TY - JOUR AU - Derakhshandeh, Zahra AU - Gmyr, Robert AU - W. Richa, Andrea AU - Scheideler, Christian AU - Strothmann, Thim Frederik ID - 1814 JF - Theor. Comput. Sci. TI - Universal coating for programmable matter ER - TY - CONF AU - J. Daymude, Joshua AU - Gmyr, Robert AU - W. Richa, Andrea AU - Scheideler, Christian AU - Strothmann, Thim Frederik ID - 1815 T2 - Algorithms for Sensor Systems - 13th International Symposium on Algorithms and Experiments for Wireless Sensor Networks, ALGOSENSORS 2017, Vienna, Austria, September 7-8, 2017, Revised Selected Papers TI - Improved Leader Election for Self-organizing Programmable Matter ER - TY - CONF AB - We initiate the study of network monitoring algorithms in a class of hybrid networks in which the nodes are connected by an external network and an internal network (as a short form for externally and internally controlled network). While the external network lies outside of the control of the nodes (or in our case, the monitoring protocol running in them) and might be exposed to continuous changes, the internal network is fully under the control of the nodes. As an example, consider a group of users with mobile devices having access to the cell phone infrastructure. While the network formed by the WiFi connections of the devices is an external network (as its structure is not necessarily under the control of the monitoring protocol), the connections between the devices via the cell phone infrastructure represent an internal network (as it can be controlled by the monitoring protocol). Our goal is to continuously monitor properties of the external network with the help of the internal network. We present scalable distributed algorithms that efficiently monitor the number of edges, the average node degree, the clustering coefficient, the bipartiteness, and the weight of a minimum spanning tree. Their performance bounds demonstrate that monitoring the external network state with the help of an internal network can be done much more efficiently than just using the external network, as is usually done in the literature. AU - Gmyr, Robert AU - Hinnenthal, Kristian AU - Scheideler, Christian AU - Sohler, Christian ID - 105 T2 - Proceedings of the 44th International Colloquium on Automata, Languages, and Programming (ICALP) TI - Distributed Monitoring of Network Properties: The Power of Hybrid Networks ER - TY - CONF AB - Searching for other participants is one of the most important operations in a distributed system.We are interested in topologies in which it is possible to route a packet in a fixed number of hops until it arrives at its destination.Given a constant $d$, this paper introduces a new self-stabilizing protocol for the $q$-ary $d$-dimensional de Bruijn graph ($q = \sqrt[d]{n}$) that is able to route any search request in at most $d$ hops w.h.p., while significantly lowering the node degree compared to the clique: We require nodes to have a degree of $\mathcal O(\sqrt[d]{n})$, which is asymptotically optimal for a fixed diameter $d$.The protocol keeps the expected amount of edge redirections per node in $\mathcal O(\sqrt[d]{n})$, when the number of nodes in the system increases by factor $2^d$.The number of messages that are periodically sent out by nodes is constant. AU - Feldmann, Michael AU - Scheideler, Christian ID - 125 SN - 978-3-319-69083-4 T2 - Proceedings of the 19th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS) TI - A Self-Stabilizing General De Bruijn Graph VL - 10616 ER - TY - CONF AB - We study the consensus problem in a synchronous distributed system of n nodes under an adaptive adversary that has a slightly outdated view of the system and can block all incoming and outgoing communication of a constant fraction of the nodes in each round. Motivated by a result of Ben-Or and Bar-Joseph (1998), showing that any consensus algorithm that is resilient against a linear number of crash faults requires $\tilde \Omega(\sqrt n)$ rounds in an n-node network against an adaptive adversary, we consider a late adaptive adversary, who has full knowledge of the network state at the beginning of the previous round and unlimited computational power, but is oblivious to the current state of the nodes. Our main contributions are randomized distributed algorithms that achieve consensus with high probability among all except a small constant fraction of the nodes (i.e., "almost-everywhere'') against a late adaptive adversary who can block up to ε n$ nodes in each round, for a small constant ε >0$. Our first protocol achieves binary almost-everywhere consensus and also guarantees a decision on the majority input value, thus ensuring plurality consensus. We also present an algorithm that achieves the same time complexity for multi-value consensus. Both of our algorithms succeed in $O(log n)$ rounds with high probability, thus showing an exponential gap to the $\tilde\Omega(\sqrt n)$ lower bound of Ben-Or and Bar-Joseph for strongly adaptive crash-failure adversaries, which can be strengthened to $\Omega(n)$ when allowing the adversary to block nodes instead of permanently crashing them. Our algorithms are scalable to large systems as each node contacts only an (amortized) constant number of peers in each communication round. We show that our algorithms are optimal up to constant (resp.