving at the VNF and thus
no new updates to the internal state appear. At the same time, Ctrl also informs VNFn about the upcoming handover (6), which
also prepares its VNF implementation VNFn_IMPL for the upcoming state transfer, i.e., triggers VNFn to request the state from
VNF1 in the next pahse.

FIGURE 4 Handover procedure from the perspective of the involved VNFs and their HSLs.

Once Ctrl received all ACKs, it enters the second phase of the handover in which VNFn buffers all incoming packets inside
its HSL. Those buffered packets are distinguished by tags so that VNFn_HSL knows whether a packet was previously buffered at
Ctrl or not. Based on this, the packets are either buffered in ctrl_buff (12) or sw_buff (13). During this phase, VNFn_IMPL
triggers the actual state migration by requesting a state transfer from the source VNF1 (11), which transfers the state to the
destination VNFn (14). This state transfer might take an arbitrary amount of time, depending on, e.g., the used state management

Manuel Peuster
PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT

Peuster ET AL 9

solution and network conditions, in which the VNFn_HSL keeps buffering incoming packets. Once the state migration is done,
the VNFn_IMPL notifies the HSL (15) and SHarP enters its third phase. The VNFn_HSL now starts to release the buffered packets,
first from ctrl_buff (16) and then from sw_buff (17) to prevent reordering of packets. When both buffers have released all
packets, VNFn can continue with its normal operation and finally notify Ctrl about the finalized handover (18).
One of the benefits of SHarP is that it does not require a dedicated control channel between Ctrl and the involved VNFs.

Instead, all control messages are injected/fetched from the switch and sent over the data plane to the VNFs, where the HSL
intercepts them (R5). The used control messages are encapsulated inside standard Ethernet frames using EtherType=0x821c
not to interfere with other protocols. The payload of each control message contains a command code to express its functionality,
an identifier used to reference the handover to which the control message belongs, and a sequence of type-length-values (TLV)
fields. Those TLVs hold additional context information, like the matching rule used for the handover or its priority. If control
messages are sent from Ctrl to a VNF, the destination VNF’s Ethernet address is used as destination address of the control
message. If control messages are sent from a VNF to Ctrl, the address field is left empty, as the switch detects all control
messages matching their EtherType and forwards them to Ctrl using PACKET_IN events.

3.5 Removing buffer load from the controller
For a seamless handover, packets need to be buffered while the state is synchronized between the VNF instances and no state
updates can be performed. Later, the buffered packets can be released to the destination instance to be applied to the state. In
OpenNF 4, packet buffering takes place completely at the controller which may lead to performance issues. The controller can
quickly be overloaded if the amount of packets to be buffered is large, i.e., because of a long-lasting state transfers. Our system
design, in contrast, reduces the buffer load of the controller by moving the responsibility to buffer incoming packets during a
state transfer to the destination VNF instance. The SHarP controller only needs to buffer packets during the small period of time
in which the handover is initialized (Figure 3a) and tries to release this buffer as early as possible (R2). In particular, the buffer
is released before the actual state transfer is started, which makes the controller buffer usage of SHarP independent of the state
transfer. We will show this property in more detail in our evaluation (Section. 4).
Buffering most of the packets directly at the destination instance has the additional advantage of using the capacity of the

destination VNF instance. A VNF only needs to buffer the packets belonging to flows that are redirected to that instance and not
of all handovers in the network, further improving scalability of the entire system (R4).

3.6 Preserving packet order
One of our key requirements is to not introduce additional packet reordering (R3) into the data plane of the system when flows
are moved between VNFs. This requirement is important because VNFs might apply changes to their internal state in the wrong
order, causing inconsistencies or even information loss when their state is migrated to another instance. Assuming that the
network links between the hosts, the switches, and the VNFs as such do not introduce any packet reordering, SHarP preserves
packet order as follows.
Let (p1,… , pk, pk+1,… , pl, pl+1,… , pm, pm+1,… , pn) be n packets sent in a flow from Host1 to Host2. The subset containing

packets (p1,… , pk) is sent to VNF1 before the handover takes place. They arrive in the order they were sent from Host1 and are
applied to the state S⟨⟩, resulting in state S⟨p1,… , pk⟩ in VNF1.
Once the handover is triggered and the flow detection table entry is in place, packets (pk+1,… , pl) are matched by the detection

