This work has been accepted for publication in 2017 IEEE Conference on IEEE Conference on Network Function Virtualization and

Software Defined Networks (NFVSDN 2017).
Copyright © 2017 by IEEE. ISBN: 978-1-5386-3285-7

Profile Your Chains, Not Functions: Automated
Network Service Profiling in DevOps Environments

Manuel Peuster
Paderborn University
manuel.peuster @uni-paderborn.de

Abstract—Benchmarking and profiling virtual network func-
tions (VNF) generates input knowledge for resource management
decisions taken by management and orchestration systems. Such
VNFs are usually not executed in isolation but are often deployed
as part of a service function chain (SFC) that connects single
functions into complex structures. To manage such chains, iso-
lated performance profiles of single functions have to be combined
to get insights into the overall behavior of an SFC. This becomes
particularly challenging in highly agile DevOps environments
in which profiling processes need to be fully automated and
detailed insights about a chain’s internal structures are not
always available.

In this paper, we introduce a fully automatable, flexible,
and platform-agnostic profiling system that allows to profile
entire SFCs at once. This obviates manual modeling proce-
dures to combine profiling results from single VNFs to reflect
SFC performance. We use a case study with different SFC
configurations to show that it is hard to model the resulting
SFC performance based on single-VNF measurements and that
performance interactions between real, non-trivial functions that
are deployed in an chain exist.

I. INTRODUCTION

Network function virtualization (NFV) is expected to be the
key enabler for agile network management in the upcoming
Sth generation of networks. It allows to apply DevOps prin-
ciples to network and service management processes with the
overall goal to reduce turnaround times and time-to-market
delays through the softwarization and virtualization of network
components [1]. In such agile environments, network service
function chains (SFC), chaining together virtualized network
functions (VNF), are automatically managed by management
and orchestration (MANO) systems. These systems decide
how many virtualized resources are allocated to each function
to meet pre-defined service level agreements (SLA) and ensure
certain quality of service (QoS) levels. They are also respon-
sible to re-configure SFCs and their functions at runtime, e.g.,
scale-up or scale-out.

To optimize their decisions, MANO systems can rely on
online monitoring data or on pre-acquired knowledge about
the relationship between available resource and resulting per-
formance, so called performance profiles [2]. The second
approach is especially favorable in very agile DevOps environ-
ments in which new versions of network services are directly
deployed into production and thus no up-to-date monitoring
data about the updated service is available.

Holger Karl
Paderborn University
holger.karl @uni-paderborn.de

Some initial profiling solutions have already been proposed
by both the NFV and cloud computing research communi-
ties [3], [4]. However, most of the existing solutions are
either tied to specific platforms on which ithe VNFs are
profiled, or they require manual steps to setup and run profiling
experiments. This complicates the integration of the profiling
procedure into agile DevOps workflows. For example, it
should be possible to automatically profile an SFC during its
on-boarding procedure (i.e. uploading a new SFC version to
an NFV platform).

Another important aspect for profiling in an NFV context
is the need to consider complex SFCs and not only single,
isolated functions. This is because the end-to-end performance
of the entire SFC is the metric of interest, especially if the
SFC is deployed on the path between end users and a customer
service, e.g., between user and a content delivery network. One
option to get the end-to-end SFC performance is to combine
profiling results of single VNFs using a performance model of
the SFC. The problem of this approach is that SFCs can consist
of many VNFs that could possibly be chained in different
ways, like different order of functions, different structures
(branches), and different forwarding paths which makes it
hard to find correct models. In addition, the required details
about the SFC structure might not even be available, e.g., for
proprietary (black box) SFCs. Performing this model-based
approach for such proprietary SFCs would only be feasible if
an SFC developer manually provides the correct models. A
clear contradiction to the idea of automation. An alternative
option is to develop profiling solutions that are able to profile
entire SFCs end-to-end.

The contributions of this paper are two-fold. First, Section II
introduces a novel NFV profiling system that addresses three
shortcomings of existing approaches: platform dependency,
lack of automation and missing support for SFC profiling.
The presented solution is open-source [5] and designed to
be completely platform-agnostic by using a novel descriptor-
based experiment generation approach. The system can easily
be adapted to be used with existing NFV platforms by pro-
viding descriptor plugins that generate target platform-specific
service configurations and driver plugins used to deploy these
service configurations on the target platforms. In our examples,
we use the SONATA [5] description format that is aligned with
the ETSI [6] NFV model.

