--- _id: '4563' abstract: - lang: eng text: "Routing is a challenging problem for wireless ad hoc networks, especially when the nodes are mobile and spread so widely that in most cases multiple hops are needed to route a message from one node to another. In fact, it is known that any online routing protocol has a poor performance in the worst case, in a sense that there is a distribution of nodes resulting in bad routing paths for that protocol, even if the nodes know their geographic positions and the geographic position of the destination of a message is known. The reason for that is that radio holes in the ad hoc network may require messages to take long detours in order to get to a destination, which are hard to find in an online fashion.\r\n\r\nIn this paper, we assume that the wireless ad hoc network can make limited use of long-range links provided by a global communication infrastructure like a cellular infrastructure or a satellite in order to compute an abstraction of the wireless ad hoc network that allows the messages to be sent along near-shortest paths in the ad hoc network. We present distributed algorithms that compute an abstraction of the ad hoc network in $\\mathcal{O}\\left(\\log ^2 n\\right)$ time using long-range links, which results in $c$-competitive routing paths between any two nodes of the ad hoc network for some constant $c$ if the convex hulls of the radio holes do not intersect. We also show that the storage needed for the abstraction just depends on the number and size of the radio holes in the wireless ad hoc network and is independent on the total number of nodes, and this information just has to be known to a few nodes for the routing to work.\r\n" author: - first_name: Daniel full_name: Jung, Daniel id: '37827' last_name: Jung - first_name: Christina full_name: Kolb, Christina id: '43647' last_name: Kolb - first_name: Christian full_name: Scheideler, Christian id: '20792' last_name: Scheideler - first_name: Jannik full_name: Sundermeier, Jannik id: '38705' last_name: Sundermeier citation: ama: 'Jung D, Kolb C, Scheideler C, Sundermeier J. Competitive Routing in Hybrid Communication Networks. In: Proceedings of the 14th International Symposium on Algorithms and Experiments for Wireless Networks (ALGOSENSORS) . Springer; 2018.' apa: 'Jung, D., Kolb, C., Scheideler, C., & Sundermeier, J. (2018). Competitive Routing in Hybrid Communication Networks. In Proceedings of the 14th International Symposium on Algorithms and Experiments for Wireless Networks (ALGOSENSORS) . Helsinki: Springer.' bibtex: '@inproceedings{Jung_Kolb_Scheideler_Sundermeier_2018, title={Competitive Routing in Hybrid Communication Networks}, booktitle={Proceedings of the 14th International Symposium on Algorithms and Experiments for Wireless Networks (ALGOSENSORS) }, publisher={Springer}, author={Jung, Daniel and Kolb, Christina and Scheideler, Christian and Sundermeier, Jannik}, year={2018} }' chicago: Jung, Daniel, Christina Kolb, Christian Scheideler, and Jannik Sundermeier. “Competitive Routing in Hybrid Communication Networks.” In Proceedings of the 14th International Symposium on Algorithms and Experiments for Wireless Networks (ALGOSENSORS) . Springer, 2018. ieee: D. Jung, C. Kolb, C. Scheideler, and J. Sundermeier, “Competitive Routing in Hybrid Communication Networks,” in Proceedings of the 14th International Symposium on Algorithms and Experiments for Wireless Networks (ALGOSENSORS) , Helsinki, 2018. mla: Jung, Daniel, et al. “Competitive Routing in Hybrid Communication Networks.” Proceedings of the 14th International Symposium on Algorithms and Experiments for Wireless Networks (ALGOSENSORS) , Springer, 2018. short: 'D. Jung, C. Kolb, C. Scheideler, J. Sundermeier, in: Proceedings of the 14th International Symposium on Algorithms and Experiments for Wireless Networks (ALGOSENSORS) , Springer, 2018.' conference: end_date: 2018-08-24 location: Helsinki name: '14th International Symposium on Algorithms and Experiments for Wireless Networks (ALGOSENSORS) ' start_date: 2018-08-23 date_created: 2018-10-02T07:06:05Z date_updated: 2022-01-06T07:01:11Z ddc: - '000' department: - _id: '63' - _id: '79' file: - access_level: closed content_type: application/pdf creator: ups date_created: 2019-01-11T10:32:38Z date_updated: 2019-01-11T10:32:38Z