\ sub-logarithmic) factors by proving that every almost-everywhere consensus protocol takes $\Omega(log_d n)$ rounds in the worst case, where d is an upper bound on the number of communication requests initiated per node in each round. We complement our theoretical results with an experimental evaluation of the binary almost-everywhere consensus protocol revealing a short convergence time even against an adversary blocking a large fraction of nodes. AU - Robinson, Peter AU - Scheideler, Christian AU - Setzer, Alexander ID - 3422 KW - distributed consensus KW - randomized algorithm KW - adaptive adversary KW - complexity lower bound SN - 978-1-4503-5799-9/18/07 T2 - Proceedings of the 30th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA) TI - Breaking the $\tilde\Omega(\sqrt{n})$ Barrier: Fast Consensus under a Late Adversary ER - TY - CONF AB - In this paper we present two major results: First, we introduce the first self-stabilizing version of a supervised overlay network (as introduced in~\cite{DBLP:conf/ispan/KothapalliS05}) by presenting a self-stabilizing supervised skip ring. Secondly, we show how to use the self-stabilizing supervised skip ring to construct an efficient self-stabilizing publish-subscribe system. That is, in addition to stabilizing the overlay network, every subscriber of a topic will eventually know all of the publications that have been issued so far for that topic. The communication work needed to processes a subscribe or unsubscribe operation is just a constant in a legitimate state, and the communication work of checking whether the system is still in a legitimate state is just a constant on expectation for the supervisor as well as any process in the system. AU - Feldmann, Michael AU - Kolb, Christina AU - Scheideler, Christian AU - Strothmann, Thim Frederik ID - 1163 KW - Topological Self-stabilization KW - Supervised Overlay KW - Publish-Subscribe System T2 - Proceedings of the 32nd IEEE International Parallel & Distributed Processing Symposium (IPDPS) TI - Self-Stabilizing Supervised Publish-Subscribe Systems ER - TY - CONF AB - We propose a distributed protocol for a queue, called Skueue, which spreads its data fairly onto multiple processes, avoiding bottlenecks in high throughput scenarios. Skueuecan be used in highly dynamic environments, through the addition of join and leave requests to the standard queue operations enqueue and dequeue. Furthermore Skueue satisfies sequential consistency in the asynchronous message passing model. Scalability is achieved by aggregating multiple requests to a batch, which can then be processed in a distributed fashion without hurting the queue semantics. Operations in Skueue need a logarithmic number of rounds w.h.p. until they are processed, even under a high rate of incoming requests. AU - Feldmann, Michael AU - Scheideler, Christian AU - Setzer, Alexander ID - 1164 T2 - Proceedings of the 32nd IEEE International Parallel & Distributed Processing Symposium (IPDPS) TI - Skueue: A Scalable and Sequentially Consistent Distributed Queue ER - TY - JOUR AU - J. Daymude, Joshua AU - Derakhshandeh, Zahra AU - Gmyr, Robert AU - Porter, Alexandra AU - W. Richa, Andrea AU - Scheideler, Christian AU - Strothmann, Thim Frederik ID - 1796 IS - 1 JF - Natural Computing TI - On the runtime of universal coating for programmable matter ER - TY - CONF AU - Gmyr, Robert AU - Hinnenthal, Kristian AU - Kostitsyna, Irina AU - Kuhn, Fabian AU - Rudolph, Dorian AU - Scheideler, Christian AU - Strothmann, Thim Frederik ID - 5764 T2 - Proceedings of the 24th International Conference on DNA Computing and Molecular Programming TI - Forming Tile Shapes with Simple Robots ER - TY - GEN AB - In this paper, we investigate the use of trusted execution environments (TEEs, such as Intel's SGX) for an anonymous communication infrastructure over untrusted networks. For this, we present the general idea of exploiting trusted execution environments for the purpose of anonymous communication, including a continuous-time security framework that models strong anonymity guarantees in the presence of an adversary that observes all network traffic and can adaptively corrupt a constant fraction of participating nodes. In our framework, a participating node can generate a number of unlinkable pseudonyms. Messages are sent from and to pseudonyms, allowing both senders and receivers of messages to remain anonymous. We introduce a concrete construction, which shows viability of our TEE-based approach to anonymous communication. The construction draws from techniques from cryptography and overlay networks. Our techniques are very general and can be used as a basis for future constructions with