Second, we use a case study to show that naive approaches

Manuel Peuster
This work has been accepted for publication in 2017 IEEE Conference on IEEE Conference on Network Function Virtualization and Software Defined Networks (NFVSDN 2017).
Copyright © 2017 by IEEE. ISBN: 978-1-5386-3285-7�

that profile single VNFs in isolation and combine their results
do not work and result in inaccurate predictions for the
resulting SFC performance. Our findings, which also show that
our fully automated end-to-end SFC black-box profiling ap-
proach works, are presented in Section III. Finally, Section IV
compares our work with existing approaches and Section V
concludes.

II. AUTOMATED SERVICE CHAIN PROFILING

Automated profiling of complex network services requires
three key components. First, an approach to define profiling
procedures. Second, an NFV platform with its infrastructure
and MANO facilities used to deploy, configure, and execute
the service under test (SUT). Third, a profiling controller
that coordinates the profiling process and controls the test
system by interfacing with the NFV platform. We identified the
following requirements for such a profiling system. (R1) Au-
tomation: Allow fully automated (i.e. scriptable) profiling
experiments without any human interaction after the experi-
ment’s initial description. (R2) Flexibility: Support many NFV
platforms so that profiling experiments can be executed in
different environments. This includes support for different con-
trol and monitoring interfaces as well as different description
languages. (R3) Abstraction: Once a developer has described
a profiling experiment it should be possible to execute this
experiment on different target platforms. (R4) Integration:
The profiling tool as such has to be integrable into different
workflows, for example, to be executed inside a continuous
integration and delivery (CI/CD) pipeline or to become part
of a service platform’s on-boarding procedure.

A. Profiling Controller Design & Workflow

We designed our profiling controller as a highly modular-
ized system that allows to replace many of the components that
interface with external systems so that it can be extended and
used with any NFV platform. The key idea of this design is to
utilize the available service description mechanisms offered
by existing MANO systems' to deploy and profile a SUT
with different parameterizations and configurations instead
of manipulating the target platform directly. This has the
clear benefit that our system is transparent to the target NFV
platforms and does not require interface changes.

Fig. 1 describes our system as well as the profiling work-
flow. In the first step, a user creates a profiling experiment
descriptor (PED) that contains all necessary information to
perform a profiling experiment. In particular, it references
the network service that should be profiled, e.g., a service
package or service descriptor, and it includes descriptions of
all service configurations that should be tested, e.g., different
resource assignments for the used VNFs (Sec. II-B). The PED
is used to trigger our profiling system by either using its
command line (CLI) or REST interfaces (step 1 in Fig. 1).
These interfaces also allow the integration of our profiler into
existing CI/CD workflows (R4). The profiler reads the PED
and forwards the request to its descriptor engine. This module
takes the network service referenced by the PED file and

fgenerale) 4
7
execute (4)
Descriptor Plugin ot
on-board

| . Descriptor Engine
H | H o 5
: reference ! ° 2 control
[= 5 MANO
: I 3 £
: 5 i< monitor
' : @ Result Processor a
: : o L
| : T
i Service | read write) NFV Platform
VO(SFC) 1 T o N v

Results o monitor/collect (5)

Fig. 1: System architecture of our profiling system interacting
with several NFV platforms. The figure also shows the general
workflow and generated artifacts, like profiling configurations
and results.

embeds (or extends) it with additional measurement VNFs,
called measurement points (MP).- Our system offers default
measurement point VNFs that contain standard networking
test tools, like iperf or hping. A tester can replace these
by any custom measurement VNF which may, for example,
contain domain-specific, proprietary traffic generators. After
the embedding step; one copy of the new service description,
for each configuration specified in the PED, is generated (step
2). This includes resource configurations, like number of cores
assigned to a VNF. The descriptor engine itself offers a plugin
interface for service description generators so that our profiler
becomes service descriptor agnostic and can be extended to
further description formats, e.g. OSM [7] (R2).

In the third step, the previously generated service configura-
tions are deployed one after the other on the target platform(s)
using the platform driver modules (step 3). These drivers act
as a client to the target platform and form an abstraction
layer between specific MANO northbound interfaces and our
internal control mechanisms (R3).