entry and are sent to the controller, which buffers themwhile VNF1 is preparing for the handover (Phase 1, Figure 3a). Assuming
a FIFO buffer and taking into account the fact that the packets are encapsulated into OpenFlow packet_in messages delivered
over TCP, the controller will maintain the order of packets (pk+1,… , pl) in its buffer.
After the update of the flow table entries, at the beginning of Phase 2, packets (pl+1,… , pm) and all subsequent packets

are forwarded from Host1 to VNFn and not to the controller anymore. Based on our initial assumptions about the network
infrastructure, these packets arrive at the HSL of VNFn in-order and are buffered in the switch buffer (FIFO) of the HSL as shown
in Figure 2. At the same time, packets (pk+1,… , pl) that have been buffered at the controller during Phase 1 are now released
and sent to VNFn as well. These packets are released in-order, encapsulated into OpenFlow messages, sent to the ingress switch,
and finally delivered to VNFn over the normal data plane. Thus, it can be assumed that they arrive in order at the HSL of VNFn,
where they are buffered (FIFO) in a second buffer (control buffer shown in Figure 2) to ensure that they are not mixed with

Manuel Peuster
PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT

10 Peuster ET AL

packets (pl+1,… , pm). In this phase, state S⟨p1,… , pk⟩ is migrated from VNF1 to VNFn so that VNFn is ready to continue the
packet processing starting with packet pk+1.
Once the state migration procedure has finished, SHarP enters Phase 3 and the HSL of VNFn starts to release the buffered

packets. At first, packets (pk+1,… , pl) are released from the controller buffer and are processed by VNFn which updates the
migrated state accordingly resulting in state S⟨p1,… , pk, pk+1,… , pl⟩. After that, the packets from the switch buffer of the
HSL are released and also processed by VNFn resulting in S⟨p1,… , pk, pk+1,… , pl, pl+1,… , pm⟩. At this stage the handover is
complete and newly incoming packets (pm+1,… , pn) are directly processed by VNFn, resulting in the complete, ordered state
S⟨p1,… , pk, pk+1,… , pl, pl+1,… , pm, pm+1,… , pn⟩ in VNFn.This shows how SHarP maintains the correct oder of packets by
releasing the involved buffers one after each other. This ensures that the VNF state is correctly updated during the handover
procedure (R3).

3.7 Bidirectional handover
As previouslymentioned, we use a unidirectional flow to describe the handover procedure for presentation reasons. Nevertheless,
SHarP also supports migrating bidirectional flows between VNFs, as we show in our evaluation. Handing over a bidirectional
flow is effectively a combination of two unidirectional flow handovers and offers the same features as the previously described
unidirectional case. Design-wise, the controller needs two (instead of one) packet buffers to independently buffer packets from
both switches (IngrSw, EgrSw), which can be independently released during the handover procedure. To trigger a bidirectional
handover, the same API call with an additional flag (bi_ho:bool) is used. The controller then automatically generates the
matching rules for both switches by swapping the source and destination fields of the rules installed on EgrSw. For the example
given in Figure 3, this means that IngrSw is responsible to move the packets sent from Host1 to Host2 and EgrSw is responsible
to move the packets sent from Host2 to Host1. The rules are then installed on both switches in the same way as it is done in the
unidirectional case. It might happen that the installation of rules on one switch is delayed and does not happen simultaneously
with the rule installation on the other switch. This has no impact on SHarP since all arriving packets are already buffered at
Ctrl at this stage. Next, Ctrl informs the involved VNFs about the upcoming handover; this has to be done over both possible
paths, namely by duplicating the control messages and sending them over IngrSw and EgrSw at the same time. The involved
VNFs then wait until they received control messages on both interfaces before they acknowledge the handover. This ensures
that no packets are in flight between switches and VNFs when the next phase is entered in which the handover is executed as
described in Section 3.3. Another requirement for the bidirectional handover is the availability of four (two for each direction)
buffers in the HSL as already depicted in Figure 2.

