@inbook{1845,
author = {W. Richa, Andrea and Scheideler, Christian},
booktitle = {Encyclopedia of Algorithms},
pages = {999----1002},
title = {{Jamming-Resistant MAC Protocols for Wireless Networks}},
doi = {10.1007/978-1-4939-2864-4_593},
year = {2016},
}
@inproceedings{215,
abstract = {We present three robust overlay networks: First, we present a network that organizes the nodes into an expander and is resistant to even massive adversarial churn. Second, we develop a network based on the hypercube that maintains connectivity under adversarial DoS-attacks. For the DoS-attacks we use the notion of a Omega(log log n)-late adversary which only has access to topological information that is at least Omega(log log n) rounds old. Finally, we develop a network that combines both churn- and DoS-resistance. The networks gain their robustness through constant network reconfiguration, i.e., the topology of the networks changes constantly. Our reconguration algorithms are based on node sampling primitives for expanders and hypercubes that allow each node to sample a logarithmic number of nodes uniformly at random in O(log log n) communication rounds. These primitives are specific to overlay networks and their optimal runtime represents an exponential improvement over known techniques. Our results have a wide range of applications, for example in the area of scalable and robust peer-to-peer systems.},
author = {Drees, Maximilian and Gmyr, Robert and Scheideler, Christian},
booktitle = {Proceedings of the 28th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA)},
pages = {417----427},
title = {{Churn- and DoS-resistant Overlay Networks Based on Network Reconfiguration}},
doi = {10.1145/2935764.2935783},
year = {2016},
}
@article{1835,
author = {Schmid, Stefan and Avin, Chen and Scheideler, Christian and Borokhovich, Michael and Haeupler, Bernhard and Lotker, Zvi},
journal = {IEEE/ACM Trans. Netw.},
number = {3},
pages = {1421----1433},
title = {{SplayNet: Towards Locally Self-Adjusting Networks}},
doi = {10.1109/TNET.2015.2410313},
year = {2016},
}
@inproceedings{142,
abstract = {For overlay networks, the ability to recover from a variety of problems like membership changes or faults is a key element to preserve their functionality. In recent years, various self-stabilizing overlay networks have been proposed that have the advantage of being able to recover from any illegal state. However, the vast majority of these networks cannot give any guarantees on its functionality while the recovery process is going on. We are especially interested in searchability, i.e., the functionality that search messages for a specific identifier are answered successfully if a node with that identifier exists in the network. We investigate overlay networks that are not only self-stabilizing but that also ensure that monotonic searchability is maintained while the recovery process is going on, as long as there are no corrupted messages in the system. More precisely, once a search message from node u to another node v is successfully delivered, all future search messages from u to v succeed as well. Monotonic searchability was recently introduced in OPODIS 2015, in which the authors provide a solution for a simple line topology.We present the first universal approach to maintain monotonic searchability that is applicable to a wide range of topologies. As the base for our approach, we introduce a set of primitives for manipulating overlay networks that allows us to maintain searchability and show how existing protocols can be transformed to use theses primitives.We complement this result with a generic search protocol that together with the use of our primitives guarantees monotonic searchability.As an additional feature, searching existing nodes with the generic search protocol is as fast as searching a node with any other fixed routing protocol once the topology has stabilized.},
author = {Scheideler, Christian and Setzer, Alexander and Strothmann, Thim Frederik},
booktitle = {Proceedings of the 30th International Symposium on Distributed Computing (DISC)},
pages = {71----84},
title = {{Towards a Universal Approach for Monotonic Searchability in Self-stabilizing Overlay Networks}},
doi = {10.1007/978-3-662-53426-7_6},
year = {2016},
}
@inproceedings{1836,
author = {Derakhshandeh, Zahra and Gmyr, Robert and Porter, Alexandra and W. Richa, Andrea and Scheideler, Christian and Strothmann, Thim Frederik},
booktitle = {DNA Computing and Molecular Programming - 22nd International Conference, DNA 22, Munich, Germany, September 4-8, 2016, Proceedings},
pages = {148----164},
title = {{On the Runtime of Universal Coating for Programmable Matter}},