Once a service instance is up and running, the traffic
generators in the additionally deployed measurement point
VNFs are activated and start to stimulate the service. After
this, the service instance is destroyed and removed from the
platform before the next service configuration is deployed. We
call the deployment, execution, and test of a single service
configuration a profiling round.

During a profiling round, performance data is collected in
two ways (step 4). First, service-internal performance metrics
are monitored, including log files inside the measurement
points and VNFs (if enabled). Second, platform metrics, like
packet counters on virtualized interfaces, are collected through
the platform’s monitoring APIs. The latter are platform-
specific and may not be available on each target platform.

As a last step (step 5), all measured data, collected from
various sources, is aggregated and stored in a unified, table-
based format. Each row in this table represents exactly one of
the tested service configurations. These tables are then passed

to a post-processing module which automatically triggers
user-defined analysis scripts that can, for example, perform
statistical analysis on the collected datasets (R1).

B. Describing Profiling Experiments

One of our key contributions is an easy-to-understand,
human-readable description format used to describe profiling
experiments. Listing 1 shows a small part of such a YAML-
based descriptor. In the header (line 1-2), the descriptor
contains general information and version fields. The PED also
contains an URL to the service definition which can be in any
format, for example, a SONATA service package (line 5).

2l name :

| # (L)

descriptor_version: 0.1
"example-profiling-experimentl"

service_experiments:

service_url: "file://data/example-service.son"

- name: "service_throughput_tcp"
repetitions: 8
time_limit: 120 # seconds
service_id: "eu.sonata-nfv.example-service.0.1"
measurement_points:

- name: "mp.input"

connection_point: "ns:input"

image: "default-mp:latest"
cmd_start: "iperf -c mp.output"

- name: "mp.output"
connection_point: "ns:output"
#o(...)

resource_configurations:

- function_id: "eu.sonata-nfv.proxy-vnf.0.1"
cpu_time: "${0.05 to 1.0 step 0.05}"
cpu_core_set: "0, 1" # corel and core2
mem_max: "${64, 128, 256, 512}" # MByte
io_bw: null

— function_id:
(...)

- name: "service_throughput_udp"
extends: "service_throughput_tcp"

#o(...)

"eu.sonata-nfv.loadb-vnf.0.1"

Listing 1: Part of an example PED that shows the main features
of our experiment description approach.

After this, multiple experiment definitions can be specified.
Each experiment has a unique name, number of repetitions
(line 7), time limit for a single repetition (line 8), and an identi-
fier of the service descriptor to be used (line 9). An experiment
definition also includes the configuration of measurement point
VNFs. These configurations must include a reference to a
connection point of the network service so that the system
knows how to combine and interconnect measurement point
VNFs with the profiled service (line 15).

Finally, a set of resource configurations, for each of the
VNFs contained in the service, can be specified. This includes,
for example, the number of vCPU cores or assigned memory.
More platform-dependent resource configurations, like the
available CPU time of a container, are also possible.

To simplify the specification of complex parameter studies
and significantly reduce the effort required to define new
experiments, we added two features that are inspired by
the configuration language of the well known Omnet++!

Thttps://omnetpp.org

(a) Extended Service

(b) Wrapping Service

Fig. 2: Test service generation examples. Extended service
descriptor (a) and embedded service Sempedded (D)-

simulation framework. First, we support parameter macros
which can specify value ranges (loops or lists) that should be
tested for a specific parameter (line 20 and line 22). Second,
we support inheritance for experiment descriptions (line 27).
If a second experiment extends a first experiment, it inherits
all configurations specified by the first experiment and can
overwrite only the parameters that should be different.

Based on the experiment descriptors and the service spec-
ification, our profiling system will generate one service con-
figuration for each combination of parameters that should be
tested. This means that the service_throughput_tcp experiment
in Listing 1 results in repetitions-|cpu_time|-|mem_max| =
8 -20 -4 = 640 different configurations, and thus profiling
rounds, to be executed.

The generation of these configurations highly depends on
the service descriptor technology used by the target platforms.
These are often similar but in most cases not exactly the same.
For example, the descriptors of SONATA [5] and OSM [7] are
both based on the ETSI description model [6], but they differ
in implementation details, like field names. This is why we
use a plugin design to generate the descriptions which allows
to implement specific generators for any description approach.