similar goals. AU - Blömer, Johannes AU - Bobolz, Jan AU - Scheideler, Christian AU - Setzer, Alexander ID - 5820 TI - Provably Anonymous Communication Based on Trusted Execution Environments ER - TY - JOUR AU - Scheideler, Christian ID - 5984 JF - Theor. Comput. Sci. TI - Preface VL - 751 ER - TY - CONF AU - Scheideler, Christian ID - 5985 T2 - Proceedings of the 2018 Workshop on Theory and Practice for Integrated Cloud, Fog and Edge Computing Paradigms, TOPIC@PODC 2018, Egham, United Kingdom, July 27, 2018 TI - Relays: Towards a Link Layer for Robust and Secure Fog Computing ER - TY - CONF AU - Gmyr, Robert AU - Hinnenthal, Kristian AU - Kostitsyna, Irina AU - Kuhn, Fabian AU - Rudolph, Dorian AU - Scheideler, Christian ID - 5986 T2 - 43rd International Symposium on Mathematical Foundations of Computer Science, MFCS 2018, August 27-31, 2018, Liverpool, UK TI - Shape Recognition by a Finite Automaton Robot ER - TY - CONF AB - While a lot of research in distributed computing has covered solutions for self-stabilizing computing and topologies, there is far less work on self-stabilization for distributed data structures. Considering crashing peers in peer-to-peer networks, it should not be taken for granted that a distributed data structure remains intact. In this work, we present a self-stabilizing protocol for a distributed data structure called the hashed Patricia Trie (Kniesburges and Scheideler WALCOM'11) that enables efficient prefix search on a set of keys. The data structure has a wide area of applications including string matching problems while offering low overhead and efficient operations when embedded on top of a distributed hash table. Especially, longest prefix matching for $x$ can be done in $\mathcal{O}(\log |x|)$ hash table read accesses. We show how to maintain the structure in a self-stabilizing way. Our protocol assures low overhead in a legal state and a total (asymptotically optimal) memory demand of $\Theta(d)$ bits, where $d$ is the number of bits needed for storing all keys. AU - Knollmann, Till AU - Scheideler, Christian ED - Izumi, Taisuke ED - Kuznetsov, Petr ID - 4411 KW - Self-Stabilizing KW - Prefix Search KW - Distributed Data Structure T2 - Proceedings of the 20th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS) TI - A Self-Stabilizing Hashed Patricia Trie VL - 11201 ER - TY - CONF AB - Routing is a challenging problem for wireless ad hoc networks, especially when the nodes are mobile and spread so widely that in most cases multiple hops are needed to route a message from one node to another. In fact, it is known that any online routing protocol has a poor performance in the worst case, in a sense that there is a distribution of nodes resulting in bad routing paths for that protocol, even if the nodes know their geographic positions and the geographic position of the destination of a message is known. The reason for that is that radio holes in the ad hoc network may require messages to take long detours in order to get to a destination, which are hard to find in an online fashion. In this paper, we assume that the wireless ad hoc network can make limited use of long-range links provided by a global communication infrastructure like a cellular infrastructure or a satellite in order to compute an abstraction of the wireless ad hoc network that allows the messages to be sent along near-shortest paths in the ad hoc network. We present distributed algorithms that compute an abstraction of the ad hoc network in $\mathcal{O}\left(\log ^2 n\right)$ time using long-range links, which results in $c$-competitive routing paths between any two nodes of the ad hoc network for some constant $c$ if the convex hulls of the radio holes do not intersect. We also show that the storage needed for the abstraction just depends on the number and size of the radio holes in the wireless ad hoc network and is independent on the total number of nodes, and this information just has to be known to a few nodes for the routing to work. AU - Jung, Daniel AU - Kolb, Christina AU - Scheideler, Christian AU - Sundermeier, Jannik ID - 4563 KW - greedy routing KW - ad hoc networks KW - convex hulls KW - c-competitiveness T2 - Proceedings of the 14th International Symposium on Algorithms and Experiments for Wireless Networks (ALGOSENSORS) TI - Competitive Routing in Hybrid Communication Networks ER - TY - CONF AU - Jung, Daniel AU - Kolb, Christina AU - Scheideler, Christian AU - Sundermeier, Jannik ID - 4565 SN - 9781450357999 T2 - Proceedings of the 30th on Symposium on Parallelism in Algorithms and Architectures (SPAA) TI - Brief Announcement: Competitive Routing in Hybrid Communication Networks ER - TY - CONF AB - We extend the concept of monotonic searchability~\cite{DBLP:conf/opodis/ScheidelerSS15}~\cite{DBLP:conf/wdag/ScheidelerSS16} for self-stabilizing systems from one to multiple dimensions. A system is self-stabilizing if it can recover to a legitimate state from any initial illegal state. These kind of systems are most often