@inproceedings{626,
abstract = {The design of ecient search structures for peer-to-peer systems has attracted a lot of attention in recent years. In this announcement we address the problem of nding the predecessor in a key set and present an ecient data structure called hashed Predecessor Patricia trie. Our hashed Predecessor Patricia trie supports PredecessorSearch(x) and Insert(x) and Delete(x) in O(log log u) hash table accesses when u is the size of the universe of the keys. That is the costs only depend on u and not the size of the data structure. One feature of our approach is that it only uses the lookup interface of the hash table and therefore hash table accesses may be realized by any distributed hash table (DHT).},
author = {Kniesburges, Sebastian and Scheideler, Christian},
booktitle = {Proceedings of the 26th International Symposium on Distributed Computing (DISC)},
pages = {435--436},
title = {{Brief Announcement: Hashed Predecessor Patricia Trie - A Data Structure for Efficient Predecessor Queries in Peer-to-Peer Systems}},
doi = {10.1007/978-3-642-33651-5_45},
year = {2012},
}
@inproceedings{640,
abstract = {Small-world networks have received significant attention because of their potential as models for the interaction networks of complex systems. Specifically, neither random networks nor regular lattices seem to be an adequate framework within which to study real-world complex systems such as chemical-reaction networks, neural networks, food webs, social networks, scientific-collaboration networks, and computer networks. Small-world networks provide some desired properties like an expected polylogarithmic distance between two processes in the network, which allows routing in polylogarithmic hops by simple greedy routing, and robustness against attacks or failures. By these properties, small-world networks are possible solutions for large overlay networks comparable to structured overlay networks like CAN, Pastry, Chord, which also provide polylogarithmic routing, but due to their uniform structure, structured overlay networks are more vulnerable to attacks or failures. In this paper we bring together a randomized process converging to a small-world network and a self-stabilization process so that a small-world network is formed out of any weakly connected initial state. To the best of our knowledge this is the first distributed self-stabilization process for building a small-world network.},
author = {Kniesburges, Sebastian and Koutsopoulos, Andreas and Scheideler, Christian},
booktitle = {Proceedings of the 26th IEEE International Parallel and Distributed Processing Symposium (IPDPS)},
pages = {1261----1271},
title = {{A Self-Stabilization Process for Small-World Networks}},
doi = {10.1109/IPDPS.2012.115},
year = {2012},
}
@inproceedings{623,
abstract = {This paper initiates the formal study of a fundamental problem: How to efficiently allocate a shared communication medium among a set of K co-existing networks in the presence of arbitrary external interference? While most literature on medium access focuses on how to share a medium among nodes, these approaches are often either not directly applicable to co-existing networks as they would violate the independence requirement, or they yield a low throughput if applied to multiple networks. We present the randomized medium access (MAC) protocol COMAC which guarantees that a given communication channel is shared fairly among competing and independent networks, and that the available bandwidth is used efficiently. These performance guarantees hold in the presence of arbitrary external interference or even under adversarial jamming. Concretely, we show that the co-existing networks can use a Ω(ε2 min{ε, 1/poly(K)})-fraction of the non-jammed time steps for successful message transmissions, where ε is the (arbitrarily distributed) fraction of time which is not jammed.},
author = {Richa, Andrea W. and Scheideler, Christian and Schmid, Stefan and Zhang, Jin },
booktitle = {Proceedings of the 31st Annual ACM SIGACT-SIGOPS Symposium on Principles and Distributed Computing (PODC)},
pages = {291--300},
title = {{Competitive and fair throughput for co-existing networks under adversarial interference}},
doi = {10.1145/2332432.2332488},
year = {2012},
}
@article{1868,
author = {W. Richa, Andr{\'{e}}a and Scheideler, Christian and Schmid, Stefan and Zhang, Jin},
journal = {Distributed Computing},
number = {3},
pages = {159----171},
title = {{Competitive throughput in multi-hop wireless networks despite adaptive jamming}},
doi = {10.1007/s00446-012-0180-x},
year = {2013},
}
@article{1870,
author = {Mohd Nor, Rizal and Nesterenko, Mikhail and Scheideler, Christian},
journal = {Theor. Comput. Sci.},
pages = {119----129},
title = {{Corona: A stabilizing deterministic message-passing skip list}},
doi = {10.1016/j.tcs.2012.08.029},
year = {2013},
}
@inproceedings{542,
abstract = {We consider the problem of managing a dynamic heterogeneous storagesystem in a distributed way so that the amount of data assigned to a hostin that system is related to its capacity. Two central problems have to be solvedfor this: (1) organizing the hosts in an overlay network with low degree and diameterso that one can efficiently check the correct distribution of the data androute between any two hosts, and (2) distributing the data among the hosts so thatthe distribution respects the capacities of the hosts and can easily be adapted asthe set of hosts or their capacities change. We present distributed protocols forthese problems that are self-stabilizing and that do not need any global knowledgeabout the system such as the number of nodes or the overall capacity of thesystem. Prior to this work no solution was known satisfying these properties.},