4 EVALUATION

We analyzed SHarP to highlight the improvements compared to OpenNF. This theoretical analysis is than backed by a set of
experiments performed with our SHarP prototype and validates that our handover protocol behaves like expected, e.g., no packet
loss or reordering occurs and the controller buffer usage remains constant even when the state migration time increases. We
used the following metrics to characterize the performance of our system: The handover duration (1), maximum packet delay
introduced by handover (2), controller buffer usage (3), VNF buffer usage (4), packet loss (5), and packet reordering (6).
Our results present these metrics as a function of data plane data rate and the duration it takes the VNFs to migrate their

state. The maximum packet delay is the main indicator for the delay introduced into the service as the handover is executed. The
buffer usage at the controller and at the VNF indicate how well SHarP fulfills the claim that only a small amount of data has to
be buffered and processed at the controller. Further, we show how SHarP behaves under load when multiple handover requests
for many flows arrive within less than a second.

4.1 Theoretical evaluation
In OpenNF, a loss-free order-preserving handover requires a transmission of a total of 3N + 2R+C messages over the control
plane, where N represents the number of state messages, R the number of redirected packets, and C a constant number of
control messages. In SHarP, only 2T + C messages need to be sent over the control channel, where T ≤ R is the subset of the
redirected packets that is buffered at the controller. Additionally, V + 2R + C messages are transmitted over the data plane,

Manuel Peuster
PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT

Peuster ET AL 11

0 2000 4000 6000 8000 10000
Packet Per Second (1/s)

0

250

500

750

1000

1250

Pa
ck

et
s P

ro
ce

ss
ed

 a
t C

trl OpenNF
SHarP

(a) Processed packets as a function of packets per second with a fixed state size
of 10kB

0 200 400 600 800 1000
State Size (kB)

0
500

1000
1500
2000
2500
3000

Pa
ck

et
s P

ro
ce

ss
ed

 a
t C

trl OpenNF
SHarP

(b) Processed packets as a function of state size with a constant packet rate of
1000 pps

FIGURE 5 Processed packets at the controllers of OpenNF and SHarP for a handover with a duration of 70ms

where V is the number of messages needed by the VNF implementation to migrate state between VNFs which is not under our
control. We can assume that V is close toN if the state transfer is implemented efficiently. In both approaches, the overall cost
of a handover scales with the amount of state to transfer and the number of redirected packets. In SHarP, however, that cost is
incurred mostly at the destination VNF and only partly at the controller. Furthermore, T , the number of packets processed at the
controller in SHarP, only depends on the packet rate and the network delay, not on the state transfer duration, as packet buffering
is outsourced to the destination VNF after a short period of time.
Figure 5 shows the comparison of the amount of packets a controller in OpenNF and SHarP has to process during a handover

with an execution time of 70ms and an initial signalling period of 10ms. In Figure 5a the size of the state that has to be
transferred is set to 10 packets of 1000 bytes each, which is a realistic estimate for state sizes5. The packet rate of the flow during
the handover is increased from 100 packets per second to 10 000 packets per second. It can be seen that with a higher packet rate
the increase of packets processed at the OpenNF controller is vastly higher than the packets processed in SHarP. In Figure 5b,
the number of packets the controllers of both protocols have to process is shown in relation to the migrated VNF state size. The
packet rate of the flow during the handover is fixed to 1000 packets per second while the state size is increased from 1 to 1000
kilobytes. The difference of both approaches is clearly visible as the number of processed packets in OpenNF increases linearly
while it is constant in SHarP. This is a significant advantage of SHarP over OpenNF, as it, from a controller perspective, allows
exceedingly better scalability independent of the VNF state size.
The network delay on the control path and between switch and VNFs in combination with the packet rate also has a non-

negligible impact on the amount of packets processed by the controller. As the previous estimation showed, the amount of
packets is directly linked to the packet rate and the time it takes the controller to notify the participating VNFs. This initial time
is composed of the delay between the controller and the switch and two times the delay between controller and VNFs plus the
time it takes the controller to release its buffer.
Figure 6 shows the processed packets as a function of total network path delay at different packet rates. For estimating the

release time of the controller buffer, we assume that the controller can release an average of 10 000 packets per second with
a packet size of 1000 bytes, which saturates about 1% of a 10Gbit/s interface. The total network delay shown in the figure
corresponds to the sum of all delays that occur during the initial signaling period. More specifically, it includes the delay between
Ctrl and IngrSw and the delay between IngrSw and the VNFs. The figure clearly shows that the network delay has a strictly
linear influence on the number of packets the controller has to process (as was to be expected).

