--- _id: '241' abstract: - lang: eng text: Distributed applications are commonly based on overlay networks interconnecting their sites so that they can exchange information. For these overlay networks to preserve their functionality, they should be able to recover from various problems like membership changes or faults. Various self-stabilizing overlay networks have already been proposed in recent years, which have the advantage of being able to recover from any illegal state, but none of these networks can give any guarantees on its functionality while the recovery process is going on. We initiate research on overlay networks that are not only self-stabilizing but that also ensure that searchability is maintained while the recovery process is going on, as long as there are no corrupted messages in the system. More precisely, once a search message from node u to another node v is successfully delivered, all future search messages from u to v succeed as well. We call this property monotonic searchability. We show that in general it is impossible to provide monotonic searchability if corrupted messages are present in the system, which justifies the restriction to system states without corrupted messages. Furthermore, we provide a self-stabilizing protocol for the line for which we can also show monotonic searchability. It turns out that even for the line it is non-trivial to achieve this property. Additionally, we extend our protocol to deal with node departures in terms of the Finite Departure Problem of Foreback et. al (SSS 2014). This makes our protocol even capable of handling node dynamics. author: - first_name: Christian full_name: Scheideler, Christian id: '20792' last_name: Scheideler - first_name: Alexander full_name: Setzer, Alexander id: '11108' last_name: Setzer - first_name: Thim Frederik full_name: Strothmann, Thim Frederik id: '11319' last_name: Strothmann citation: ama: 'Scheideler C, Setzer A, Strothmann TF. Towards Establishing Monotonic Searchability in Self-Stabilizing Data Structures. In: Proceedings of the 19th International Conference on Principles of Distributed Systems (OPODIS). Leibniz International Proceedings in Informatics (LIPIcs). ; 2015. doi:10.4230/LIPIcs.OPODIS.2015.24' apa: Scheideler, C., Setzer, A., & Strothmann, T. F. (2015). Towards Establishing Monotonic Searchability in Self-Stabilizing Data Structures. In Proceedings of the 19th International Conference on Principles of Distributed Systems (OPODIS). https://doi.org/10.4230/LIPIcs.OPODIS.2015.24 bibtex: '@inproceedings{Scheideler_Setzer_Strothmann_2015, series={Leibniz International Proceedings in Informatics (LIPIcs)}, title={Towards Establishing Monotonic Searchability in Self-Stabilizing Data Structures}, DOI={10.4230/LIPIcs.OPODIS.2015.24}, booktitle={Proceedings of the 19th International Conference on Principles of Distributed Systems (OPODIS)}, author={Scheideler, Christian and Setzer, Alexander and Strothmann, Thim Frederik}, year={2015}, collection={Leibniz International Proceedings in Informatics (LIPIcs)} }' chicago: Scheideler, Christian, Alexander Setzer, and Thim Frederik Strothmann. “Towards Establishing Monotonic Searchability in Self-Stabilizing Data Structures.” In Proceedings of the 19th International Conference on Principles of Distributed Systems (OPODIS). Leibniz International Proceedings in Informatics (LIPIcs), 2015. https://doi.org/10.4230/LIPIcs.OPODIS.2015.24. ieee: C. Scheideler, A. Setzer, and T. F. Strothmann, “Towards Establishing Monotonic Searchability in Self-Stabilizing Data Structures,” in Proceedings of the 19th International Conference on Principles of Distributed Systems (OPODIS), 2015. mla: Scheideler, Christian, et al. “Towards Establishing Monotonic Searchability in Self-Stabilizing Data Structures.” Proceedings of the 19th International Conference on Principles of Distributed Systems (OPODIS), 2015, doi:10.4230/LIPIcs.OPODIS.2015.24. short: 'C. Scheideler, A. Setzer, T.F. Strothmann, in: Proceedings of the 19th International Conference on Principles of Distributed Systems (OPODIS), 2015.' date_created: 2017-10-17T12:41:39Z date_updated: 2022-01-06T06:56:07Z ddc: - '040' department: - _id: '79' doi: 10.4230/LIPIcs.OPODIS.2015.24 file: - access_level: closed content_type: application/pdf creator: florida date_created: 2018-03-21T10:28:21Z date_updated: 2018-03-21T10:28:21Z file_id: '1497' file_name: 241-ScheidelerSetzerStrothmann2015.pdf file_size: 692363 relation: main_file success: 1 file_date_updated: 2018-03-21T10:28:21Z has_accepted_license: '1' language: - iso: eng project: - _id: '1' name: SFB 901 - _id: '5' name: SFB 901 - Subprojekt A1 - _id: '2' name: SFB 901 - Project Area A publication: Proceedings of the 19th International Conference on Principles of Distributed Systems (OPODIS) series_title: Leibniz International Proceedings in Informatics (LIPIcs) status: public title: Towards Establishing Monotonic Searchability in Self-Stabilizing Data Structures type: conference user_id: '477' year: '2015' ... --- _id: '242' abstract: - lang: eng text: 'A fundamental problem for overlay networks is to safely exclude leaving nodes, i.e., the nodes requesting to leave the overlay network are excluded from it without affecting its connectivity. There are a number of studies for safe node exclusion if the overlay is in a well-defined state, but almost no formal results are known for the case in which the overlay network is in an arbitrary initial state, i.e., when looking for a self-stabilizing solution for excluding leaving nodes. We study this problem in two variants: the Finite Departure Problem (FDP) and the Finite Sleep Problem (FSP). In the FDP the leaving nodes have to irrevocably decide when it is safe to leave the network, whereas in the FSP, this leaving decision does not have to be final: the nodes may resume computation when woken up by an incoming message. We are the first to present a self-stabilizing protocol for the FDP and the FSP that can be combined with a large class of overlay maintenance protocols so that these are then guaranteed to safely exclude leaving nodes from the system from any initial state while operating as specified for the staying nodes. In order to formally define the properties these overlay maintenance protocols have to satisfy, we identify four basic primitives for manipulating edges in an overlay network that might be of independent interest.' author: - first_name: Andreas full_name: Koutsopoulos, Andreas last_name: Koutsopoulos - first_name: Christian full_name: Scheideler, Christian id: '20792' last_name: Scheideler - first_name: Thim Frederik full_name: Strothmann, Thim Frederik id: '11319' last_name: Strothmann citation: ama: 'Koutsopoulos A, Scheideler C, Strothmann TF. Towards a Universal Approach for the Finite Departure Problem in Overlay Networks. In: Proceedings of the 17th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS). Lecture Notes in Computer Science. ; 2015:201-216. doi:10.1007/978-3-319-21741-3_14' apa: Koutsopoulos, A., Scheideler, C., & Strothmann, T. F. (2015). Towards a Universal Approach for the Finite Departure Problem in Overlay Networks. In Proceedings of the 17th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS) (pp. 201–216). https://doi.org/10.1007/978-3-319-21741-3_14 bibtex: '@inproceedings{Koutsopoulos_Scheideler_Strothmann_2015, series={Lecture Notes in Computer Science}, title={Towards a Universal Approach for the Finite Departure Problem in Overlay Networks}, DOI={10.1007/978-3-319-21741-3_14}, booktitle={Proceedings of the 17th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS)}, author={Koutsopoulos, Andreas and Scheideler, Christian and Strothmann, Thim Frederik}, year={2015}, pages={201–216}, collection={Lecture Notes in Computer Science} }' chicago: Koutsopoulos, Andreas, Christian Scheideler, and Thim Frederik Strothmann. “Towards a Universal Approach for the Finite Departure Problem in Overlay Networks.” In Proceedings of the 17th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS), 201–16. Lecture Notes in Computer Science, 2015. https://doi.org/10.1007/978-3-319-21741-3_14. ieee: A. Koutsopoulos, C. Scheideler, and T. F. Strothmann, “Towards a Universal Approach for the Finite Departure Problem in Overlay Networks,” in Proceedings of the 17th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS), 2015, pp. 201–216. mla: Koutsopoulos, Andreas, et al. “Towards a Universal Approach for the Finite Departure Problem in Overlay Networks.” Proceedings of the 17th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS), 2015, pp. 201–16, doi:10.1007/978-3-319-21741-3_14. short: 'A. Koutsopoulos, C. Scheideler, T.F. Strothmann, in: Proceedings of the 17th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS), 2015, pp. 201–216.' date_created: 2017-10-17T12:41:39Z date_updated: 2022-01-06T06:56:10Z ddc: - '040' department: - _id: '79' doi: 10.1007/978-3-319-21741-3_14 file: - access_level: closed content_type: application/pdf creator: florida date_created: 2018-03-21T09:59:32Z date_updated: 2018-03-21T09:59:32Z file_id: '1496' file_name: 242-KSS-SSS2015.pdf file_size: 532792 relation: main_file success: 1 file_date_updated: 2018-03-21T09:59:32Z has_accepted_license: '1' language: - iso: eng page: 201-216 project: - _id: '1' name: SFB 901 - _id: '5' name: SFB 901 - Subprojekt A1 - _id: '2' name: SFB 901 - Project Area A publication: Proceedings of the 17th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS) series_title: Lecture Notes in Computer Science status: public title: Towards a Universal Approach for the Finite Departure Problem in Overlay Networks type: conference user_id: '477' year: '2015' ... --- _id: '327' abstract: - lang: eng text: We consider the problem of resource discovery in distributed systems. In particular we give an algorithm, such that each node in a network discovers the address of any other node in the network. We model the knowledge of the nodes as a virtual overlay network given by a directed graph such that