file_id: '6621' file_name: 23hybrid.pdf file_size: 349034 relation: main_file success: 1 file_date_updated: 2019-01-11T10:32:38Z has_accepted_license: '1' keyword: - greedy routing - ad hoc networks - convex hulls - c-competitiveness language: - iso: eng project: - _id: '1' name: SFB 901 - _id: '2' name: SFB 901 - Project Area A - _id: '5' name: SFB 901 - Subproject A1 publication: 'Proceedings of the 14th International Symposium on Algorithms and Experiments for Wireless Networks (ALGOSENSORS) ' publisher: Springer status: public title: Competitive Routing in Hybrid Communication Networks type: conference user_id: '38705' year: '2018' ... --- _id: '4565' author: - first_name: Daniel full_name: Jung, Daniel id: '37827' last_name: Jung - first_name: Christina full_name: Kolb, Christina id: '43647' last_name: Kolb - first_name: Christian full_name: Scheideler, Christian id: '20792' last_name: Scheideler - first_name: Jannik full_name: Sundermeier, Jannik id: '38705' last_name: Sundermeier citation: ama: 'Jung D, Kolb C, Scheideler C, Sundermeier J. Brief Announcement: Competitive Routing in Hybrid Communication Networks. In: Proceedings of the 30th on Symposium on Parallelism in Algorithms and Architectures (SPAA). ACM Press; 2018. doi:10.1145/3210377.3210663' apa: 'Jung, D., Kolb, C., Scheideler, C., & Sundermeier, J. (2018). Brief Announcement: Competitive Routing in Hybrid Communication Networks. In Proceedings of the 30th on Symposium on Parallelism in Algorithms and Architectures (SPAA). Wien: ACM Press. https://doi.org/10.1145/3210377.3210663' bibtex: '@inproceedings{Jung_Kolb_Scheideler_Sundermeier_2018, title={Brief Announcement: Competitive Routing in Hybrid Communication Networks}, DOI={10.1145/3210377.3210663}, booktitle={Proceedings of the 30th on Symposium on Parallelism in Algorithms and Architectures (SPAA)}, publisher={ACM Press}, author={Jung, Daniel and Kolb, Christina and Scheideler, Christian and Sundermeier, Jannik}, year={2018} }' chicago: 'Jung, Daniel, Christina Kolb, Christian Scheideler, and Jannik Sundermeier. “Brief Announcement: Competitive Routing in Hybrid Communication Networks.” In Proceedings of the 30th on Symposium on Parallelism in Algorithms and Architectures (SPAA). ACM Press, 2018. https://doi.org/10.1145/3210377.3210663.' ieee: 'D. Jung, C. Kolb, C. Scheideler, and J. Sundermeier, “Brief Announcement: Competitive Routing in Hybrid Communication Networks,” in Proceedings of the 30th on Symposium on Parallelism in Algorithms and Architectures (SPAA), Wien, 2018.' mla: 'Jung, Daniel, et al. “Brief Announcement: Competitive Routing in Hybrid Communication Networks.” Proceedings of the 30th on Symposium on Parallelism in Algorithms and Architectures (SPAA), ACM Press, 2018, doi:10.1145/3210377.3210663.' short: 'D. Jung, C. Kolb, C. Scheideler, J. Sundermeier, in: Proceedings of the 30th on Symposium on Parallelism in Algorithms and Architectures (SPAA), ACM Press, 2018.' conference: end_date: 2018-07-18 location: Wien name: SPAA'18 start_date: 2018-07-17 date_created: 2018-10-02T07:34:47Z date_updated: 2022-01-06T07:01:12Z ddc: - '000' department: - _id: '63' - _id: '79' doi: 10.1145/3210377.3210663 file: - access_level: closed content_type: application/pdf creator: ups date_created: 2018-11-02T13:48:10Z date_updated: 2018-11-02T13:48:10Z file_id: '5254' file_name: p231-jung-1.pdf file_size: 1025077 relation: main_file success: 1 file_date_updated: 2018-11-02T13:48:10Z has_accepted_license: '1' language: - iso: eng project: - _id: '1' name: SFB 901 - _id: '2' name: SFB 901 - Project Area A - _id: '5' name: SFB 901 - Subproject A1 publication: Proceedings of the 30th on Symposium on Parallelism in Algorithms and Architectures (SPAA) publication_identifier: isbn: - '9781450357999' publication_status: published publisher: ACM Press status: public title: 'Brief Announcement: Competitive Routing in Hybrid Communication Networks' type: conference user_id: '38705' year: '2018' ... --- _id: '4351' abstract: - lang: eng text: "\tWe extend the concept of monotonic searchability~\\cite{DBLP:conf/opodis/ScheidelerSS15}~\\cite{DBLP:conf/wdag/ScheidelerSS16} for self-stabilizing systems from one to multiple dimensions.\r\n\tA system is self-stabilizing if it can recover to a legitimate state from any initial illegal state.