4.2 Experimental evaluation
We implemented a prototype of the SHarP controller based on the Ryu SDN Framework 23. Our prototype offers an easy-to-use,
RESTful northbound interface that offers the required functionalities to trigger handover procedures between arbitrary VNF
instances. In addition to the controller prototype, we implemented a Python-based HSL prototype that acts as a bridge between
the VNFC and the actual VNF implementation using standard Unix sockets as shown in Figure 2a. The use of Python limits the

Manuel Peuster
PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT

12 Peuster ET AL

0 20 40 60 80
Network Delay (ms)

0

200

400

600

800

1000

Pa
ck

et
s P

ro
ce

ss
ed

 a
t C

trl 10 000 pps
5000 pps
2000 pps
1000 pps

FIGURE 6 Influence of the total network path delay between controller, switch and VNF on the number of packets processed
at the SHarP controller at different packet rates

throughput of the HSL prototype but still allows us to evaluate SHarP in terms of buffer usage and handover performance. A
high-performance implementation of the HSL using DKDK21 is planned as future work. Both prototypes (SHarP and HSL) are
open source and available on GitHub24.
Using these prototypes, we executed a set of experiments to evaluate the performance of the proposed handover protocol.

These experiments have been executed on an SDN testbed based on the emulation framework Containernet 25 running on a
server with an Intel(R) Core(TM) i7 CPU 960 @ 3.20GHz and 24GB memory. The used network topology was the same as
shown in Figure 1 consisting of two hosts, two switches, and two VNFs that are able to forward arbitrary traffic between their
input and output interfaces. Both the hosts and VNFs are represented by Docker (1.12.3) containers connected to the emulated
network created by Containernet (2.3.0d1) containing two Open vSwitches (2.5.2). Our prototype controller is implemented on
top of Ryu 4.13.

4.2.1 Handover characteristics
The first part of our experimental evaluation analyses handovers performed with our prototype and they impact the rerouted
packets and the involved buffers. During the experiments, a constant UDP traffic flow is generated on Host1 and sent to Host2
over the first VNF. Host2 receives the packets and sends them back to Host1, creating a bidirectional traffic flow which is then
handed over to VNFn by our SHarP controller. During this procedure, we collect the metrics mentioned before as follows: First,
each of the packets is identified by a unique sequence number so that any lost, reordered, or duplicated packet can be easily
identified. Second, the round trip time (RTT) of the packets is measured at Host1 to identify packet delays that are introduced
by the execution of a handover. Third, we measure the buffer usage at the VNFs as well as at the SHarP controller during the
entire experiment. Finally, the total handover duration, which is defined as the time taken between the initial handover request
and the final migration of the flow to the destination VNF, is measured at the controller.
The first set of experiments focuses on a single handover procedure, with state transfer duration set to 0 s, to analyze what

happens to the packets and VNFs during a flow migration. The upper parts of Figure 7 show packet delays over experiment
time with the handover happening at about 0.4 s. The results show how the delay of the packets quickly increases to about 25ms
before they normalize again after about 5ms. Except for smaller variation, this effect remains the same for different packet
rates and packet sizes. The lower parts of Figure 7 show the number of packets stored in the destination VNF buffer during the
handover. Depending on the packet rate, different numbers of packets need to be buffered. All of them are quickly released, once
the handover is done. These results show that SHarP provides a stable and predictable handover solution.
In the second set of experiments, we executed handovers with different packet rates, packet sizes, and state transfer durations.

Each configuration was executed 100 times, each with a fully restarted network and controller setup to eliminate side effects from
previous runs. All error bars in this paper show 95% confidence intervals. The goal of these experiments is to analyze the general
behavior of SHarP under different conditions. The first set of results given in Figure 8 shows the handover performance as a
function of the data rate of the moved flow given as packets per second. The results shown in Figure 8 are based onmeasurements
using a packet sizes of 58 bytes and 1000 bytes. As shown by the figures, the packet size has no impact on the handover duration

Manuel Peuster
PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT

Peuster ET AL 13

0

10

20

RT
T

(m
s) Packet Rate (1/s)

100
500
1000

0.46 0.48 0.50 0.52 0.54 0.56 0.58 0.60
Packet Sent Time (s)

0

10

VN
F

Bu
ffe

r (
#p

kt
s)

Packet Rate (1/s)
100
500
1000

(a) Handover behavior for different packet rates using 58 byte packets

0

10

20

RT
T

(m
s) Packet Rate (1/s)

100
500
1000

0.46 0.48 0.50 0.52 0.54 0.56 0.58 0.60
Packet Sent Time (s)