complete knowledge of all nodes corresponds to a complete graph in the overlay network. Although there are several solutions for resource discovery, our solution is the first that achieves worst-case optimal work for each node, i.e. the number of addresses (O(n)O(n)) or bits (O(nlog⁡n)O(nlog⁡n)) a node receives or sends coincides with the lower bound, while ensuring only a linear runtime (O(n)O(n)) on the number of rounds. author: - first_name: Sebastian full_name: Kniesburges, Sebastian last_name: Kniesburges - first_name: Andreas full_name: Koutsopoulos, Andreas last_name: Koutsopoulos - first_name: Christian full_name: Scheideler, Christian id: '20792' last_name: Scheideler citation: ama: Kniesburges S, Koutsopoulos A, Scheideler C. A deterministic worst-case message complexity optimal solution for resource discovery. Theoretical Computer Science. 2015:67-79. doi:10.1016/j.tcs.2014.11.027 apa: Kniesburges, S., Koutsopoulos, A., & Scheideler, C. (2015). A deterministic worst-case message complexity optimal solution for resource discovery. Theoretical Computer Science, 67–79. https://doi.org/10.1016/j.tcs.2014.11.027 bibtex: '@article{Kniesburges_Koutsopoulos_Scheideler_2015, title={A deterministic worst-case message complexity optimal solution for resource discovery}, DOI={10.1016/j.tcs.2014.11.027}, journal={Theoretical Computer Science}, publisher={Elsevier}, author={Kniesburges, Sebastian and Koutsopoulos, Andreas and Scheideler, Christian}, year={2015}, pages={67–79} }' chicago: Kniesburges, Sebastian, Andreas Koutsopoulos, and Christian Scheideler. “A Deterministic Worst-Case Message Complexity Optimal Solution for Resource Discovery.” Theoretical Computer Science, 2015, 67–79. https://doi.org/10.1016/j.tcs.2014.11.027. ieee: S. Kniesburges, A. Koutsopoulos, and C. Scheideler, “A deterministic worst-case message complexity optimal solution for resource discovery,” Theoretical Computer Science, pp. 67–79, 2015. mla: Kniesburges, Sebastian, et al. “A Deterministic Worst-Case Message Complexity Optimal Solution for Resource Discovery.” Theoretical Computer Science, Elsevier, 2015, pp. 67–79, doi:10.1016/j.tcs.2014.11.027. short: S. Kniesburges, A. Koutsopoulos, C. Scheideler, Theoretical Computer Science (2015) 67–79. date_created: 2017-10-17T12:41:55Z date_updated: 2022-01-06T06:59:08Z ddc: - '040' department: - _id: '79' doi: 10.1016/j.tcs.2014.11.027 file: - access_level: closed content_type: application/pdf creator: florida date_created: 2018-03-20T07:38:02Z date_updated: 2018-03-20T07:38:02Z file_id: '1427' file_name: 327-KKS15-TOCS_01.pdf file_size: 398044 relation: main_file success: 1 file_date_updated: 2018-03-20T07:38:02Z has_accepted_license: '1' page: 67-79 project: - _id: '1' name: SFB 901 - _id: '5' name: SFB 901 - Subprojekt A1 - _id: '2' name: SFB 901 - Project Area A publication: Theoretical Computer Science publisher: Elsevier status: public title: A deterministic worst-case message complexity optimal solution for resource discovery type: journal_article user_id: '477' year: '2015' ... --- _id: '1850' author: - first_name: Zahra full_name: Derakhshandeh, Zahra last_name: Derakhshandeh - first_name: Robert full_name: Gmyr, Robert last_name: Gmyr - first_name: Thim Frederik full_name: Strothmann, Thim Frederik id: '11319' last_name: Strothmann - first_name: Rida full_name: A. Bazzi, Rida last_name: A. Bazzi - first_name: Andrea full_name: W. Richa, Andrea last_name: W. Richa - first_name: Christian full_name: Scheideler, Christian id: '20792' last_name: Scheideler citation: ama: 'Derakhshandeh Z, Gmyr R, Strothmann TF, A. Bazzi R, W. Richa A, Scheideler C. Leader Election and Shape Formation with Self-organizing Programmable Matter. In: DNA Computing and Molecular Programming - 21st International Conference, DNA 21, Boston and Cambridge, MA, USA, August 17-21, 2015. Proceedings. Vol 9211. Lecture Notes in Computer Science. ; 2015:117--132. doi:10.1007/978-3-319-21999-8_8' apa: Derakhshandeh, Z., Gmyr, R., Strothmann, T. F., A. Bazzi, R., W. Richa, A., & Scheideler, C. (2015). Leader Election and Shape Formation with Self-organizing Programmable Matter. In DNA Computing and Molecular Programming - 21st International Conference, DNA 21, Boston and Cambridge, MA, USA, August 17-21, 2015. Proceedings (Vol. 9211, pp. 117--132). https://doi.org/10.1007/978-3-319-21999-8_8 bibtex: '@inproceedings{Derakhshandeh_Gmyr_Strothmann_A. Bazzi_W. Richa_Scheideler_2015, series={Lecture Notes in Computer Science}, title={Leader Election and Shape Formation with Self-organizing Programmable Matter}, volume={9211}, DOI={10.1007/978-3-319-21999-8_8}, booktitle={DNA Computing and Molecular Programming - 21st International Conference, DNA 21, Boston and Cambridge, MA, USA, August 17-21, 2015. Proceedings}, author={Derakhshandeh, Zahra and Gmyr, Robert and Strothmann, Thim Frederik and A. Bazzi, Rida and W. Richa, Andrea and Scheideler, Christian}, year={2015}, pages={117--132}, collection={Lecture Notes in Computer Science} }' chicago: Derakhshandeh, Zahra, Robert Gmyr, Thim Frederik Strothmann, Rida A. Bazzi, Andrea W. Richa, and Christian Scheideler. “Leader Election and Shape Formation with Self-Organizing Programmable Matter.” In DNA Computing and Molecular Programming - 21st International Conference, DNA 21, Boston and Cambridge, MA, USA, August 17-21, 2015. Proceedings, 9211:117--132. Lecture Notes in Computer Science, 2015. https://doi.org/10.1007/978-3-319-21999-8_8. ieee: Z. Derakhshandeh, R. Gmyr, T. F. Strothmann, R. A. Bazzi, A. W. Richa, and C. Scheideler, “Leader Election and Shape Formation with Self-organizing Programmable Matter,” in DNA Computing and Molecular Programming - 21st International Conference, DNA 21, Boston and Cambridge, MA, USA, August 17-21, 2015. Proceedings, 2015, vol. 9211, pp. 117--132. mla: Derakhshandeh, Zahra, et al. “Leader Election and Shape Formation with Self-Organizing Programmable Matter.” DNA Computing and Molecular Programming - 21st International Conference, DNA 21, Boston and Cambridge, MA, USA, August 17-21, 2015. Proceedings, vol. 9211, 2015, pp. 117--132, doi:10.1007/978-3-319-21999-8_8. short: 'Z. Derakhshandeh, R. Gmyr, T.F. Strothmann, R. A. Bazzi, A. W. Richa, C. Scheideler, in: DNA Computing and Molecular Programming - 21st International Conference, DNA 21, Boston and Cambridge, MA, USA, August 17-21, 2015. Proceedings, 2015, pp. 117--132.' date_created: 2018-03-28T05:49:12Z date_updated: 2022-01-06T06:53:36Z department: - _id: '79' doi: 10.1007/978-3-319-21999-8_8 intvolume: ' 9211' language: - iso: eng page: 117--132 publication: DNA Computing and Molecular Programming - 21st International Conference, DNA 21, Boston and Cambridge, MA, USA, August 17-21, 2015. Proceedings publication_identifier: isbn: - 978-3-319-21998-1 series_title: Lecture Notes in Computer Science status: public title: Leader Election and Shape Formation with Self-organizing Programmable Matter type: conference user_id: '15504' volume: 9211 year: '2015' ... --- _id: '1851' author: - first_name: Zahra full_name: Derakhshandeh, Zahra last_name: Derakhshandeh - first_name: Robert full_name: Gmyr, Robert last_name: Gmyr - first_name: Andrea full_name: W. Richa, Andrea last_name: W. Richa - first_name: Christian full_name: Scheideler, Christian id: '20792' last_name: Scheideler - first_name: Thim Frederik full_name: Strothmann, Thim Frederik id: '11319' last_name: Strothmann citation: ama: 'Derakhshandeh Z, Gmyr R, W. Richa A, Scheideler C, Strothmann TF. An Algorithmic Framework for Shape Formation Problems in Self-Organizing Particle Systems. In: Proceedings of the Second Annual International Conference on Nanoscale Computing and Communication, NANOCOM’ 15, Boston, MA, USA, September 21-22, 2015. ACM; 2015:21:1--21:2. doi:10.1145/2800795.2800829' apa: Derakhshandeh, Z., Gmyr, R., W. Richa, A., Scheideler, C., & Strothmann, T. F. (2015). An Algorithmic Framework for Shape Formation Problems in Self-Organizing Particle Systems. In Proceedings of the Second Annual International Conference on Nanoscale Computing and Communication, NANOCOM’ 15, Boston, MA, USA, September 21-22, 2015 (pp. 21:1--21:2). ACM. https://doi.org/10.1145/2800795.2800829 bibtex: '@inproceedings{Derakhshandeh_Gmyr_W. Richa_Scheideler_Strothmann_2015, title={An Algorithmic Framework for Shape Formation Problems in Self-Organizing Particle Systems}, DOI={10.1145/2800795.2800829}, booktitle={Proceedings of the Second Annual International Conference on Nanoscale Computing and Communication, NANOCOM’ 15, Boston, MA, USA, September 21-22, 2015}, publisher={ACM}, author={Derakhshandeh, Zahra and Gmyr, Robert and W. Richa, Andrea and Scheideler, Christian and Strothmann, Thim Frederik}, year={2015}, pages={21:1--21:2} }' chicago: Derakhshandeh, Zahra, Robert Gmyr, Andrea W. Richa, Christian Scheideler, and Thim Frederik Strothmann. “An Algorithmic Framework for Shape Formation Problems in Self-Organizing Particle Systems.” In Proceedings of the Second Annual International Conference on Nanoscale Computing and Communication, NANOCOM’ 15, Boston, MA, USA, September 21-22, 2015, 21:1--21:2. ACM, 2015. https://doi.org/10.1145/2800795.2800829. ieee: Z. Derakhshandeh, R. Gmyr, A. W. Richa, C. Scheideler, and T. F. Strothmann, “An Algorithmic Framework for Shape Formation Problems in Self-Organizing Particle Systems,” in Proceedings of the Second Annual International Conference on Nanoscale Computing and Communication, NANOCOM’ 15, Boston, MA, USA, September 21-22, 2015, 2015, pp. 21:1--21:2. mla: Derakhshandeh, Zahra, et al. “An Algorithmic Framework for Shape Formation Problems in Self-Organizing Particle Systems.” Proceedings of the Second Annual International Conference on Nanoscale Computing and Communication, NANOCOM’ 15, Boston, MA, USA, September 21-22, 2015, ACM, 2015, pp. 21:1--21:2, doi:10.1145/2800795.2800829. short: 'Z. Derakhshandeh, R. Gmyr, A. W. Richa, C. Scheideler, T.F. Strothmann, in: Proceedings of the Second Annual International Conference on Nanoscale