\r\n\tThese kind of systems are most often used in distributed applications.\r\n\tMonotonic searchability provides guarantees when searching for nodes while the recovery process is going on.\r\n\tMore precisely, if a search request started at some node $u$ succeeds in reaching its destination $v$, then all future search requests from $u$ to $v$ succeed as well.\r\n\tAlthough there already exists a self-stabilizing protocol for a two-dimensional topology~\\cite{DBLP:journals/tcs/JacobRSS12} and an universal approach for monotonic searchability~\\cite{DBLP:conf/wdag/ScheidelerSS16}, it is not clear how both of these concepts fit together effectively.\r\n\tThe latter concept even comes with some restrictive assumptions on messages, which is not the case for our protocol.\r\n\tWe propose a simple novel protocol for a self-stabilizing two-dimensional quadtree that satisfies monotonic searchability.\r\n\tOur protocol can easily be extended to higher dimensions and offers routing in $\\mathcal O(\\log n)$ hops for any search request.\r\n" author: - first_name: Michael full_name: Feldmann, Michael id: '23538' last_name: Feldmann - first_name: Christina full_name: Kolb, Christina id: '43647' last_name: Kolb - first_name: Christian full_name: Scheideler, Christian id: '20792' last_name: Scheideler citation: ama: 'Feldmann M, Kolb C, Scheideler C. Self-stabilizing Overlays for high-dimensional Monotonic Searchability. In: Proceedings of the 20th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS). Vol 11201. Lecture Notes in Computer Science. Springer, Cham; 2018:16-31. doi:10.1007/978-3-030-03232-6_2' apa: Feldmann, M., Kolb, C., & Scheideler, C. (2018). Self-stabilizing Overlays for high-dimensional Monotonic Searchability. In Proceedings of the 20th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS) (Vol. 11201, pp. 16–31). Springer, Cham. https://doi.org/10.1007/978-3-030-03232-6_2 bibtex: '@inproceedings{Feldmann_Kolb_Scheideler_2018, series={Lecture Notes in Computer Science}, title={Self-stabilizing Overlays for high-dimensional Monotonic Searchability}, volume={11201}, DOI={10.1007/978-3-030-03232-6_2}, booktitle={Proceedings of the 20th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS)}, publisher={Springer, Cham}, author={Feldmann, Michael and Kolb, Christina and Scheideler, Christian}, year={2018}, pages={16–31}, collection={Lecture Notes in Computer Science} }' chicago: Feldmann, Michael, Christina Kolb, and Christian Scheideler. “Self-Stabilizing Overlays for High-Dimensional Monotonic Searchability.” In Proceedings of the 20th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS), 11201:16–31. Lecture Notes in Computer Science. Springer, Cham, 2018. https://doi.org/10.1007/978-3-030-03232-6_2. ieee: M. Feldmann, C. Kolb, and C. Scheideler, “Self-stabilizing Overlays for high-dimensional Monotonic Searchability,” in Proceedings of the 20th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS), 2018, vol. 11201, pp. 16–31. mla: Feldmann, Michael, et al. “Self-Stabilizing Overlays for High-Dimensional Monotonic Searchability.” Proceedings of the 20th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS), vol. 11201, Springer, Cham, 2018, pp. 16–31, doi:10.1007/978-3-030-03232-6_2. short: 'M. Feldmann, C. Kolb, C. Scheideler, in: Proceedings of the 20th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS), Springer, Cham, 2018, pp. 16–31.' date_created: 2018-09-04T14:15:39Z date_updated: 2022-01-06T07:00:58Z ddc: - '040' department: - _id: '79' doi: 10.1007/978-3-030-03232-6_2 external_id: arxiv: - '1808.10300' file: - access_level: closed content_type: application/pdf creator: mfeldma2 date_created: 2018-10-31T13:24:17Z date_updated: 2018-10-31T13:24:17Z file_id: '5210' file_name: Feldmann2018_Chapter_Self-stabilizingOverlaysForHig.pdf file_size: 329823 relation: main_file success: 1 file_date_updated: 2018-10-31T13:24:17Z has_accepted_license: '1' intvolume: ' 11201' language: - iso: eng page: '16-31 ' project: - _id: '1' name: SFB 901 - _id: '2' name: SFB 901 - Project Area A - _id: '5' name: SFB 901 - Subproject A1 publication: Proceedings of the 20th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS) publication_identifier: unknown: - 978-3-030-03231-9 publisher: Springer, Cham series_title: Lecture Notes