0

10

VN
F

Bu
ffe

r (
#p

kt
s)

Packet Rate (1/s)
100
500
1000

(b) Handover behavior for different packet rates using 1000 byte packets

FIGURE 7 Packet delay and VNF buffer state during a single handover for different packet rates and packet sizes

or packet delays, but obviously accounts for more buffer usage if larger packets are used. During all experiments, no packets
were lost, reordered or duplicated, which verifies the seamless nature of our handover mechanism.
Figure 8a shows that the overall handover duration yields a linear increase with the increased packet rate, since more packets

need to be processed. The maximum packet delay introduced by the handover procedure is shown in Figure 8b. It starts by
increasing linearly and ends with the delay stagnating around 27ms. This maximum delay has an upper limit in the time it takes
the controller to notify the VNF about the handover and the VNFs to synchronize the state. If there is no state to be exchanged
the packet delay stagnates towards the end since the round-trip time between controller and VNF does not increase. The buffer
usage of the controller and the VNFs is shown in Figure 8c and Figure 8d, respectively. As the packet rate increases, the entire
system has to buffer more packets; this results in a linear increase in buffer usage at both the controller and the VNF. However,
the controller buffer usage is lower by a factor of about five than the VNF buffer usage, contributing to the scalability of the
system since the VNF buffer usage is distributed across the involved VNFs.
The handover performance as a function of state transfer duration is shown in Figure 9. The increase in the state transfer

duration is achieved by artificially introducing a delay after which the VNFs signal the completion of the state transfer. The
experiments are executed with a fixed packet rate of 1000 packets per second and 58 byte as well as 1000 byte packets, while
the state transfer duration was increased by 100ms every step, ranging from 0ms to 1000ms. Figure 9a shows that the handover
duration increases linearly with the additional time introduced by the state transfer, as expected. The maximum packet delay
shown in Figure 9b is only offset by a small constant delay from the state transfer duration it experiences; this shows that the
packets are indeed released from the buffers as soon as possible and that the service delay is directly influenced by the state size
and transfer duration.
The most important results of our evaluation are given in Figure 9c and Figure 9d. They present the buffer usage at the

controller as well as at the VNF and highlight the reduced controller load of SHarP. Even though the total amount of packets
buffered in the system increases with the state transfer duration, the number of packets buffered at the controller remains constant.
As predicted in Section. 4.1, this produces a significantly lower workload for the controller compared to OpenNF which is
achieved by buffering the majority of the packets during the state transfer at the VNF, as the graph in Figure 9d attests.
Further, Figure 10 shows the packet delay distributions of all packets sent during a single handover experiment, using 58

byte packets. The left part of the figure shows that the packet rate has only minor impact on the delay and only few packets are
delayed by the handover. The right part, in contrast, shows the impact of the state transfer duration to the delay experienced by
the packets. It clearly shows that longer state transfer durations lead to a high number of delayed packets and is thus critical for
the overall performance of elastic VNF deployments.

4.2.2 Multi-handover performance
The second part of our experimental evaluation focuses on the overall behavior of our SHarP prototype and how it behaves in
an environment in which an NFV orchestrator requests many handovers, e.g., because large parts of a service are reconfigured.
We again use our previously described experiment setup and send bidirectional UDP traffic between Host1 and Host2. Each

Manuel Peuster
PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT

14 Peuster ET AL

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

Packet Rate (1/s)

30

35

Ha
nd

ov
er

 D
ur

at
io

n
(m

s)
Packet Size

58 byte
1000 byte

(a) Handover duration

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

Packet Rate (1/s)

22

24

26

28

30

M
ax

. P
ac

ke
t R

TT
 (m

s)

Packet Size
58 byte
1000 byte

(b) Maximum packet RTT

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

Packet Rate (1/s)

0

2

4

6

Co
nt

ro
l B

uf
fe

r U
sa

ge
 (k

B)

Packet Size
58 byte
1000 byte

(c) Controller buffer usage

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

Packet Rate (1/s)

0

10

20

30

VN
F

Bu
ffe

r U
sa

ge
 (k

B)