One of the main functionalities of these generators is to ex-
tend the network service descriptor of the SUT with additional
measurement VNFs. This can be achieved with two different
approaches shown in Fig. 2. The first approach extends the
main service graph as such by appending the additional VNFs
to the connection points specified in the PED (a). The second
approach, in contrast, does not modify the network service
descriptor as such but embeds it into another service descriptor
that contains the measurement VNFs (b). As shown in the
figure, the second approach has a much cleaner design and
simplifies the generator implementation. However, it requires
that the target platform supports hierarchical service structures.

C. Packaging Profiling Results

The profiling system collects different metrics during each
profiling round and stores them in a table-based data format
for further processing. The collection can either be done
by using the outputs of the test tools executed inside the
measurement point VNFs or with platform-specific monitoring
systems accessible trough the platform drivers.

The collected results can finally be analyzed and normal-
ized, for example, lookup tables can be created which are then
bundled with the service and used by MANO algorithms, e.g.,
for service-specific scaling decisions. However, these analysis
tasks highly depend on the planned use for the results. Thus,

our system allows to plug-in arbitrary analysis scripts that are
automatically executed at the end of an profiling experiment.

III. CASE STUDY: CHAIN-BASED PROFILING

We performed a series of experiments to test our profiling
approach and to show that end-to-end SFC profiling can
produce the same, or even better results than approaches that
combine profiling results from single functions to model SFC
performance behavior. This is especially interesting because
our SFC-based profiling solution treats the entire SFC as a
black box and does not require further information about its
structure, except its incoming and outgoing connection points.

A. Scenarios and Approach

For our case study, we use a linear SFC consisting of
up to three different VNFs, all acting as Layer 4 for-
warding elements. The used VNFs are Nginx’> (fy) con-
figured as TCP load balancer, the TCP relay Socat® (fs)
and Squid Proxy* (fp) with disabled caching functionality
to forward every packet. This SFC is deployed between a
web-service (MPy,) and end users (MPy). The goal is to
demonstrate that, even in this simple linear setup, the fully
automated end-to-end SFC profiling produces better results
than solutions that combine single-function profiles. We mea-
sured the performance for each of the three isolated VNFs as
well as for multiple setups of the full SFC (different order of
VNFs). Table I shows a list of the used scenarios.

TABLE I: Used scenarios

isolated function fnr
isolated function fg
isolated function fp

MPy <— fn <— MPy,
MPy +— fg «— MPy
MPy <— fp <— MPy,

SFC S1 MPy <— fn <— fs4— fp +— MPy
SFC Sa MPy «— fg «— fp «— fN <— MPy
SFC S3 MPy «— fp «— fN «— fg «— MPw

All scenarios have been deployed on our Mininet-based [8]
NFV profiling platform presented in our previous work [2], [9].
This platform allows us to profile complex SFCs consisting of
VNFs running inside containers on either a single physical
machine or, in combination with Maxinet [10], on multiple
physical machines. In both cases each VNF container was
allocated to a single dedicated CPU core for isolation. To
check the performance of our VNFs and SFCs under different
resource configurations, we allocated different fractions of
CPU time to each individual VNF container to emulate a large
set of different resource configurations. It is important to note
that the resulting performance numbers, generated by these
experiments, should not be taken as absolute values but they
allow us to compare our scenarios. Most experiments have
been executed on a single machine with Intel(R) Core(TM)
17-960 CPU @ 3.20 GHz, 8 cores, hyper threading, and 24 GB
RAM. For the distributed (Maxinet) setup, multiple of these

Zhttp:/nginx.org
3http://www.dest-unreach.org/socat/
“http://www.squid-cache.org

Nginx (‘/“\) §ocat (fs) Sgufd (p)

[single-machine
[multi-machine

canvwEOON®O

Throughput [Gbps]

0.16 0.32 0.64 1.0 0.16 0.32 0.64 1.0 0.16 0.32 0.64 1.0
CPU time (cn) CPU time (cs) CPU time (cp)

Fig. 3: Throughput of the three VNFs under different CPU
time configurations executed on the single-machine and multi-
machine (Maxinet) setup.

machines, interconnected by 10G Ethernet interfaces, were
used. In this setup, a dedicated machine was used for each
deployed VNF container.

We focus on two metrics to measure VNF and SFC perfor-
mance: Overall throughput and response time.