used in distributed applications. Monotonic searchability provides guarantees when searching for nodes while the recovery process is going on. More precisely, if a search request started at some node $u$ succeeds in reaching its destination $v$, then all future search requests from $u$ to $v$ succeed as well. Although there already exists a self-stabilizing protocol for a two-dimensional topology~\cite{DBLP:journals/tcs/JacobRSS12} and an universal approach for monotonic searchability~\cite{DBLP:conf/wdag/ScheidelerSS16}, it is not clear how both of these concepts fit together effectively. The latter concept even comes with some restrictive assumptions on messages, which is not the case for our protocol. We propose a simple novel protocol for a self-stabilizing two-dimensional quadtree that satisfies monotonic searchability. Our protocol can easily be extended to higher dimensions and offers routing in $\mathcal O(\log n)$ hops for any search request. AU - Feldmann, Michael AU - Kolb, Christina AU - Scheideler, Christian ID - 4351 T2 - Proceedings of the 20th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS) TI - Self-stabilizing Overlays for high-dimensional Monotonic Searchability VL - 11201 ER - TY - CONF AB - A fundamental problem for overlay networks is to safely exclude leaving nodes, i.e., the nodes requesting to leave the overlay network are excluded from it without affecting its connectivity. To rigorously study self-stabilizing solutions to this problem, the Finite Departure Problem (FDP) has been proposed [9]. In the FDP we are given a network of processes in an arbitrary state, and the goal is to eventually arrive at (and stay in) a state in which all leaving processes irrevocably decided to leave the system while for all weakly-connected components in the initial overlay network, all staying processes in that component will still form a weakly connected component. In the standard interconnection model, the FDP is known to be unsolvable by local control protocols, so oracles have been investigated that allow the problem to be solved [9]. To avoid the use of oracles, we introduce a new interconnection model based on relays. Despite the relay model appearing to be rather restrictive, we show that it is universal, i.e., it is possible to transform any weakly-connected topology into any other weakly-connected topology, which is important for being a useful interconnection model for overlay networks. Apart from this, our model allows processes to grant and revoke access rights, which is why we believe it to be of interest beyond the scope of this paper. We show how to implement the relay layer in a self-stabilizing way and identify properties protocols need to satisfy so that the relay layer can recover while serving protocol requests. AU - Scheideler, Christian AU - Setzer, Alexander ID - 5216 T2 - Proceedings of the 20th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS 2018) TI - Relays: A New Approach for the Finite Departure Problem in Overlay Networks ER - TY - CONF AB - We present a self-stabilizing protocol for an overlay network that constructs the Minimum Spanning Tree (MST) for an underlay that is modeled by a weighted tree. The weight of an overlay edge between two nodes is the weighted length of their shortest path in the tree. We rigorously prove that our protocol works correctly under asynchronous and non-FIFO message delivery. Further, the protocol stabilizes after O(N^2) asynchronous rounds where N is the number of nodes in the overlay. AU - Götte, Thorsten AU - Scheideler, Christian AU - Setzer, Alexander ID - 5222 T2 - Proceedings of the 20th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS 2018) TI - On Underlay-Aware Self-Stabilizing Overlay Networks VL - 11201 ER - TY - CONF AB - Self-stabilizing overlay networks have the advantage of being able to recover from illegal states and faults. However, the majority of these networks cannot give any guarantees on their functionality while the recovery process is going on. We are especially interested in searchability, i.e., the functionality that search messages for a specific node are answered successfully if a node exists in the network. In this paper we investigate overlay networks that ensure the maintenance of monotonic searchability while the self-stabilization is going on. More precisely, once a search message from node u to another node v is successfully delivered, all future search messages from u to v succeed as well. We extend the existing research by focusing on skip graphs and present a solution for two scenarios: (i) the goal topology is a super graph of the perfect skip graph and (ii) the goal topology is exactly the perfect skip graph. AU - Luo, Linghui AU - Scheideler, Christian AU - Strothmann, Thim Frederik ID - 7636 T2 - Proceedings of the 2019 IEEE 33rd International Parallel and Distributed Processing Symposium (IPDPS '19) TI - MultiSkipGraph: A Self-stabilizing Overlay Network that Maintains Monotonic Searchability ER -