@inproceedings{8871, author = {{Augustine, John and Ghaffari, Mohsen and Gmyr, Robert and Hinnenthal, Kristian and Kuhn, Fabian and Li, Jason and Scheideler, Christian}}, booktitle = {{Proceedings of the 31st ACM Symposium on Parallelism in Algorithms and Architectures}}, pages = {{69----79}}, publisher = {{ACM}}, title = {{{Distributed Computation in Node-Capacitated Networks}}}, doi = {{10.1145/3323165.3323195}}, year = {{2019}}, } @inbook{9599, author = {{Daymude, Joshua J. and Hinnenthal, Kristian and Richa, Andréa W. and Scheideler, Christian}}, booktitle = {{Distributed Computing by Mobile Entities, Current Research in Moving and Computing.}}, pages = {{615--681}}, publisher = {{Springer, Cham}}, title = {{{Computing by Programmable Particles}}}, doi = {{https://doi.org/10.1007/978-3-030-11072-7_22}}, year = {{2019}}, } @inproceedings{6976, abstract = {{We investigate the maintenance of overlay networks under massive churn, i.e. nodes joining and leaving the network. We assume an adversary that may churn a constant fraction $\alpha n$ of nodes over the course of $\mathcal{O}(\log n)$ rounds. In particular, the adversary has an almost up-to-date information of the network topology as it can observe an only slightly outdated topology that is at least $2$ rounds old. Other than that, we only have the provably minimal restriction that new nodes can only join the network via nodes that have taken part in the network for at least one round. Our contributions are as follows: First, we show that it is impossible to maintain a connected topology if adversary has up-to-date information about the nodes' connections. Further, we show that our restriction concerning the join is also necessary. As our main result present an algorithm that constructs a new overlay- completely independent of all previous overlays - every $2$ rounds. Furthermore, each node sends and receives only $\mathcal{O}(\log^3 n)$ messages each round. As part of our solution we propose the Linearized DeBruijn Swarm (LDS), a highly churn resistant overlay, which will be maintained by the algorithm. However, our approaches can be transferred to a variety of classical P2P Topologies where nodes are mapped into the $[0,1)$-interval.}}, author = {{Götte, Thorsten and Vijayalakshmi, Vipin Ravindran and Scheideler, Christian}}, booktitle = {{Proceedings of the 2019 IEEE 33rd International Parallel and Distributed Processing Symposium (IPDPS '19)}}, location = {{Rio de Janeiro, Brazil}}, publisher = {{IEEE}}, title = {{{Always be Two Steps Ahead of Your Enemy - Maintaining a Routable Overlay under Massive Churn with an Almost Up-to-date Adversary}}}, year = {{2019}}, } @inproceedings{10586, abstract = {{We consider the problem of transforming a given graph G_s into a desired graph G_t by applying a minimum number of primitives from a particular set of local graph transformation primitives. These primitives are local in the sense that each node can apply them based on local knowledge and by affecting only its 1-neighborhood. Although the specific set of primitives we consider makes it possible to transform any (weakly) connected graph into any other (weakly) connected graph consisting of the same nodes, they cannot disconnect the graph or introduce new nodes into the graph, making them ideal in the context of supervised overlay network transformations. We prove that computing a minimum sequence of primitive applications (even centralized) for arbitrary G_s and G_t is NP-hard, which we conjecture to hold for any set of local graph transformation primitives satisfying the aforementioned properties. On the other hand, we show that this problem admits a polynomial time algorithm with a constant approximation ratio.