doi = {10.1007/978-3-319-43994-5_10},
volume = {9818},
year = {2016},
}
@inproceedings{1851,
author = {Derakhshandeh, Zahra and Gmyr, Robert and W. Richa, Andrea and Scheideler, Christian and Strothmann, Thim Frederik},
booktitle = {Proceedings of the Second Annual International Conference on Nanoscale Computing and Communication, NANOCOM' 15, Boston, MA, USA, September 21-22, 2015},
isbn = {978-1-4503-3674-1},
pages = {21:1----21:2},
publisher = {ACM},
title = {{An Algorithmic Framework for Shape Formation Problems in Self-Organizing Particle Systems}},
doi = {10.1145/2800795.2800829},
year = {2015},
}
@inproceedings{1852,
author = {Derakhshandeh, Zahra and Gmyr, Robert and Strothmann, Thim Frederik and A. Bazzi, Rida and W. Richa, Andrea and Scheideler, Christian},
booktitle = {Proceedings of the 2015 ACM Symposium on Principles of Distributed Computing, PODC 2015, Donostia-San Sebasti{\'{a}}n, Spain, July 21 - 23, 2015},
isbn = {978-1-4503-3617-8},
pages = {67----69},
publisher = {ACM},
title = {{Brief Announcement: On the Feasibility of Leader Election and Shape Formation with Self-Organizing Programmable Matter}},
doi = {10.1145/2767386.2767451},
year = {2015},
}
@article{327,
abstract = {We consider the problem of resource discovery in distributed systems. In particular we give an algorithm, such that each node in a network discovers the address of any other node in the network. We model the knowledge of the nodes as a virtual overlay network given by a directed graph such that complete knowledge of all nodes corresponds to a complete graph in the overlay network. Although there are several solutions for resource discovery, our solution is the first that achieves worst-case optimal work for each node, i.e. the number of addresses (O(n)O(n)) or bits (O(nlogn)O(nlogn)) a node receives or sends coincides with the lower bound, while ensuring only a linear runtime (O(n)O(n)) on the number of rounds.},
author = {Kniesburges, Sebastian and Koutsopoulos, Andreas and Scheideler, Christian},
journal = {Theoretical Computer Science},
pages = {67--79},
publisher = {Elsevier},
title = {{A deterministic worst-case message complexity optimal solution for resource discovery}},
doi = {10.1016/j.tcs.2014.11.027},
year = {2015},
}
@inproceedings{241,
abstract = {Distributed applications are commonly based on overlay networks interconnecting their sites so that they can exchange information. For these overlay networks to preserve their functionality, they should be able to recover from various problems like membership changes or faults. Various self-stabilizing overlay networks have already been proposed in recent years, which have the advantage of being able to recover from any illegal state, but none of these networks can give any guarantees on its functionality while the recovery process is going on. We initiate research on overlay networks that are not only self-stabilizing but that also ensure that searchability is maintained while the recovery process is going on, as long as there are no corrupted messages in the system. More precisely, once a search message from node u to another node v is successfully delivered, all future search messages from u to v succeed as well. We call this property monotonic searchability. We show that in general it is impossible to provide monotonic searchability if corrupted messages are present in the system, which justifies the restriction to system states without corrupted messages. Furthermore, we provide a self-stabilizing protocol for the line for which we can also show monotonic searchability. It turns out that even for the line it is non-trivial to achieve this property. Additionally, we extend our protocol to deal with node departures in terms of the Finite Departure Problem of Foreback et. al (SSS 2014). This makes our protocol even capable of handling node dynamics.},
author = {Scheideler, Christian and Setzer, Alexander and Strothmann, Thim Frederik},
booktitle = {Proceedings of the 19th International Conference on Principles of Distributed Systems (OPODIS)},
title = {{Towards Establishing Monotonic Searchability in Self-Stabilizing Data Structures}},
doi = {10.4230/LIPIcs.OPODIS.2015.24},
year = {2015},
}
@inproceedings{1853,
author = {Koutsopoulos, Andreas and Scheideler, Christian and Strothmann, Thim Frederik},
booktitle = {Proceedings of the 27th ACM on Symposium on Parallelism in Algorithms and Architectures, SPAA 2015, Portland, OR, USA, June 13-15, 2015},
isbn = {978-1-4503-3588-1},
pages = {77----79},
publisher = {ACM},
title = {{Brief Announcement: Towards a Universal Approach for the Finite Departure Problem in Overlay Networks}},
doi = {10.1145/2755573.2755614},
year = {2015},
}