B. Throughput: Isolated Function vs. Service Chain

In the first set of experiments, we measure the total through-
put between web service (MPy) and end users (MPy) by
downloading big files with random content to simulate a
vCDN service served through our VNFs and SFCs. In this
setup we use Apache2 running in MPy, and Apachebench
installed in MPy; to run the downloads. Fig. 3 shows the results
for single functions and different CPU time configurations
measured in our single-machine and multi-machine platform
setup. The results indicate a linear relationship between CPU
time and throughput and show that fy performs best. More-
over, it highlights that the absolute performance values of
the single-machine setup are much better than in the multi-
machine setup. The reason for this is that our profiling plat-
form directly interconnects the VNF containers in the single-
machine setup (virtual Ethernet pairs between containers). This
means that there are no intermediate vSwitches that consume
additional resources or tunnels between physical machines that
need to be traversed. Because of this, single-machine setups
are better suited to really focus on the VNF performance.

Using these results, we naturally model the expected
throughput of a linear SFC with three functions and CPU con-
figuration C' = (cn, cs, ¢p) as the minimum of the throughput
measured in the single-function setups:

Tsec(cy = min{ T (enys Ts(es)s Tr(ep) }

We compared the SFC throughput to the results of our
three SFC profiling scenarios in which the complete SFC
was deployed and profiled end-to-end as shown in Fig. 4.
All error bars indicate the 95% confidence intervals based on
10 repetitions. The experiments have been executed on our
single-node setup and on our multi-node setup. Again, the
overall performance of the sing-node setup was higher (up to
2.5 Gbps) compared to the multi-node case (1.2 Gbps). Both
setups show that even though the modeled results are often
near to the experimental results, there are some configurations
in which the real performance of the SFC is much better than
predicted by the model. The figure also indicates that SFC
Sy performs worse than the other two SFC configurations. It

SFC vs. model

B Model: min{Ty(cy); Ts(cs); Tp(cp)
11 SFC 5,
mm SFC S,
| mmm SFcs,

Throughput [Gbps]

1.0 4

0.

i LoD o i,

&

CPU configuration: C'= (cn, cs, cp)

(b) multi-machine setup (Maxinet)

~N
o

[Model: min{Ty(r?,y): Ts(cs); Tp((:p)}
[SFC S,

@

Throughput [Gbps]
& b5

0.0

MASADESRSHOAOR SO ESES A RO O

ST T B B P P

S D > PP >
R

CPU configuration: C'= (cn,

O

: NN
D At At At At At bt b
@Yo e e e e e e e

]
I
1z
I

S, Cp

i}

Fig. 4: Throughput of three SFC configurations under different CPU time configurations compared to the expected throughput
modeled on basis of the results from our single-VNF measurements. Experiments have been execute in our single-node setup

(a) and multi-node setup (b).

CPU c= 0.04 CPU c= 0.08 CPU c= 0.16 CPU c= 0.32 CPU c= 0.64

2 0 1 2 0
response time [ms]

—— none —— Nginx (fy) - -- Socat (fs) Squid (fp)

Fig. 5: Empirical response time CDFs for each VNF and a
setup without VNF between MPy; and MPyy.

especially shows that even the ordering of the same functions
in the SFC has an effect on its end-to-end performance. This is
something that can clearly not be captured by isolated single-
function profiling approaches.

C. Response Time: Isolated Function vs. Service Chain

In the second set of experiments, we investigate the impact
of different VNF and SFC configurations on the response time.
This is done by performing 500 response time measurements
(HTTP HEAD requests using httping installed in MPy;) in each
profiling round. These experiments have only been performed
in the single-machine setup because a multi-machine MaxiNet
setup would have introduced a lot of bias to the response times
caused by intermediate switches and network tunnels that need
to be traversed. Fig. 5 shows the results for our single-function
scenarios as well as for‘a scenario in which no VNF was
deployed between MPy; and MPyy. It shows that each VNF
implementation has slightly different response times and that
the allocated CPU time has only a small effect on the response
times.