}}, author = {{Scheideler, Christian and Setzer, Alexander}}, booktitle = {{Proceedings of the 46th International Colloquium on Automata, Languages, and Programming}}, keywords = {{Graphs transformations, NP-hardness, approximation algorithms}}, location = {{Patras, Greece}}, pages = {{150:1----150:14}}, publisher = {{Dagstuhl Publishing}}, title = {{{On the Complexity of Local Graph Transformations}}}, doi = {{10.4230/LIPICS.ICALP.2019.150}}, volume = {{132}}, year = {{2019}}, } @inproceedings{12944, author = {{Götte, Thorsten and Hinnenthal, Kristian and Scheideler, Christian}}, booktitle = {{Structural Information and Communication Complexity}}, title = {{{Faster Construction of Overlay Networks}}}, doi = {{10.1007/978-3-030-24922-9_18}}, year = {{2019}}, } @inproceedings{15627, author = {{Augustine, John and Hinnenthal, Kristian and Kuhn, Fabian and Scheideler, Christian and Schneider, Philipp}}, booktitle = {{Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms}}, isbn = {{9781611975994}}, pages = {{1280--1299}}, title = {{{Shortest Paths in a Hybrid Network Model}}}, doi = {{10.1137/1.9781611975994.78}}, year = {{2019}}, } @article{14830, author = {{Gmyr, Robert and Lefevre, Jonas and Scheideler, Christian}}, journal = {{Theory Comput. Syst.}}, number = {{2}}, pages = {{177--199}}, title = {{{Self-Stabilizing Metric Graphs}}}, doi = {{10.1007/s00224-017-9823-4}}, volume = {{63}}, year = {{2019}}, } @inproceedings{14539, author = {{Castenow, Jannik and Kolb, Christina and Scheideler, Christian}}, booktitle = {{Proceedings of the 26th International Colloquium on Structural Information and Communication Complexity (SIROCCO)}}, location = {{L'Aquila, Italy}}, pages = {{345--348}}, title = {{{A Bounding Box Overlay for Competitive Routing in Hybrid Communication Networks}}}, doi = {{10.1007/978-3-030-24922-9\_26}}, year = {{2019}}, } @inproceedings{13182, abstract = {{We consider congestion control in peer-to-peer distributed systems. The problem can be reduced to the following scenario: Consider a set $V$ of $n$ peers (called \emph{clients} in this paper) that want to send messages to a fixed common peer (called \emph{server} in this paper). We assume that each client $v \in V$ sends a message with probability $p(v) \in [0,1)$ and the server has a capacity of $\sigma \in \mathbb{N}$, i.e., it can recieve at most $\sigma$ messages per round and excess messages are dropped. The server can modify these probabilities when clients send messages. Ideally, we wish to converge to a state with $\sum p(v) = \sigma$ and $p(v) = p(w)$ for all $v,w \in V$. We propose a \emph{loosely} self-stabilizing protocol with a slightly relaxed legitimate state. Our protocol lets the system converge from \emph{any} initial state to a state where $\sum p(v) \in \left[\sigma \pm \epsilon\right]$ and $|p(v)-p(w)| \in O(\frac{1}{n})$. This property is then maintained for $\Omega(n^{\mathfrak{c}})$ rounds in expectation. In particular, the initial client probabilities and server variables are not necessarily well-defined, i.e., they may have arbitrary values. Our protocol uses only $O(W + \log n)$ bits of memory where $W$ is length of node identifiers, making it very lightweight. Finally we state a lower bound on the convergence time an see that our protocol performs asymptotically optimal (up to some polylogarithmic factor). }}, author = {{Feldmann, Michael and Götte, Thorsten and Scheideler, Christian}}, booktitle = {{Proceedings of the 21st International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS)}}, pages = {{149--164}}, publisher = {{Springer, Cham}}, title = {{{A Loosely Self-stabilizing Protocol for Randomized Congestion Control with Logarithmic Memory}}}, doi = {{https://doi.org/10.1007/978-3-030-34992-9_13}}, year = {{2019}}, } @inproceedings{13652, author = {{Hinnenthal, Kristian and Scheideler, Christian and Struijs, Martijn}}, booktitle = {{33rd International Symposium on Distributed Computing (DISC 2019)}}, title = {{{Fast Distributed Algorithms for LP-Type Problems of Low Dimension}}}, doi = {{10.4230/LIPICS.DISC.2019.23}}, year = {{2019}}, } @inproceedings{3422, abstract = {{We study the consensus problem in a synchronous distributed system of n nodes under an adaptive adversary that has a slightly