Packet Size
58 byte
1000 byte

(d) VNF buffer usage

FIGURE 8 Handover performance of SHarP dependent on UDP packets per second with a packet sizes of 58 and 1000 bytes

experiment is again executed 100 times. Instead of focusing on the handover of a single flow, multiple flows (up to 100) are now
generated in parallel, eachwith a packet rate of 50 packets/s, andmoved fromVNF1 to VNF2 during the experiments.We generate
handover requests using a Poisson arrival process with a rate of 2, 5, or 10 handover requests per second (� = 2, � = 5, � = 10)
and sent them to SHarP’s northbound interface. This simulates an environment in which the NFV orchestrator reconfigures the
service multiple times per second, showing that SHarP is already designed for future, cloud-native NFV deployments in which
reconfigurations may happen on a sub-second basis, which is usually not the case in today’s VM-based deployments.
During the experiment, the handover durations are measured to see the impact of handover request number and rate on

the performance of individual handovers. Figure 11 shows the results of these experiments for different numbers of handover
requests, request arrival rates, and flows with small (58 byte) and large (1000 byte) packets. Figures 11a and 11c show the
behavior of the handovers for an increasing number of performed handovers. They show that the handovers become slightly
slower when more of them are executed. This effect is a bit stronger when larger packets are used (Figure 11c), which can
be explained by the generally higher load in the system due to higher buffer usage at the controller. The handover request
rate also impacts the handover duration as shown in Figures 11b and 11d. With a higher rate, the handovers become slightly
slower. The size of the packets in the moved flows have almost no impact on this, which is an important property of SHarP
because the handover performance does not depend on the nature of the moved traffic. In general, 90% of the handovers in
the experiment are complete in less than 120ms; this shows that SHarP can deal with multiple handovers per second without
substantial performance degradation.

Manuel Peuster
PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT

Peuster ET AL 15

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00

State Transfer Duration (ms)

0

500

1000

1500
Ha

nd
ov

er
 D

ur
at

io
n

(m
s)

Packet Size
58 byte
1000 byte

(a) Handover duration

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00

State Transfer Duration (ms)

0

250

500

750

1000

M
ax

. P
ac

ke
t R

TT
 (m

s)

Packet Size
58 byte
1000 byte

(b) Maximum packet RTT

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00

State Transfer Duration (ms)

0

2

4

6

Co
nt

ro
l B

uf
fe

r U
sa

ge
 (k

B)

Packet Size
58 byte
1000 byte

(c) Controller buffer usage

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00

State Transfer Duration (ms)

0

500

1000

VN
F

Bu
ffe

r U
sa

ge
 (k

B)

Packet Size
58 byte
1000 byte

(d) VNF buffer usage

FIGURE 9 Handover performance of SHarP dependent on the state transfer duration with 1000 UDP packets per second and
packet sizes of 58 bytes and 1000 bytes

5 CONCLUSION

We introduced SHarP, a novel flow handover mechanism that provides loss-free and order-preserving flow migration function-
ality for both unidirectional and bidirectional flows. We showed how SHarP preserves the order of packets by using different
FIFO buffers and subsequently releasing them. In contrast to existing approaches, SHarP does not come with an integrated state
management solution but provides the means to support any state management solution implemented by a given VNF by send-
ing triggers to it whenever flows are migrated. We believe that this is a much more practical separation of concerns since it
leaves the choice of the used state management mechanism to the VNF vendors.
Our experimental evaluation clearly shows that with SHarP themaximum packet delay that constitutes the service interruption

time is kept to a minimum as it mostly depends on the initial time required to signal the VNF plus the state transfer duration. The
interruption time only increases slightly with an increased packet rate and does not worsen at higher packet rates. The evaluation
of the controller buffer at increasing packet rates and state transfer durations shows that with SHarP, the controller’s buffer usage,
and thus the amount of processed packets, only depends on the round-trip time between controller and VNFs and on the packet
rate. It does not depend on the time taken for the state transfer process that is usually hard to predict and heavily depends on the
VNF implementation. This gives SHarP a major advantage over similar handover approaches. Our results also show that SHarP
is ready for future, cloud-native NFV deployments with sub-second reconfiguration times. We published the SHarP prototype
as open source software on GitHub24 to make it available for integration with different state management solutions.