We again created a model to predict the behavior of our
SFC scenarios based on single-function measurements. This
model approximates the response time of an SFC by the
sum of the response times measured in the individual VNF
experiments. This assumption makes sense since we know
that all our SFC scenarios use linear chains in which each

packet has to traverse every function. Building the sum of the
response times can be understood as summing up independent
random variables and is done by computing the discrete
convolution of the single-function measurements. Let r,(¢)
with © € {N(cn),S(cs), P(¢cp)} be the probability density
function (PDF) derived from the results of the given single-
function experiment x with a given CPU configuration. The
approximated response time PDF of our SFCs with three
functions is then defined as:

Tsec(c)(t) = P (en) (1) * Ts(es) (1) * TP (ep) ()

= Z (Z T'N(cn) (j)TS(cs) (l - j)>rP(cp) (t - Z)
i=0 =0

This model can be used for all our linear SFC scenarios
due to the commutative nature of the convolution. Fig. 6
compares these models to the measured results of our SFC
experiments for changing CPU times of VNF fp. It indicates
that the SFCs do not behave like expected and show response
times that are about twice as fast as the modeled response
times. It can also be seen that S; performs worse in the 4.0%
CPU time case and performs better than S5 in the 8.0% CPU
time case. This shows again that the order of the VNFs in
our linear SFCs matters. It can be seen that modeling SFC
performance behavior based on single-function measurements
without detailed knowledge about the used VNFs and SFC
structure does not lead to accurate results. As a consequence,
SFEC profiling solutions that support end-to-end measurements
turn out to be a much better solution for fully automated
environments in which black-box profiling is required.

IV. RELATED WORK

NFV profiling is already considered by standardization
bodies, like IETF [11] and ETSI [12] but the availability of
real-world solutions is still limited.

A lot of work about profiling of virtualized applications
has already be done by the cloud computing community,
proposing a couple of solutions to profile single cloud appli-
cations [13], [14] and some solutions for complex, composed

cn=0.64
cs =0.64
cp=0.04
L

cn=0.64
cs=0.64
cp=0.08
TR N

cn=0.64

cs=0.64

cp=0.16
L

cn=0.64

cs=0.64

cp=0.32
P!

cn=0.64
cs=0.64

cp=0.64
L

0.8

06

CDF

04 -

0.2 4

0.0 -
0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1
response time [ms]

— SFCS, ---

—— Model: 7x(en) * 's(es) * 1) SFC S, SFC S;

Fig. 6: Empirical response time CDFs measured for three SFC
setups compared to the modeled response times derived from
single-VNF measuremetns.

applications [15], [16]. Especially [14] is comparable to the
resource-limited profiling approach used in our work [2].
However, these solutions cannot directly be applied to NFV
scenarios due to their lack of knowledge about the required
chaining functionality.

In the NFV community, in contrast, less work on profiling
was done [3], [4], [17]. The first approach is called VNF
benchmarking as a service (VBaaS) [3] and proposes a frame-
work to profile NFV infrastructure as well as single VNFs, but
lacks support to profile complex SFCs. The second approach is
called NFV-VITAL [4] and introduces a VNF characterization
framework based on an orchestrator component that allows
a user to automatically profile SFCs. This approach is close
to our solution but it is limited to services described by
HEAT templates which offer only limited chaining support.
In contrast to these approaches, the authors of [17] provide a
theoretical model to estimate VNF performance. This model
does not consider SFCs and requires detailed knowledge
about elementary operations performed inside VNFs which
is not necessarily available, e.g., for proprietary VNFs. None
of the presented solutions focuses on the impact of SFC
reconfiguration, e.g., re-odering, as it is done in our case study.

A highly automated DevOps environment is not explicitly
considered by existing work. NFV-VITAL [4] provides some
degree of automation but with limited flexibility compared
to our experiment description and configuration generation
approach. Finally, the solutions in [16] give interesting insights
about reducing the number of configurations that have to be
tested to profile a VNF. These ideas are compatible with our
proposal an will be considered in future work to optimize the
overall profiling process.

V. CONCLUSION

The presented profiling solution is a step toward a fully
automated NFV DevOps toolchain. The results of our case
study show that the structure of SFCs, and even the order of
their functions, affect their end-to-end performance. This be-
havior cannot easily be simulated with the natural performance
models used to combine single-function profiling results. Our
study also demonstrates that end-to-end SFC profiling is a

better solution for automated profiling setups since it removes
manual modeling steps and allows black-box profiling of entire
SFCs. We foresee such profiling procedures not only in the
SFC development process but also as part of on-boarding
procedures to give NFV platforms initial information about
the behavior of SFCs prior their deployment. The prototype
of the presented solution is available as part of SONATA’s
open-source NFV SDK [5].

ACKNOWLEDGMENTS

We want to thank the participants of the SONATA project for the fruitful
discussions. This work has been partially supported by the SONATA project,
funded by the European Commission under Grant number 671517 through the
Horizon 2020 and 5G-PPP programs (www.sonata-nfv.eu) and the German
Research Foundation (DFG) within the Collaborative Research Centre “On-
The-Fly Computing” (SFB 901).