Computing and Communication, NANOCOM’ 15, Boston, MA, USA, September 21-22, 2015, ACM, 2015, pp. 21:1--21:2.' date_created: 2018-03-28T05:50:25Z date_updated: 2022-01-06T06:53:36Z department: - _id: '79' doi: 10.1145/2800795.2800829 language: - iso: eng page: 21:1--21:2 publication: Proceedings of the Second Annual International Conference on Nanoscale Computing and Communication, NANOCOM' 15, Boston, MA, USA, September 21-22, 2015 publication_identifier: isbn: - 978-1-4503-3674-1 publisher: ACM status: public title: An Algorithmic Framework for Shape Formation Problems in Self-Organizing Particle Systems type: conference user_id: '15504' year: '2015' ... --- _id: '1852' author: - first_name: Zahra full_name: Derakhshandeh, Zahra last_name: Derakhshandeh - first_name: Robert full_name: Gmyr, Robert last_name: Gmyr - first_name: Thim Frederik full_name: Strothmann, Thim Frederik id: '11319' last_name: Strothmann - first_name: Rida full_name: A. Bazzi, Rida last_name: A. Bazzi - first_name: Andrea full_name: W. Richa, Andrea last_name: W. Richa - first_name: Christian full_name: Scheideler, Christian id: '20792' last_name: Scheideler citation: ama: 'Derakhshandeh Z, Gmyr R, Strothmann TF, A. Bazzi R, W. Richa A, Scheideler C. Brief Announcement: On the Feasibility of Leader Election and Shape Formation with Self-Organizing Programmable Matter. In: Proceedings of the 2015 ACM Symposium on Principles of Distributed Computing, PODC 2015, Donostia-San Sebasti{\’{a}}n, Spain, July 21 - 23, 2015. ACM; 2015:67--69. doi:10.1145/2767386.2767451' apa: 'Derakhshandeh, Z., Gmyr, R., Strothmann, T. F., A. Bazzi, R., W. Richa, A., & Scheideler, C. (2015). Brief Announcement: On the Feasibility of Leader Election and Shape Formation with Self-Organizing Programmable Matter. In Proceedings of the 2015 ACM Symposium on Principles of Distributed Computing, PODC 2015, Donostia-San Sebasti{\’{a}}n, Spain, July 21 - 23, 2015 (pp. 67--69). ACM. https://doi.org/10.1145/2767386.2767451' bibtex: '@inproceedings{Derakhshandeh_Gmyr_Strothmann_A. Bazzi_W. Richa_Scheideler_2015, title={Brief Announcement: On the Feasibility of Leader Election and Shape Formation with Self-Organizing Programmable Matter}, DOI={10.1145/2767386.2767451}, booktitle={Proceedings of the 2015 ACM Symposium on Principles of Distributed Computing, PODC 2015, Donostia-San Sebasti{\’{a}}n, Spain, July 21 - 23, 2015}, publisher={ACM}, author={Derakhshandeh, Zahra and Gmyr, Robert and Strothmann, Thim Frederik and A. Bazzi, Rida and W. Richa, Andrea and Scheideler, Christian}, year={2015}, pages={67--69} }' chicago: 'Derakhshandeh, Zahra, Robert Gmyr, Thim Frederik Strothmann, Rida A. Bazzi, Andrea W. Richa, and Christian Scheideler. “Brief Announcement: On the Feasibility of Leader Election and Shape Formation with Self-Organizing Programmable Matter.” In Proceedings of the 2015 ACM Symposium on Principles of Distributed Computing, PODC 2015, Donostia-San Sebasti{\’{a}}n, Spain, July 21 - 23, 2015, 67--69. ACM, 2015. https://doi.org/10.1145/2767386.2767451.' ieee: 'Z. Derakhshandeh, R. Gmyr, T. F. Strothmann, R. A. Bazzi, A. W. Richa, and C. Scheideler, “Brief Announcement: On the Feasibility of Leader Election and Shape Formation with Self-Organizing Programmable Matter,” in Proceedings of the 2015 ACM Symposium on Principles of Distributed Computing, PODC 2015, Donostia-San Sebasti{\’{a}}n, Spain, July 21 - 23, 2015, 2015, pp. 67--69.' mla: 'Derakhshandeh, Zahra, et al. “Brief Announcement: On the Feasibility of Leader Election and Shape Formation with Self-Organizing Programmable Matter.” Proceedings of the 2015 ACM Symposium on Principles of Distributed Computing, PODC 2015, Donostia-San Sebasti{\’{a}}n, Spain, July 21 - 23, 2015, ACM, 2015, pp. 67--69, doi:10.1145/2767386.2767451.' short: 'Z. Derakhshandeh, R. Gmyr, T.F. Strothmann, R. A. Bazzi, A. W. Richa, C. Scheideler, in: Proceedings of the 2015 ACM Symposium on Principles of Distributed Computing, PODC 2015, Donostia-San Sebasti{\’{a}}n, Spain, July 21 - 23, 2015, ACM, 2015, pp. 67--69.' date_created: 2018-03-28T05:52:44Z date_updated: 2022-01-06T06:53:36Z department: - _id: '79' doi: 10.1145/2767386.2767451 language: - iso: eng page: 67--69 publication: Proceedings of the 2015 ACM Symposium on Principles of Distributed Computing, PODC 2015, Donostia-San Sebasti{\'{a}}n, Spain, July 21 - 23, 2015 publication_identifier: isbn: - 978-1-4503-3617-8 publisher: ACM status: public title: 'Brief Announcement: On the Feasibility of Leader Election and Shape Formation with Self-Organizing Programmable Matter' type: conference user_id: '15504' year: '2015' ... --- _id: '1853' author: - first_name: Andreas full_name: Koutsopoulos, Andreas last_name: Koutsopoulos - first_name: Christian full_name: Scheideler, Christian id: '20792' last_name: Scheideler - first_name: Thim Frederik full_name: Strothmann, Thim Frederik id: '11319' last_name: Strothmann citation: ama: 'Koutsopoulos A, Scheideler C, Strothmann TF. Brief Announcement: Towards a