Manuel Peuster
PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT

16 Peuster ET AL

0 5 10 15 20
Packet RTT [ms]

0.0

0.2

0.4

0.6

0.8

1.0
CD

F Packet
Rate (1/s)

100
500
1000

(a) Packet RTT for different packet rates

0 200 400 600 800 1000
Packet RTT [ms]

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

State Trans.
Duration (ms)

0
100
500
1000

(b) Packet RTT for different state transfer durations

FIGURE 10 Distribution of packet delays during different handover experiments using a packet size of 58 bytes

ACKNOWLEDGMENTS

This work has been partially supported by the SONATA project, funded by the European Commission under Grant number
671517 through the Horizon 2020 and 5G-PPP programs (www.sonata-nfv.eu), the 5GTANGO project, funded by the European
Commission under Grant number H2020-ICT-2016-2 761493 through the Horizon 2020 and 5G-PPP programs (http://5gtango.
eu), and the German Research Foundation (DFG) within the Collaborative Research Centre “On-The-Fly Computing" (SFB
901).

References

1. Karl H, Dräxler S, Peuster M, et al. DevOps for network function virtualisation: an architectural approach. Transactions on
Emerging Telecommunications Technologies 2016; 27(9): 1206–1215.

2. ETSI . NFV White Paper. Online at https://portal.etsi.org/NFV/NFV_White_Paper.pdf; . Accessed at 12/2017.

3. Han B, Gopalakrishnan V, Ji L, Lee S. Network function virtualization: Challenges and opportunities for innovations. IEEE
Communications Magazine 2015; 53(2): 90-97. doi: 10.1109/MCOM.2015.7045396

4. Gember-Jacobson A, Viswanathan R, Prakash C, et al. OpenNF: Enabling Innovation in Network Function Control.
SIGCOMM Comput. Commun. Rev. 2014; 44(4): 163–174. doi: 10.1145/2740070.2626313

5. Rajagopalan S, Williams D, Jamjoom H, Warfield A. Split/ Merge: System Support for Elastic Execution in Virtual
Middleboxes. In: USENIX . , ed. Proceedings of the 10th USENIX Conference on Networked Systems Design and
Implementationnsdi’13. USENIX Association; 2013; Berkeley, CA, USA: 227–240.

6. Peuster M, Küttner H, Karl H. Let the state follow its flows: An SDN-based flow handover protocol to support state
migration. In: IEEE ., ed. 4th IEEE Conference on Network Softwarization and Workshops (NetSoft); 2018: 97-104

7. Joseph DA, Tavakoli A, Stoica I. A policy-aware switching layer for data centers. In: ACM ., ed. ACM SIGCOMMComputer
Communication Review. 38. ACM. ; 2008: 51–62.

8. Qazi ZA, Tu CC, Chiang L,Miao R, Sekar V, YuM. SIMPLE-fyingMiddlebox Policy Enforcement Using SDN. SIGCOMM
Comput. Commun. Rev. 2013; 43(4): 27–38. doi: 10.1145/2534169.2486022

9. Fayazbakhsh SK, Chiang L, Sekar V, Yu M, Mogul JC. Enforcing Network-wide Policies in the Presence of Dynamic
Middlebox Actions Using Flowtags. In: USENIX ., ed. Proceedings of the 11th USENIX Conference on Networked Systems
Design and ImplementationNSDI’14. USENIX Association; 2014; Berkeley, CA, USA: 533–546.

www.sonata-nfv.eu
http://5gtango.eu
http://5gtango.eu
https://portal.etsi.org/NFV/NFV_White_Paper.pdf
http://dx.doi.org/10.1109/MCOM.2015.7045396
http://dx.doi.org/10.1145/2740070.2626313
http://dx.doi.org/10.1145/2534169.2486022
Manuel Peuster
PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT

Peuster ET AL 17

0 50 100 150 200
Handover Duration [ms]

0.0

0.2

0.4

0.6

0.8

1.0
CD

F

Requests (#)
10
50
100

(a) Handover durations for 10 to 100 requests with fixed arrival
rate (� = 10) moving flows with 58 byte packets

0 50 100 150 200
Handover Duration [ms]

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

2.0
5.0
10.0

(b) Handover durations for 100 requests and changing arrival
rates (�) moving flows with 58 byte packets

0 50 100 150 200
Handover Duration [ms]

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Requests (#)
10
50
100

(c) Handover durations for 10 to 100 requests with fixed arrival
rate (� = 10) moving flows with 1000 byte packets

0 50 100 150 200
Handover Duration [ms]

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

2.0
5.0
10.0

(d) Handover durations for 100 requests and changing arrival
rates (�) moving flows with 1000 byte packets

FIGURE 11 Distribution of handover durations for multiple handovers using different numbers of handover requests, request
arrival rates, and flows with small and large packets