author = {Kniesburges, Sebastian and Koutsopoulos, Andreas and Scheideler, Christian},
booktitle = {Proceedings of the 27th International Symposium on Distributed Computing (DISC)},
pages = {537--549},
title = {{CONE-DHT: A distributed self-stabilizing algorithm for a heterogeneous storage system}},
doi = {10.1007/978-3-642-41527-2_37},
year = {2013},
}
@article{1871,
author = {W. Richa, Andrea and Scheideler, Christian and Schmid, Stefan and Zhang, Jin},
journal = {IEEE/ACM Trans. Netw.},
number = {3},
pages = {760----771},
title = {{An Efficient and Fair MAC Protocol Robust to Reactive Interference}},
doi = {10.1109/TNET.2012.2210241},
year = {2013},
}
@inproceedings{513,
abstract = {This paper initiates the study of self-adjusting networks (or distributed data structures) whose topologies dynamically adapt to a communication pattern $\sigma$. We present a fully decentralized self-adjusting solution called SplayNet. A SplayNet is a distributed generalization of the classic splay tree concept. It ensures short paths (which can be found using local-greedy routing) between communication partners while minimizing topological rearrangements. We derive an upper bound for the amortized communication cost of a SplayNet based on empirical entropies of $\sigma$, and show that SplayNets have several interesting convergence properties. For instance, SplayNets features a provable online optimality under special requests scenarios. We also investigate the optimal static network and prove different lower bounds for the average communication cost based on graph cuts and on the empirical entropy of the communication pattern $\sigma$. From these lower bounds it follows, e.g., that SplayNets are optimal in scenarios where the requests follow a product distribution as well. Finally, this paper shows that in contrast to the Minimum Linear Arrangement problem which is generally NP-hard, the optimal static tree network can be computed in polynomial time for any guest graph, despite the exponentially large graph family. We complement our formal analysis with a small simulation study on a Facebook graph.},
author = {Avin, Chen and Häupler, Bernhard and Lotker, Zvi and Scheideler, Christian and Schmid, Stefan},
booktitle = {Proceedings of the 27th IEEE International Parallel and Distributed Processing Symposium (IPDPS)},
pages = {395--406},
title = {{Locally Self-Adjusting Tree Networks}},
doi = {10.1109/IPDPS.2013.40},
year = {2013},
}
@inproceedings{519,
abstract = {In this work we present the first scalable distributed information system,i.e., a system with low storage overhead, that is provably robust againstDenial-of-Service (DoS) attacks by a current insider. We allow acurrent insider to have complete knowledge about the information systemand to have the power to block any \epsilon-fraction of its serversby a DoS-attack, where \epsilon can be chosen up to a constant. The taskof the system is to serve any collection of lookup requests with at most oneper non-blocked server in an efficient way despite this attack. Previously,scalable solutions were only known for DoS-attacks of past insiders, where apast insider only has complete knowledge about some past time pointt_0 of the information system. Scheideler et al. (DISC 2007, SPAA 2009) showedthat in this case it is possible to design an information system so that anyinformation that was inserted or last updated after t_0 is safe against a DoS-attack. But their constructions would not work at all for a current insider. The key idea behindour IRIS system is to make extensive use of coding. More precisely, we presenttwo alternative distributed coding strategies with an at most logarithmicstorage overhead that can handle up to a constant fraction of blocked servers.},
author = {Eikel, Martina and Scheideler, Christian},
booktitle = {Proceedings of the 25th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA)},
pages = {119--129},
title = {{IRIS: A Robust Information System Against Insider DoS-Attacks}},
doi = {10.1145/2486159.2486186},
year = {2013},
}
@inproceedings{564,
abstract = {We consider the problem of resource discovery in distributed systems. In particular we give an algorithm, such that each node in a network discovers the add ress of any other node in the network. We model the knowledge of the nodes as a virtual overlay network given by a directed graph such that complete knowledge of all nodes corresponds to a complete graph in the overlay network. Although there are several solutions for resource discovery, our solution is the first that achieves worst-case optimal work for each node, i.e. the number of addresses (O(n)) or bits (O(nlogn)) a node receives or sendscoincides with the lower bound, while ensuring only a linearruntime (O(n)) on the number of rounds.},
author = {Kniesburges, Sebastian and Koutsopoulos, Andreas and Scheideler, Christian},
booktitle = {Proceedings of 20th International Colloqium on Structural Information and Communication Complexity (SIROCCO)},
pages = {165--176},
title = {{A Deterministic Worst-Case Message Complexity Optimal Solution for Resource Discovery}},
doi = {10.1007/978-3-319-03578-9_14},
year = {2013},
}