Universal Approach for the Finite Departure Problem in Overlay Networks. In: Proceedings of the 27th ACM on Symposium on Parallelism in Algorithms and Architectures, SPAA 2015, Portland, OR, USA, June 13-15, 2015. ACM; 2015:77--79. doi:10.1145/2755573.2755614' apa: 'Koutsopoulos, A., Scheideler, C., & Strothmann, T. F. (2015). Brief Announcement: Towards a Universal Approach for the Finite Departure Problem in Overlay Networks. In Proceedings of the 27th ACM on Symposium on Parallelism in Algorithms and Architectures, SPAA 2015, Portland, OR, USA, June 13-15, 2015 (pp. 77--79). ACM. https://doi.org/10.1145/2755573.2755614' bibtex: '@inproceedings{Koutsopoulos_Scheideler_Strothmann_2015, title={Brief Announcement: Towards a Universal Approach for the Finite Departure Problem in Overlay Networks}, DOI={10.1145/2755573.2755614}, booktitle={Proceedings of the 27th ACM on Symposium on Parallelism in Algorithms and Architectures, SPAA 2015, Portland, OR, USA, June 13-15, 2015}, publisher={ACM}, author={Koutsopoulos, Andreas and Scheideler, Christian and Strothmann, Thim Frederik}, year={2015}, pages={77--79} }' chicago: 'Koutsopoulos, Andreas, Christian Scheideler, and Thim Frederik Strothmann. “Brief Announcement: Towards a Universal Approach for the Finite Departure Problem in Overlay Networks.” In Proceedings of the 27th ACM on Symposium on Parallelism in Algorithms and Architectures, SPAA 2015, Portland, OR, USA, June 13-15, 2015, 77--79. ACM, 2015. https://doi.org/10.1145/2755573.2755614.' ieee: 'A. Koutsopoulos, C. Scheideler, and T. F. Strothmann, “Brief Announcement: Towards a Universal Approach for the Finite Departure Problem in Overlay Networks,” in Proceedings of the 27th ACM on Symposium on Parallelism in Algorithms and Architectures, SPAA 2015, Portland, OR, USA, June 13-15, 2015, 2015, pp. 77--79.' mla: 'Koutsopoulos, Andreas, et al. “Brief Announcement: Towards a Universal Approach for the Finite Departure Problem in Overlay Networks.” Proceedings of the 27th ACM on Symposium on Parallelism in Algorithms and Architectures, SPAA 2015, Portland, OR, USA, June 13-15, 2015, ACM, 2015, pp. 77--79, doi:10.1145/2755573.2755614.' short: 'A. Koutsopoulos, C. Scheideler, T.F. Strothmann, in: Proceedings of the 27th ACM on Symposium on Parallelism in Algorithms and Architectures, SPAA 2015, Portland, OR, USA, June 13-15, 2015, ACM, 2015, pp. 77--79.' date_created: 2018-03-28T05:57:20Z date_updated: 2022-01-06T06:53:36Z department: - _id: '79' doi: 10.1145/2755573.2755614 language: - iso: eng page: 77--79 publication: Proceedings of the 27th ACM on Symposium on Parallelism in Algorithms and Architectures, SPAA 2015, Portland, OR, USA, June 13-15, 2015 publication_identifier: isbn: - 978-1-4503-3588-1 publisher: ACM status: public title: 'Brief Announcement: Towards a Universal Approach for the Finite Departure Problem in Overlay Networks' type: conference user_id: '15504' year: '2015' ... --- _id: '371' abstract: - lang: eng text: In this work we present the first distributed storage system that is provably robust against crash failures issued by an adaptive adversary, i.e., for each batch of requests the adversary can decide based on the entire system state which servers will be unavailable for that batch of requests. Despite up to \gamma n^{1/\log\log n} crashed servers, with \gamma>0 constant and n denoting the number of servers, our system can correctly process any batch of lookup and write requests (with at most a polylogarithmic number of requests issued at each non-crashed server) in at most a polylogarithmic number of communication rounds, with at most polylogarithmic time and work at each server and only a logarithmic storage overhead. Our system is based on previous work by Eikel and Scheideler (SPAA 2013), who presented IRIS, a distributed information system that is provably robust against the same kind of crash failures. However, IRIS is only able to serve lookup requests. Handling both lookup and write requests has turned out to require major changes in the design of IRIS. author: - first_name: Christian full_name: Scheideler, Christian id: '20792' last_name: Scheideler - first_name: Alexander full_name: Setzer, Alexander id: '11108' last_name: Setzer - first_name: Martina full_name: Eikel, Martina last_name: Eikel citation: ama: 'Scheideler C, Setzer A, Eikel M. RoBuSt: A Crash-Failure-Resistant Distributed Storage System. In: Proceedings of the 18th International Conference on Principles of Distributed Systems (OPODIS). LNCS. ; 2014:107--122. doi:10.1007/978-3-319-14472-6_8' apa: 'Scheideler, C., Setzer, A., & Eikel, M. (2014). RoBuSt: A Crash-Failure-Resistant Distributed Storage System. In Proceedings of the 18th International Conference on Principles of Distributed Systems (OPODIS) (pp. 107--122). https://doi.org/10.1007/978-3-319-14472-6_8' bibtex: '@inproceedings{Scheideler_Setzer_Eikel_2014, series={LNCS}, title={RoBuSt: A Crash-Failure-Resistant Distributed Storage System}, DOI={10.1007/978-3-319-14472-6_8}, booktitle={Proceedings