in Computer Science status: public title: Self-stabilizing Overlays for high-dimensional Monotonic Searchability type: conference user_id: '23538' volume: 11201 year: '2018' ... --- _id: '5216' abstract: - lang: eng text: A fundamental problem for overlay networks is to safely exclude leaving nodes, i.e., the nodes requesting to leave the overlay network are excluded from it without affecting its connectivity. To rigorously study self-stabilizing solutions to this problem, the Finite Departure Problem (FDP) has been proposed [9]. In the FDP we are given a network of processes in an arbitrary state, and the goal is to eventually arrive at (and stay in) a state in which all leaving processes irrevocably decided to leave the system while for all weakly-connected components in the initial overlay network, all staying processes in that component will still form a weakly connected component. In the standard interconnection model, the FDP is known to be unsolvable by local control protocols, so oracles have been investigated that allow the problem to be solved [9]. To avoid the use of oracles, we introduce a new interconnection model based on relays. Despite the relay model appearing to be rather restrictive, we show that it is universal, i.e., it is possible to transform any weakly-connected topology into any other weakly-connected topology, which is important for being a useful interconnection model for overlay networks. Apart from this, our model allows processes to grant and revoke access rights, which is why we believe it to be of interest beyond the scope of this paper. We show how to implement the relay layer in a self-stabilizing way and identify properties protocols need to satisfy so that the relay layer can recover while serving protocol requests. author: - first_name: Christian full_name: Scheideler, Christian id: '20792' last_name: Scheideler - first_name: Alexander full_name: Setzer, Alexander id: '11108' last_name: Setzer citation: ama: 'Scheideler C, Setzer A. Relays: A New Approach for the Finite Departure Problem in Overlay Networks. In: Proceedings of the 20th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS 2018). ; 2018. doi:10.1007/978-3-030-03232-6_16' apa: 'Scheideler, C., & Setzer, A. (2018). Relays: A New Approach for the Finite Departure Problem in Overlay Networks. In Proceedings of the 20th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS 2018). Tokyo, Japan. https://doi.org/10.1007/978-3-030-03232-6_16' bibtex: '@inproceedings{Scheideler_Setzer_2018, title={Relays: A New Approach for the Finite Departure Problem in Overlay Networks}, DOI={10.1007/978-3-030-03232-6_16}, booktitle={Proceedings of the 20th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS 2018)}, author={Scheideler, Christian and Setzer, Alexander}, year={2018} }' chicago: 'Scheideler, Christian, and Alexander Setzer. “Relays: A New Approach for the Finite Departure Problem in Overlay Networks.” In Proceedings of the 20th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS 2018), 2018. https://doi.org/10.1007/978-3-030-03232-6_16.' ieee: 'C. Scheideler and A. Setzer, “Relays: A New Approach for the Finite Departure Problem in Overlay Networks,” in Proceedings of the 20th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS 2018), Tokyo, Japan, 2018.' mla: 'Scheideler, Christian, and Alexander Setzer. “Relays: A New Approach for the Finite Departure Problem in Overlay Networks.” Proceedings of the 20th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS 2018), 2018, doi:10.1007/978-3-030-03232-6_16.' short: 'C. Scheideler, A. Setzer, in: Proceedings of the 20th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS 2018), 2018.' conference: location: Tokyo, Japan name: 20th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS 2018) date_created: 2018-10-31T13:33:05Z date_updated: 2022-01-06T07:01:47Z ddc: - '040' department: - _id: '79' doi: 10.1007/978-3-030-03232-6_16 file: - access_level: closed content_type: application/pdf creator: asetzer date_created: 2018-10-31T15:51:45Z date_updated: 2018-10-31T16:09:48Z file_id: '5223' file_name: Scheideler-Setzer2018_Chapter_RelaysANewApproachForTheFinite.pdf file_size: 369818 relation: main_file file_date_updated: 2018-10-31T16:09:48Z has_accepted_license: '1' language: - iso: eng project: - _id: '1' name: SFB 901 - _id: '4' name: SFB 901 - Project Area C - _id: '13' name: SFB 901 - Subproject C1 publication: Proceedings of the 20th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS 2018) publication_status: published status: public title: 'Relays: A New Approach for the Finite Departure Problem in Overlay Networks' type: conference user_id: '11108' year: '2018' ... --- _id: '5222' abstract: - lang: eng text: 'We present a self-stabilizing protocol for an overlay network that constructs the Minimum Spanning Tree (MST) for an underlay that is modeled by a weighted tree. The weight of an overlay edge between two nodes is the weighted length of their shortest path in the tree. We rigorously prove that our protocol works correctly under asynchronous and non-FIFO message delivery. Further, the protocol stabilizes after O(N^2) asynchronous rounds where N is the number of nodes in the overlay. ' author: - first_name: Thorsten full_name: Götte, Thorsten id: '34727' last_name: Götte - first_name: Christian full_name: Scheideler, Christian id: '20792' last_name: Scheideler - first_name: Alexander full_name: Setzer, Alexander id: '11108' last_name: Setzer citation: ama: 'Götte T, Scheideler C, Setzer A. On Underlay-Aware Self-Stabilizing Overlay Networks. In: Proceedings of the 20th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS 2018). Vol 11201. Lecture Notes in Computer Science. Springer; 2018:50-64.' apa: 'Götte, T., Scheideler, C., & Setzer, A. (2018). On Underlay-Aware Self-Stabilizing Overlay Networks. In Proceedings of the 20th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS 2018) (Vol. 11201, pp. 50–64). Tokyo, Japan: Springer.' bibtex: '@inproceedings{Götte_Scheideler_Setzer_2018, series={Lecture Notes in Computer Science}, title={On Underlay-Aware Self-Stabilizing Overlay Networks}, volume={11201}, booktitle={Proceedings of the 20th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS 2018)}, publisher={Springer}, author={Götte, Thorsten and Scheideler, Christian and Setzer, Alexander}, year={2018}, pages={50–64}, collection={Lecture Notes in Computer Science} }' chicago: Götte, Thorsten, Christian Scheideler, and Alexander Setzer. “On Underlay-Aware Self-Stabilizing Overlay Networks.” In Proceedings of the 20th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS 2018), 11201:50–64. Lecture Notes in Computer Science. Springer, 2018. ieee: T. Götte, C. Scheideler, and A. Setzer, “On Underlay-Aware Self-Stabilizing Overlay Networks,” in Proceedings of the 20th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS 2018), Tokyo, Japan, 2018, vol. 11201, pp. 50–64. mla: Götte, Thorsten, et al. “On Underlay-Aware Self-Stabilizing Overlay Networks.” Proceedings of the 20th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS 2018), vol. 11201, Springer, 2018, pp. 50–64. short: 'T. Götte, C. Scheideler, A. Setzer, in: Proceedings of the 20th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS 2018), Springer, 2018, pp. 50–64.' conference: location: Tokyo, Japan name: ' 20th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS 2018)' date_created: 2018-10-31T15:44:30Z date_updated: 2022-01-06T07:01:47Z ddc: - '040' department: - _id: '79' file: - access_level: closed content_type: application/pdf creator: thgoette date_created: 2018-10-31T15:59:26Z date_updated: 2018-10-31T15:59:26Z file_id: '5224' file_name: sss18_camera.pdf file_size: 367812 relation: main_file success: 1 file_date_updated: 2018-10-31T15:59:26Z has_accepted_license: '1' intvolume: ' 11201' language: - iso: eng page: 50-64 project: - _id: '1' name: SFB 901 - _id: '2' name: SFB 901 - Project Area A - _id: '5' name: SFB 901 - Subproject A1 publication: Proceedings of the 20th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS 2018) publisher: Springer series_title: Lecture Notes in Computer Science status: public title: On Underlay-Aware Self-Stabilizing Overlay Networks type: conference user_id: '477' volume: 11201 year: '2018' ... --- _id: '3872' abstract: - lang: eng text: 'This paper considers the problem of how to efficiently share a wireless medium which is subject to harsh external interference or even jamming. So far, this problem is understood only in simplistic single-hop or unit disk graph models. We in this paper initiate the