10. Liu J, Li Y, Jin D. SDN-based Live VM Migration Across Datacenters. In: ACM . , ed. Proceedings of the 2014 ACM
Conference on SIGCOMMSIGCOMM ’14. ACM; 2014; New York, NY, USA: 583–584

11. Rajagopalan S, Williams D, Jamjoom H. Pico Replication: A High Availability Framework for Middleboxes. In: ACM ., ed.
Proceedings of the 4th Annual Symposium on Cloud ComputingSOCC ’13. ACM; 2013; New York, NY, USA: 1:1–1:15

12. Gember-Jacobson A, Akella A. Improving the Safety, Scalability, and Efficiency of Network Function State Transfers. In:
ACM . , ed. Proceedings of the 2015 ACM SIGCOMM Workshop on Hot Topics in Middleboxes and Network Function
VirtualizationHotMiddlebox ’15. ACM; 2015; New York, NY, USA: 43–48

13. Kothandaraman B, Du M, Sköldström P. Centrally Controlled Distributed VNF State Management. In: ACM ., ed. Pro-
ceedings of the 2015 ACM SIGCOMMWorkshop on Hot Topics in Middleboxes and Network Function VirtualizationACM.
; 2015: 37–42.

14. Shao X, Gao L, Zhang H. CoGS: Enabling distributed network functions with global states. In: IEEE . , ed. 2017 IEEE
Conference on Network Softwarization (NetSoft); 2017: 1-9

15. Nobach L, Rimac I, Hilt V, Hausheer D. Statelet-Based Efficient and Seamless NFV State Transfer. IEEE Transactions on
Network and Service Management 2017; PP(99): 1-1. doi: 10.1109/TNSM.2017.2760107

16. Wang W, Liu Y, Li Y, Song H, Wang Y, Yuan J. Consistent State Updates for Virtualized Network Function Migration.
IEEE Transactions on Services Computing 2017.

http://dx.doi.org/10.1109/TNSM.2017.2760107
Manuel Peuster
PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT

18 Peuster ET AL

17. Peuster M, Karl H. E-State: Distributed state management in elastic network function deployments. In: IEEE ., ed. IEEE
NetSoft Conference and Workshops (NetSoft); 2016: 6-10

18. Mayer R, Gupta H, Saurez E, Ramachandran U. FogStore: toward a distributed data store for fog computing. In: IEEE. ;
2017: 1–6.

19. Lin Y, Kozat UC, Kaippallimalil J, Moradi M, Soong AC, Mao ZM. Pausing and Resuming Network Flows Using
Programmable Buffers. In: SOSR ’18. ACM; 2018; New York, NY, USA: 7:1–7:14

20. Sun C, Bi J, Meng Z, Yang T, Zhang X, Hu H. Enabling NFV Elasticity Control with Optimized Flow Migration. IEEE
Journal on Selected Areas in Communications 2018: 1-1. doi: 10.1109/JSAC.2018.2869953

21. Linux Foundation . Data Plane Development Kit (DPDK). Website; 2017. Online at http://dpdk.org.

22. Kuettner H. Seamless SDN-based handover for virtualized network functions. Bachelor’s Thesis. Paderborn University.
2017.

23. Ryu SDN Framework Community . Ryu. https://osrg.github.io/ryu/; . Accessed at 08/2017.

24. M. Peuster and H. Küttner and H. Karl . SHarP Prototype Repository. Online at https://github.com/CN-UPB/sharp; .
Accessed at 10/2018.

25. Containernet Project . Containernet a Mininet Fork adding Container Support to Network Emulations. online at: https:
//containernet.github.io; 2017. Accessed 12/2017.

http://dx.doi.org/10.1109/JSAC.2018.2869953
http://dpdk.org
https://github.com/CN-UPB/sharp
https://containernet.github.io
https://containernet.github.io
Manuel Peuster
PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT PREPRINT

	A flow handover protocol to support state migration in softwarized networks
	Abstract
	Introduction
	Related Work
	Seamless Handover Protocol (SHarP)
	Handover scenario
	Transparency towards VNF and state management
	Handover procedure
	Handover from a VNF's perspective
	Removing buffer load from the controller
	Preserving packet order
	Bidirectional handover

	Evaluation
	Theoretical evaluation
	Experimental evaluation
	Handover characteristics
	Multi-handover performance

	Conclusion
	Acknowledgments
	References