of the 18th International Conference on Principles of Distributed Systems (OPODIS)}, author={Scheideler, Christian and Setzer, Alexander and Eikel, Martina}, year={2014}, pages={107--122}, collection={LNCS} }' chicago: 'Scheideler, Christian, Alexander Setzer, and Martina Eikel. “RoBuSt: A Crash-Failure-Resistant Distributed Storage System.” In Proceedings of the 18th International Conference on Principles of Distributed Systems (OPODIS), 107--122. LNCS, 2014. https://doi.org/10.1007/978-3-319-14472-6_8.' ieee: 'C. Scheideler, A. Setzer, and M. Eikel, “RoBuSt: A Crash-Failure-Resistant Distributed Storage System,” in Proceedings of the 18th International Conference on Principles of Distributed Systems (OPODIS), 2014, pp. 107--122.' mla: 'Scheideler, Christian, et al. “RoBuSt: A Crash-Failure-Resistant Distributed Storage System.” Proceedings of the 18th International Conference on Principles of Distributed Systems (OPODIS), 2014, pp. 107--122, doi:10.1007/978-3-319-14472-6_8.' short: 'C. Scheideler, A. Setzer, M. Eikel, in: Proceedings of the 18th International Conference on Principles of Distributed Systems (OPODIS), 2014, pp. 107--122.' date_created: 2017-10-17T12:42:04Z date_updated: 2022-01-06T06:59:31Z ddc: - '040' department: - _id: '79' doi: 10.1007/978-3-319-14472-6_8 file: - access_level: closed content_type: application/pdf creator: florida date_created: 2018-03-20T07:16:32Z date_updated: 2018-03-20T07:16:32Z file_id: '1401' file_name: 371-RoBuSt-OPODIS.pdf file_size: 269941 relation: main_file success: 1 file_date_updated: 2018-03-20T07:16:32Z has_accepted_license: '1' page: 107--122 project: - _id: '1' name: SFB 901 - _id: '13' name: SFB 901 - Subprojekt C1 - _id: '4' name: SFB 901 - Project Area C publication: Proceedings of the 18th International Conference on Principles of Distributed Systems (OPODIS) series_title: LNCS status: public title: 'RoBuSt: A Crash-Failure-Resistant Distributed Storage System' type: conference user_id: '15504' year: '2014' ... --- _id: '378' abstract: - lang: eng text: The Chord peer-to-peer system is considered, together with CAN, Tapestry and Pastry, as one of the pioneering works on peer-to-peer distributed hash tables (DHT) that inspired a large volume of papers and projects on DHTs as well as peer-to-peer systems in general. Chord, in particular, has been studied thoroughly, and many variants of Chord have been presented that optimize various criteria. Also, several implementations of Chord are available on various platforms. Though Chord is known to be very efficient and scalable and it can handle churn quite well, no protocol is known yet that guarantees that Chord is self-stabilizing, i.e., the Chord network can be recovered from any initial state in which the network is still weakly connected. This is not too surprising since it is known that the Chord network is not locally checkable for its current topology. We present a slight extension of the Chord network, called Re-Chord (reactive Chord), that turns out to be locally checkable, and we present a self-stabilizing distributed protocol for it that can recover the Re-Chord network from any initial state, in which the n peers are weakly connected, in O(nlogn) communication rounds. We also show that our protocol allows a new peer to join or an old peer to leave an already stable Re-Chord network so that within O(logn)^2) communication rounds the Re-Chord network is stable again. author: - first_name: Sebastian full_name: Kniesburges, Sebastian last_name: Kniesburges - first_name: Andreas full_name: Koutsopoulos, Andreas last_name: Koutsopoulos - first_name: Christian full_name: Scheideler, Christian id: '20792' last_name: Scheideler citation: ama: 'Kniesburges S, Koutsopoulos A, Scheideler C. Re-Chord: A Self-stabilizing Chord Overlay Network. Theory of Computing Systems. 2014;(3):591-612. doi:10.1007/s00224-012-9431-2' apa: 'Kniesburges, S., Koutsopoulos, A., & Scheideler, C. (2014). Re-Chord: A Self-stabilizing Chord Overlay Network. Theory of Computing Systems, (3), 591–612. https://doi.org/10.1007/s00224-012-9431-2' bibtex: '@article{Kniesburges_Koutsopoulos_Scheideler_2014, title={Re-Chord: A Self-stabilizing Chord Overlay Network}, DOI={10.1007/s00224-012-9431-2}, number={3}, journal={Theory of Computing Systems}, publisher={Springer}, author={Kniesburges, Sebastian and Koutsopoulos, Andreas and Scheideler, Christian}, year={2014}, pages={591–612} }' chicago: 'Kniesburges, Sebastian, Andreas Koutsopoulos, and Christian Scheideler. “Re-Chord: A Self-Stabilizing Chord Overlay Network.” Theory of Computing Systems, no. 3 (2014): 591–612. https://doi.org/10.1007/s00224-012-9431-2.' ieee: 'S. Kniesburges, A. Koutsopoulos, and C. Scheideler, “Re-Chord: A Self-stabilizing Chord Overlay Network,” Theory of Computing Systems, no. 3, pp. 591–612, 2014.' mla: 'Kniesburges, Sebastian, et al. “Re-Chord: A Self-Stabilizing Chord Overlay Network.” Theory of Computing Systems, no. 3, Springer, 2014, pp. 