study of MAC protocols for the SINR interference model (a.k.a. physical model). This paper makes two contributions. First, we introduce a new adversarial SINR model which captures a wide range of interference phenomena. Concretely, we consider a powerful, adaptive adversary which can jam nodes at arbitrary times and which is only limited by some energy budget. Our second contribution is a distributed MAC protocol called Sade which provably achieves a constant competitive throughput in this environment: we show that, with high probability, the protocol ensures that a constant fraction of the non-blocked time periods is used for successful transmissions.' author: - first_name: Adrian full_name: Ogierman, Adrian last_name: Ogierman - first_name: Andrea full_name: Richa, Andrea last_name: Richa - first_name: Christian full_name: Scheideler, Christian id: '20792' last_name: Scheideler - first_name: Stefan full_name: Schmid, Stefan last_name: Schmid - first_name: Jin full_name: Zhang, Jin last_name: Zhang citation: ama: 'Ogierman A, Richa A, Scheideler C, Schmid S, Zhang J. Sade: competitive MAC under adversarial SINR. Distributed Computing. 2017;31(3):241-254. doi:10.1007/s00446-017-0307-1' apa: 'Ogierman, A., Richa, A., Scheideler, C., Schmid, S., & Zhang, J. (2017). Sade: competitive MAC under adversarial SINR. Distributed Computing, 31(3), 241–254. https://doi.org/10.1007/s00446-017-0307-1' bibtex: '@article{Ogierman_Richa_Scheideler_Schmid_Zhang_2017, title={Sade: competitive MAC under adversarial SINR}, volume={31}, DOI={10.1007/s00446-017-0307-1}, number={3}, journal={Distributed Computing}, publisher={Springer Nature}, author={Ogierman, Adrian and Richa, Andrea and Scheideler, Christian and Schmid, Stefan and Zhang, Jin}, year={2017}, pages={241–254} }' chicago: 'Ogierman, Adrian, Andrea Richa, Christian Scheideler, Stefan Schmid, and Jin Zhang. “Sade: Competitive MAC under Adversarial SINR.” Distributed Computing 31, no. 3 (2017): 241–54. https://doi.org/10.1007/s00446-017-0307-1.' ieee: 'A. Ogierman, A. Richa, C. Scheideler, S. Schmid, and J. Zhang, “Sade: competitive MAC under adversarial SINR,” Distributed Computing, vol. 31, no. 3, pp. 241–254, 2017.' mla: 'Ogierman, Adrian, et al. “Sade: Competitive MAC under Adversarial SINR.” Distributed Computing, vol. 31, no. 3, Springer Nature, 2017, pp. 241–54, doi:10.1007/s00446-017-0307-1.' short: A. Ogierman, A. Richa, C. Scheideler, S. Schmid, J. Zhang, Distributed Computing 31 (2017) 241–254. date_created: 2018-08-10T07:05:12Z date_updated: 2022-01-06T06:59:47Z department: - _id: '79' doi: 10.1007/s00446-017-0307-1 intvolume: ' 31' issue: '3' page: 241-254 publication: Distributed Computing publication_identifier: issn: - 0178-2770 - 1432-0452 publication_status: published publisher: Springer Nature status: public title: 'Sade: competitive MAC under adversarial SINR' type: journal_article user_id: '15504' volume: 31 year: '2017' ... --- _id: '1812' author: - first_name: Andreas full_name: Koutsopoulos, Andreas last_name: Koutsopoulos - first_name: Christian full_name: Scheideler, Christian id: '20792' last_name: Scheideler - first_name: Thim Frederik full_name: Strothmann, Thim Frederik id: '11319' last_name: Strothmann citation: ama: Koutsopoulos A, Scheideler C, Strothmann TF. Towards a universal approach for the finite departure problem in overlay networks. Inf Comput. 2017:408--424. doi:10.1016/j.ic.2016.12.006 apa: Koutsopoulos, A., Scheideler, C., & Strothmann, T. F. (2017). Towards a universal approach for the finite departure problem in overlay networks. Inf. Comput., 408--424. https://doi.org/10.1016/j.ic.2016.12.006 bibtex: '@article{Koutsopoulos_Scheideler_Strothmann_2017, title={Towards a universal approach for the finite departure problem in overlay networks}, DOI={10.1016/j.ic.2016.12.006}, journal={Inf. Comput.