@inproceedings{16346,
author = {Daymude, Joshua J. and Gmyr, Robert and Hinnenthal, Kristian and Kostitsyna, Irina and Scheideler, Christian and Richa, AndrĂ©a W.},
booktitle = {Proceedings of the 21st International Conference on Distributed Computing and Networking},
isbn = {9781450377515},
title = {{Convex Hull Formation for Programmable Matter}},
doi = {10.1145/3369740.3372916},
year = {2020},
}
@article{16902,
abstract = {The maintenance of efficient and robust overlay networks is one
of the most fundamental and reoccurring themes in networking.
This paper presents a survey of state-of-the-art
algorithms to design and repair overlay networks in a distributed
manner. In particular, we discuss basic algorithmic primitives
to preserve connectivity, review algorithms for the fundamental
problem of graph linearization, and then survey self-stabilizing
algorithms for metric and scalable topologies.
We also identify open problems and avenues for future research.
},
author = {Feldmann, Michael and Scheideler, Christian and Schmid, Stefan},
journal = {ACM Computing Surveys},
publisher = {ACM},
title = {{Survey on Algorithms for Self-Stabilizing Overlay Networks}},
doi = {10.1145/3397190},
year = {2020},
}
@inproceedings{15169,
author = {Castenow, Jannik and Kolb, Christina and Scheideler, Christian},
booktitle = {Proceedings of the 21st International Conference on Distributed Computing and Networking (ICDCN)},
location = {Kolkata, Indien},
publisher = {ACM},
title = {{A Bounding Box Overlay for Competitive Routing in Hybrid Communication Networks}},
year = {2020},
}
@inproceedings{16903,
abstract = {We consider the clock synchronization problem in the (discrete) beeping model: Given a network of $n$ nodes with each node having a clock value $\delta(v) \in \{0,\ldots T-1\}$, the goal is to synchronize the clock values of all nodes such that they have the same value in any round.
As is standard in clock synchronization, we assume \emph{arbitrary activations} for all nodes, i.e., the nodes start their protocol at an arbitrary round (not limited to $\{0,\ldots,T-1\}$).
We give an asymptotically optimal algorithm that runs in $4D + \Bigl\lfloor \frac{D}{\lfloor T/4 \rfloor} \Bigr \rfloor \cdot (T \mod 4) = O(D)$ rounds, where $D$ is the diameter of the network.
Once all nodes are in sync, they beep at the same round every $T$ rounds.
The algorithm drastically improves on the $O(T D)$-bound of \cite{firefly_sync} (where $T$ is required to be at least $4n$, so the bound is no better than $O(nD)$).
Our algorithm is very simple as nodes only have to maintain $3$ bits in addition to the $\lceil \log T \rceil$ bits needed to maintain the clock.
Furthermore we investigate the complexity of \emph{self-stabilizing} solutions for the clock synchronization problem: We first show lower bounds of $\Omega(\max\{T,n\})$ rounds on the runtime and $\Omega(\log(\max\{T,n\}))$ bits of memory required for any such protocol.
Afterwards we present a protocol that runs in $O(\max\{T,n\})$ rounds using at most $O(\log(\max\{T,n\}))$ bits at each node, which is asymptotically optimal with regards to both, runtime and memory requirements.},
author = {Feldmann, Michael and Khazraei, Ardalan and Scheideler, Christian},
booktitle = {Proceedings of the 32nd ACM Symposium on Parallelism in Algorithms and Architectures (SPAA)},
publisher = {ACM},
title = {{Time- and Space-Optimal Discrete Clock Synchronization in the Beeping Model}},
doi = {10.1145/3350755.3400246},
year = {2020},
}