REFERENCES

[1]1 H. Karl, S. Driixler, M. Peuster, A. Galis, M. Bredel, A. Ramos, J. Mar-
trat, M. S. Siddiqui, S. van Rossem, W. Tavernier et al., “DevOps for
network function virtualisation: an architectural approach,” Transactions
on Emerging Telecommunications Technologies, vol. 27, no. 9, pp. 1206—
1215, 2016.

[2] M. Peuster and H. Karl, “Understand Your Chains: Towards Performance
Profile-based Network Service Management,” in 5th European Workshop
on Software Defined Networks (EWSDN’16). 1EEE, 2016.

[3] R.'V.Rosa, C. E. Rothenberg, and R. Szabo, “VBaaS: VNF benchmark-
as-a-service,” in 2015 Fourth European Workshop on Software Defined
Networks. 1EEE, 2015, pp. 79-84.

[4] L. Cao, P. Sharma, S. Fahmy, and V. Saxena, “NFV-VITAL: A Frame-
work for Characterizing the Performance of Virtual Network Functions,”
in Network Function Virtualization and Software Defined Network (NFV-
SDN), 2015 IEEE Conference on. IEEE, 2015, pp. 93-99.

[5] SONATA Cosortium, “SONATA Project,” http://sonata-nfv.eu.

[6] ETSI GS NFV-IFA 014, “Network Function Virtualization (NFV); Man-
agement and Orchestration; Network Service Template Specification,”
2016.

[7]1 ETSI OSM, “Open Sorce MANO,” https://osm.etsi.org.

[8] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: rapid
prototyping for software-defined networks,” in Proceedings of the 9th
ACM SIGCOMM Workshop on Hot Topics in Networks. ACM, 2010,
p. 19.

[9] M. Peuster, H. Karl, and S. van Rossem, “MeDICINE: Rapid Prototyp-

ing of Production-Ready Network Services in Multi-PoP Environments,”

in Network Function Virtualization and Software Defined Network (NFV-

SDN), 2016 IEEE Conference on. IEEE, 2016.

P. Wette, M. Draxler, A. Schwabe, F. Wallaschek, M. H. Zahraee, and

H. Karl, “Maxinet: Distributed emulation of software-defined networks,”

in Networking Conference, 2014 IFIP. 1EEE, 2014, pp. 1-9.

A. Morton, “Considerations for Benchmarking Virtual Network Func-

tions and Their Infrastructure,” IETF Internet-Draft https://tools.ietf.org/

html/draft-ietf-bmwg-virtual-net-05, Tech. Rep.

ETSI GS NFV-TST 001, “Network Functions Virtualization (NFV); Pre-

deployment Testing; Report on Validation of NFV Environments and

Services,” 2016.

[13] T. Wood, L. Cherkasova, K. Ozonat, and P. Shenoy, ‘“Profiling and
modeling resource usage of virtualized applications,” in Proceedings
of the 9th ACM/IFIP/USENIX International Conference on Middleware.
Springer-Verlag New York, Inc., 2008, pp. 366-387.

[14] J. Taheri, A. Y. Zomaya, and A. Kassler, “vmbbthrpred: A black-

box throughput predictor for virtual machines in cloud environments,”

in European Conference on Service-Oriented and Cloud Computing.

Springer, 2016, pp. 18-33.

B. C. Tak, C. Tang, H. Huang, and L. Wang, “Pseudoapp: performance

prediction for application migration to cloud,” in 2013 IFIP/IEEE In-

ternational Symposium on Integrated Network Management (IM 2013).

IEEE, 2013, pp. 303-310.

1. Giannakopoulos, D. Tsoumakos, N. Papailiou, and N. Koziris, “Panic:

modeling application performance over virtualized resources,” in Cloud

Engineering (IC2E), 2015 IEEE International Conference on. 1EEE,

2015, pp. 213-218.

[10]

[11]

[12]

[15]

(16]

[17] M. Baldi and A. Sapio, “A network function modeling approach for
performance estimation,” in Research and Technologies for Society
and Industry Leveraging a better tomorrow (RTSI), 2015 IEEE Ist
International Forum on. 1EEE, 2015, pp. 527-533.

’Q&