}, author={Koutsopoulos, Andreas and Scheideler, Christian and Strothmann, Thim Frederik}, year={2017}, pages={408--424} }' chicago: Koutsopoulos, Andreas, Christian Scheideler, and Thim Frederik Strothmann. “Towards a Universal Approach for the Finite Departure Problem in Overlay Networks.” Inf. Comput., 2017, 408--424. https://doi.org/10.1016/j.ic.2016.12.006. ieee: A. Koutsopoulos, C. Scheideler, and T. F. Strothmann, “Towards a universal approach for the finite departure problem in overlay networks,” Inf. Comput., pp. 408--424, 2017. mla: Koutsopoulos, Andreas, et al. “Towards a Universal Approach for the Finite Departure Problem in Overlay Networks.” Inf. Comput., 2017, pp. 408--424, doi:10.1016/j.ic.2016.12.006. short: A. Koutsopoulos, C. Scheideler, T.F. Strothmann, Inf. Comput. (2017) 408--424. date_created: 2018-03-27T11:23:36Z date_updated: 2022-01-06T06:53:26Z department: - _id: '79' doi: 10.1016/j.ic.2016.12.006 language: - iso: eng page: 408--424 publication: Inf. Comput. status: public title: Towards a universal approach for the finite departure problem in overlay networks type: journal_article user_id: '15504' year: '2017' ... --- _id: '1813' author: - first_name: Sandor full_name: P. Fekete, Sandor last_name: P. Fekete - first_name: Andrea full_name: W. Richa, Andrea last_name: W. Richa - first_name: Kay full_name: Römer, Kay last_name: Römer - first_name: Christian full_name: Scheideler, Christian id: '20792' last_name: Scheideler citation: ama: P. Fekete S, W. Richa A, Römer K, Scheideler C. Algorithmic Foundations of Programmable Matter Dagstuhl Seminar 16271. SIGACT News. 2017;(2):87--94. doi:10.1145/3106700.3106713 apa: P. Fekete, S., W. Richa, A., Römer, K., & Scheideler, C. (2017). Algorithmic Foundations of Programmable Matter Dagstuhl Seminar 16271. SIGACT News, (2), 87--94. https://doi.org/10.1145/3106700.3106713 bibtex: '@article{P. Fekete_W. Richa_Römer_Scheideler_2017, title={Algorithmic Foundations of Programmable Matter Dagstuhl Seminar 16271}, DOI={10.1145/3106700.3106713}, number={2}, journal={SIGACT News}, author={P. Fekete, Sandor and W. Richa, Andrea and Römer, Kay and Scheideler, Christian}, year={2017}, pages={87--94} }' chicago: 'P. Fekete, Sandor, Andrea W. Richa, Kay Römer, and Christian Scheideler. “Algorithmic Foundations of Programmable Matter Dagstuhl Seminar 16271.” SIGACT News, no. 2 (2017): 87--94. https://doi.org/10.1145/3106700.3106713.' ieee: S. P. Fekete, A. W. Richa, K. Römer, and C. Scheideler, “Algorithmic Foundations of Programmable Matter Dagstuhl Seminar 16271,” SIGACT News, no. 2, pp. 87--94, 2017. mla: P. Fekete, Sandor, et al. “Algorithmic Foundations of Programmable Matter Dagstuhl Seminar 16271.” SIGACT News, no. 2, 2017, pp. 87--94, doi:10.1145/3106700.3106713. short: S. P. Fekete, A. W. Richa, K. Römer, C. Scheideler, SIGACT News (2017) 87--94. date_created: 2018-03-27T11:24:15Z date_updated: 2022-01-06T06:53:26Z department: - _id: '79' doi: 10.1145/3106700.3106713 issue: '2' page: 87--94 publication: SIGACT News status: public title: Algorithmic Foundations of Programmable Matter Dagstuhl Seminar 16271 type: journal_article user_id: '15504' year: '2017' ... --- _id: '1814' author: - first_name: Zahra full_name: Derakhshandeh, Zahra last_name: Derakhshandeh - first_name: Robert full_name: Gmyr, Robert last_name: Gmyr - first_name: Andrea full_name: W. Richa, Andrea last_name: W. Richa - first_name: Christian full_name: Scheideler, Christian id: '20792' last_name: Scheideler - first_name: Thim Frederik full_name: Strothmann, Thim Frederik id: '11319' last_name: Strothmann citation: ama: Derakhshandeh Z, Gmyr R, W. Richa A, Scheideler C, Strothmann TF. Universal coating for programmable matter. Theor Comput Sci. 2017:56--68. doi:10.1016/j.tcs.2016.02.039 apa: Derakhshandeh, Z., Gmyr, R., W. Richa, A., Scheideler, C., & Strothmann, T. F. (2017). Universal coating for programmable matter. Theor. Comput. Sci., 56--68. https://doi.org/10.1016/j.tcs.2016.02.039 bibtex: '@article{Derakhshandeh_Gmyr_W. Richa_Scheideler_Strothmann_2017, title={Universal coating for programmable matter}, DOI={10.1016/j.tcs.2016.02.039}, journal={Theor. Comput. Sci.