591–612, doi:10.1007/s00224-012-9431-2.' short: S. Kniesburges, A. Koutsopoulos, C. Scheideler, Theory of Computing Systems (2014) 591–612. date_created: 2017-10-17T12:42:05Z date_updated: 2022-01-06T06:59:35Z ddc: - '040' department: - _id: '79' doi: 10.1007/s00224-012-9431-2 file: - access_level: closed content_type: application/pdf creator: florida date_created: 2018-03-20T07:13:36Z date_updated: 2018-03-20T07:13:36Z file_id: '1396' file_name: 378-re-chord_journal.pdf file_size: 310961 relation: main_file success: 1 file_date_updated: 2018-03-20T07:13:36Z has_accepted_license: '1' issue: '3' page: 591-612 project: - _id: '1' name: SFB 901 - _id: '5' name: SFB 901 - Subprojekt A1 - _id: '4' name: SFB 901 - Project Area C - _id: '13' name: SFB 901 - Subproject C1 - _id: '2' name: SFB 901 - Project Area A publication: Theory of Computing Systems publisher: Springer status: public title: 'Re-Chord: A Self-stabilizing Chord Overlay Network' type: journal_article user_id: '477' year: '2014' ... --- _id: '387' abstract: - lang: eng text: This article studies the design of medium access control (MAC) protocols for wireless networks that are provably robust against arbitrary and unpredictable disruptions (e.g., due to unintentional external interference from co-existing networks or due to jamming). We consider a wireless network consisting of a set of n honest and reliable nodes within transmission (and interference) range of each other, and we model the external disruptions with a powerful adaptive adversary. This adversary may know the protocol and its entire history and can use this knowledge to jam the wireless channel at will at any time. It is allowed to jam a (1 − )-fraction of the timesteps, for an arbitrary constant > 0 unknown to the nodes. The nodes cannot distinguish between the adversarial jamming or a collision of two or more messages that are sent at the same time. We demonstrate, for the first time, that there is a local-control MAC protocol requiring only very limited knowledge about the adversary and the network that achieves a constant (asymptotically optimal) throughput for the nonjammed time periods under any of the aforementioned adversarial strategies. The derived principles are also useful to build robust applications on top of the MAC layer, and we present an exemplary study for leader election, one of the most fundamental tasks in distributed computing. author: - first_name: Baruch full_name: Awerbuch, Baruch last_name: Awerbuch - first_name: Andrea W. full_name: Richa, Andrea W. last_name: Richa - first_name: Christian full_name: Scheideler, Christian id: '20792' last_name: Scheideler - first_name: Stefan full_name: Schmid, Stefan last_name: Schmid - first_name: Jin full_name: Zhang, Jin last_name: Zhang citation: ama: Awerbuch B, Richa AW, Scheideler C, Schmid S, Zhang J. Principles of Robust Medium Access and an Application to Leader Election. Transactions on Algorithms. 2014;(4). doi:10.1145/2635818 apa: Awerbuch, B., Richa, A. W., Scheideler, C., Schmid, S., & Zhang, J. (2014). Principles of Robust Medium Access and an Application to Leader Election. Transactions on Algorithms, (4). https://doi.org/10.1145/2635818 bibtex: '@article{Awerbuch_Richa_Scheideler_Schmid_Zhang_2014, title={Principles of Robust Medium Access and an Application to Leader Election}, DOI={10.1145/2635818}, number={4}, journal={Transactions on Algorithms}, publisher={ACM}, author={Awerbuch, Baruch and Richa, Andrea W. and Scheideler, Christian and Schmid, Stefan and Zhang, Jin}, year={2014} }' chicago: Awerbuch, Baruch, Andrea W. Richa, Christian Scheideler, Stefan Schmid, and Jin Zhang. “Principles of Robust Medium Access and an Application to Leader Election.” Transactions on Algorithms, no. 4 (2014). https://doi.org/10.1145/2635818. ieee: B. Awerbuch, A. W. Richa, C. Scheideler, S. Schmid, and J. Zhang, “Principles of Robust Medium Access and an Application to Leader Election,” Transactions on Algorithms, no. 4, 2014. mla: Awerbuch, Baruch, et al. “Principles of Robust Medium Access and an Application to Leader Election.” Transactions on Algorithms, no. 4, ACM, 2014, doi:10.1145/2635818. short: B. Awerbuch, A.W. Richa, C. Scheideler, S. Schmid, J. Zhang, Transactions on Algorithms (2014). date_created: 2017-10-17T12:42:07Z date_updated: 2022-01-06T06:59:47Z ddc: - '040' department: - _id: '79' doi: 10.1145/2635818 file: - access_level: closed content_type: application/pdf creator: florida date_created: 2018-03-20T07:02:33Z date_updated: 2018-03-20T07:02:33Z file_id: '1388' file_name: 387-a24-awerbuch_2_.pdf file_size: 521454 relation: main_file success: 1 file_date_updated: 2018-03-20T07:02:33Z has_accepted_license: '1' issue: '4' project: - _id: '1' name: SFB 901 - _id: '13' name: SFB 901 - Subprojekt C1 - _id: '4' name: SFB 901 - Project Area C publication: Transactions on Algorithms publisher: ACM status: public title: Principles of Robust Medium Access and an Application to Leader Election type: journal_article user_id: '477' year: '2014' ...