}, author={Derakhshandeh, Zahra and Gmyr, Robert and W. Richa, Andrea and Scheideler, Christian and Strothmann, Thim Frederik}, year={2017}, pages={56--68} }' chicago: Derakhshandeh, Zahra, Robert Gmyr, Andrea W. Richa, Christian Scheideler, and Thim Frederik Strothmann. “Universal Coating for Programmable Matter.” Theor. Comput. Sci., 2017, 56--68. https://doi.org/10.1016/j.tcs.2016.02.039. ieee: Z. Derakhshandeh, R. Gmyr, A. W. Richa, C. Scheideler, and T. F. Strothmann, “Universal coating for programmable matter,” Theor. Comput. Sci., pp. 56--68, 2017. mla: Derakhshandeh, Zahra, et al. “Universal Coating for Programmable Matter.” Theor. Comput. Sci., 2017, pp. 56--68, doi:10.1016/j.tcs.2016.02.039. short: Z. Derakhshandeh, R. Gmyr, A. W. Richa, C. Scheideler, T.F. Strothmann, Theor. Comput. Sci. (2017) 56--68. date_created: 2018-03-27T11:24:57Z date_updated: 2022-01-06T06:53:26Z department: - _id: '79' doi: 10.1016/j.tcs.2016.02.039 language: - iso: eng page: 56--68 publication: Theor. Comput. Sci. status: public title: Universal coating for programmable matter type: journal_article user_id: '15504' year: '2017' ... --- _id: '1815' author: - first_name: Joshua full_name: J. Daymude, Joshua last_name: J. Daymude - first_name: Robert full_name: Gmyr, Robert last_name: Gmyr - first_name: Andrea full_name: W. Richa, Andrea last_name: W. Richa - first_name: Christian full_name: Scheideler, Christian id: '20792' last_name: Scheideler - first_name: Thim Frederik full_name: Strothmann, Thim Frederik id: '11319' last_name: Strothmann citation: ama: 'J. Daymude J, Gmyr R, W. Richa A, Scheideler C, Strothmann TF. Improved Leader Election for Self-organizing Programmable Matter. In: Algorithms for Sensor Systems - 13th International Symposium on Algorithms and Experiments for Wireless Sensor Networks, ALGOSENSORS 2017, Vienna, Austria, September 7-8, 2017, Revised Selected Papers. ; 2017:127--140. doi:10.1007/978-3-319-72751-6_10' apa: J. Daymude, J., Gmyr, R., W. Richa, A., Scheideler, C., & Strothmann, T. F. (2017). Improved Leader Election for Self-organizing Programmable Matter. In Algorithms for Sensor Systems - 13th International Symposium on Algorithms and Experiments for Wireless Sensor Networks, ALGOSENSORS 2017, Vienna, Austria, September 7-8, 2017, Revised Selected Papers (pp. 127--140). https://doi.org/10.1007/978-3-319-72751-6_10 bibtex: '@inproceedings{J. Daymude_Gmyr_W. Richa_Scheideler_Strothmann_2017, title={Improved Leader Election for Self-organizing Programmable Matter}, DOI={10.1007/978-3-319-72751-6_10}, booktitle={Algorithms for Sensor Systems - 13th International Symposium on Algorithms and Experiments for Wireless Sensor Networks, ALGOSENSORS 2017, Vienna, Austria, September 7-8, 2017, Revised Selected Papers}, author={J. Daymude, Joshua and Gmyr, Robert and W. Richa, Andrea and Scheideler, Christian and Strothmann, Thim Frederik}, year={2017}, pages={127--140} }' chicago: J. Daymude, Joshua, Robert Gmyr, Andrea W. Richa, Christian Scheideler, and Thim Frederik Strothmann. “Improved Leader Election for Self-Organizing Programmable Matter.” In Algorithms for Sensor Systems - 13th International Symposium on Algorithms and Experiments for Wireless Sensor Networks, ALGOSENSORS 2017, Vienna, Austria, September 7-8, 2017, Revised Selected Papers, 127--140, 2017. https://doi.org/10.1007/978-3-319-72751-6_10. ieee: J. J. Daymude, R. Gmyr, A. W. Richa, C. Scheideler, and T. F. Strothmann, “Improved Leader Election for Self-organizing Programmable Matter,” in Algorithms for Sensor Systems - 13th International Symposium on Algorithms and Experiments for Wireless Sensor Networks, ALGOSENSORS 2017, Vienna, Austria, September 7-8, 2017, Revised Selected Papers, 2017, pp. 127--140. mla: J. Daymude, Joshua, et al. “Improved Leader Election for Self-Organizing Programmable Matter.” Algorithms for Sensor Systems - 13th International Symposium on Algorithms and Experiments for Wireless Sensor Networks, ALGOSENSORS 2017, Vienna, Austria, September 7-8, 2017, Revised Selected Papers, 2017, pp. 127--140, doi:10.1007/978-3-319-72751-6_10. short: 'J. J. Daymude, R. Gmyr, A. W. Richa, C. Scheideler, T.F. Strothmann, in: Algorithms for Sensor Systems - 13th International Symposium on Algorithms and Experiments for Wireless Sensor Networks, ALGOSENSORS 2017, Vienna, Austria, September 7-8, 2017, Revised Selected Papers, 2017, pp. 127--140.' date_created: 2018-03-27T11:25:58Z date_updated: 2022-01-06T06:53:26Z department: - _id: '79' doi: 10.1007/978-3-319-72751-6_10 language: - iso: eng page: 127--140 publication: Algorithms for Sensor Systems - 13th International Symposium on Algorithms and Experiments for Wireless Sensor Networks, ALGOSENSORS 2017, Vienna, Austria, September 7-8, 2017, Revised Selected Papers status: public title: Improved Leader Election for Self-organizing Programmable Matter type: conference user_id: '15504' year: '2017' ...