outdated view of the system and can block all incoming and outgoing communication of a constant fraction of the nodes in each round. Motivated by a result of Ben-Or and Bar-Joseph (1998), showing that any consensus algorithm that is resilient against a linear number of crash faults requires $\tilde \Omega(\sqrt n)$ rounds in an n-node network against an adaptive adversary, we consider a late adaptive adversary, who has full knowledge of the network state at the beginning of the previous round and unlimited computational power, but is oblivious to the current state of the nodes. Our main contributions are randomized distributed algorithms that achieve consensus with high probability among all except a small constant fraction of the nodes (i.e., "almost-everywhere'') against a late adaptive adversary who can block up to ε n$ nodes in each round, for a small constant ε >0$. Our first protocol achieves binary almost-everywhere consensus and also guarantees a decision on the majority input value, thus ensuring plurality consensus. We also present an algorithm that achieves the same time complexity for multi-value consensus. Both of our algorithms succeed in $O(log n)$ rounds with high probability, thus showing an exponential gap to the $\tilde\Omega(\sqrt n)$ lower bound of Ben-Or and Bar-Joseph for strongly adaptive crash-failure adversaries, which can be strengthened to $\Omega(n)$ when allowing the adversary to block nodes instead of permanently crashing them. Our algorithms are scalable to large systems as each node contacts only an (amortized) constant number of peers in each communication round. We show that our algorithms are optimal up to constant (resp.\ sub-logarithmic) factors by proving that every almost-everywhere consensus protocol takes $\Omega(log_d n)$ rounds in the worst case, where d is an upper bound on the number of communication requests initiated per node in each round. We complement our theoretical results with an experimental evaluation of the binary almost-everywhere consensus protocol revealing a short convergence time even against an adversary blocking a large fraction of nodes.}}, author = {{Robinson, Peter and Scheideler, Christian and Setzer, Alexander}}, booktitle = {{Proceedings of the 30th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA)}}, isbn = {{978-1-4503-5799-9/18/07}}, keywords = {{distributed consensus, randomized algorithm, adaptive adversary, complexity lower bound}}, location = {{Wien}}, title = {{{Breaking the $\tilde\Omega(\sqrt{n})$ Barrier: Fast Consensus under a Late Adversary}}}, doi = {{10.1145/3210377.3210399}}, year = {{2018}}, } @inproceedings{1163, abstract = {{In this paper we present two major results: First, we introduce the first self-stabilizing version of a supervised overlay network (as introduced in~\cite{DBLP:conf/ispan/KothapalliS05}) by presenting a self-stabilizing supervised skip ring. Secondly, we show how to use the self-stabilizing supervised skip ring to construct an efficient self-stabilizing publish-subscribe system. That is, in addition to stabilizing the overlay network, every subscriber of a topic will eventually know all of the publications that have been issued so far for that topic. The communication work needed to processes a subscribe or unsubscribe operation is just a constant in a legitimate state, and the communication work of checking whether the system is still in a legitimate state is just a constant on expectation for the supervisor as well as any process in the system. }}, author = {{Feldmann, Michael and Kolb, Christina and Scheideler, Christian and Strothmann, Thim Frederik}}, booktitle = {{Proceedings of the 32nd IEEE International Parallel & Distributed Processing Symposium (IPDPS)}}, keywords = {{Topological Self-stabilization, Supervised Overlay, Publish-Subscribe System}}, location = {{Vancouver}}, publisher = {{IEEE}}, title = {{{Self-Stabilizing Supervised Publish-Subscribe Systems}}}, doi = {{10.1109/IPDPS.2018.00114}}, year = {{2018}}, } @inproceedings{1164, abstract = {{We propose a distributed protocol for a queue, called Skueue, which spreads its data fairly onto multiple processes, avoiding bottlenecks in high throughput scenarios. Skueuecan be used in highly dynamic environments, through the addition of join and leave requests to the standard queue operations enqueue and dequeue. Furthermore Skueue satisfies sequential consistency in the asynchronous message passing model. Scalability is achieved by aggregating multiple requests to a batch, which can then be processed in a distributed fashion without hurting the queue semantics. Operations in Skueue need a logarithmic number of rounds w.h.p. until they are processed, even under a high rate of incoming requests.}}, author = {{Feldmann, Michael and Scheideler, Christian and Setzer, Alexander}}, booktitle = {{Proceedings of the 32nd IEEE International Parallel & Distributed Processing Symposium (IPDPS)}}, location = {{Vancouver}}, publisher = {{IEEE}}, title = {{{Skueue: A Scalable and Sequentially Consistent Distributed Queue}}}, doi = {{10.1109/IPDPS.2018.00113}}, year = {{2018}}, } @article{1796, author = {{J. Daymude, Joshua and Derakhshandeh, Zahra and Gmyr, Robert and Porter, Alexandra and W. Richa, Andrea and Scheideler, Christian and Strothmann, Thim Frederik}}, journal = {{Natural Computing}}, number = {{1}}, pages = {{81----96}}, title = {{{On the runtime of universal coating for programmable matter}}}, doi = {{10.1007/s11047-017-9658-6}}, year = {{2018}}, } @inproceedings{5764, author = {{Gmyr, Robert and Hinnenthal, Kristian and Kostitsyna, Irina and Kuhn, Fabian and Rudolph, Dorian and Scheideler, Christian and Strothmann, Thim Frederik}}, booktitle = {{Proceedings of the 24th International Conference on DNA Computing and Molecular Programming}}, pages = {{122--138}}, publisher = {{Springer International Publishing}}, title = {{{Forming Tile Shapes with Simple Robots}}}, doi = {{10.1007/978-3-030-00030-1_8}}, year = {{2018}}, } @techreport{5820, abstract = {{In this paper, we investigate the use of trusted execution environments (TEEs, such as Intel's SGX) for an anonymous communication infrastructure over untrusted networks. For this, we present the general idea of exploiting trusted execution environments for the purpose of anonymous communication, including a continuous-time security framework that models strong anonymity guarantees in the presence of an adversary that observes all network traffic and can adaptively corrupt a constant fraction of participating nodes. In our framework, a participating node can generate a number of unlinkable pseudonyms. Messages are sent from and to pseudonyms, allowing both senders and receivers of messages to remain anonymous. We introduce a concrete construction, which shows viability of our TEE-based approach to anonymous communication. The construction draws from techniques from cryptography and overlay networks. Our techniques are very general and can be used as a basis for future constructions with similar goals.}}, author = {{Blömer, Johannes and Bobolz, Jan and Scheideler, Christian and Setzer, Alexander}}, title = {{{Provably Anonymous Communication Based on Trusted Execution Environments}}}, year = {{2018}}, } @article{5984, author = {{Scheideler, Christian}}, journal = {{Theor. Comput. Sci.}}, pages = {{1}}, title = {{{Preface}}}, doi = {{10.1016/j.tcs.2018.11.004}}, volume = {{751}}, year = {{2018}}, } @inproceedings{5985, author = {{Scheideler, Christian}}, booktitle = {{Proceedings of the 2018 Workshop on Theory and Practice for Integrated Cloud, Fog and Edge Computing Paradigms, TOPIC@PODC 2018, Egham, United Kingdom, July 27, 2018}}, pages = {{1--2}}, title = {{{Relays: Towards a Link Layer for Robust and Secure Fog Computing}}}, doi = {{10.1145/3229774.3229781}}, year = {{2018}}, } @inproceedings{5986, author = {{Gmyr, Robert and Hinnenthal, Kristian and Kostitsyna, Irina and Kuhn, Fabian and Rudolph, Dorian and Scheideler, Christian}}, booktitle = {{43rd International Symposium on Mathematical Foundations of Computer Science, MFCS 2018, August 27-31, 2018, Liverpool, UK}}, pages = {{52:1--52:15}}, title = {{{Shape Recognition by a Finite Automaton Robot}}}, doi = {{10.4230/LIPIcs.MFCS.2018.52}}, year = {{2018}}, } @inproceedings{4411, abstract = {{While a lot of research in distributed computing has covered solutions for self-stabilizing computing and topologies, there is far less work on self-stabilization for distributed data structures. Considering crashing peers in peer-to-peer networks, it should not be taken for granted that a distributed data structure remains intact. In this work, we present a self-stabilizing protocol for a distributed data structure called the hashed Patricia Trie (Kniesburges and Scheideler WALCOM'11) that enables efficient prefix search on a set of keys. The data structure has a wide area of applications including string matching problems while offering low overhead and efficient operations when embedded on top of a distributed hash table. Especially, longest prefix matching for $x$ can be done in $\mathcal{O}(\log |x|)$ hash table read accesses. We show how to maintain the structure in a self-stabilizing way. Our protocol assures low overhead in a legal state and a total (asymptotically optimal) memory demand of $\Theta(d)$ bits, where $d$ is the number of bits needed for storing all keys.}}, author = {{Knollmann, Till and Scheideler, Christian}}, booktitle = {{Proceedings of the 20th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS)}}, editor = {{Izumi, Taisuke and Kuznetsov, Petr}}, keywords = {{Self-Stabilizing, Prefix Search, Distributed Data Structure}}, location = {{Tokyo}}, publisher = {{Springer, Cham}}, title = {{{A Self-Stabilizing Hashed Patricia Trie}}}, doi = {{10.1007/978-3-030-03232-6_1}}, volume = {{11201}}, year = {{2018}}, } @inproceedings{4563, abstract = {{Routing is a challenging problem for wireless ad hoc networks, especially when the nodes are mobile and spread so widely that in most cases multiple hops are needed to route a message from one node to another. In fact, it is known that any online routing protocol has a poor performance in the worst case, in a sense that there is a distribution of nodes resulting in bad routing paths for that protocol, even if the nodes know their geographic positions and the geographic position of the destination of a message is known. The reason for that is that radio holes in the ad hoc network may require messages to take long detours in order to get to a destination, which are hard to find in an online fashion. In this paper, we assume that the wireless ad hoc network can make limited use of long-range links provided by a global communication infrastructure like a cellular infrastructure or a satellite in order to compute an abstraction of the wireless ad hoc network that allows the messages to be sent along near-shortest paths in the ad hoc network. We present distributed algorithms that compute an abstraction of the ad hoc network in $\mathcal{O}\left(\log ^2 n\right)$ time using long-range links, which results in $c$-competitive routing paths between any two nodes of the ad hoc network for some constant $c$ if the convex hulls of the radio holes do not intersect. We also show that the storage needed for the abstraction just depends on the number and size of the radio holes in the wireless ad hoc network and is independent on the total number of nodes, and this information just has to be known to a few nodes for the routing to work. }}, author = {{Jung, Daniel and Kolb, Christina and Scheideler, Christian and Sundermeier, Jannik}}, booktitle = {{Proceedings of the 14th International Symposium on Algorithms and Experiments for Wireless Networks (ALGOSENSORS) }}, keywords = {{greedy routing, ad hoc networks, convex hulls, c-competitiveness}}, location = {{Helsinki}}, publisher = {{Springer}}, title = {{{Competitive Routing in Hybrid Communication Networks}}}, year = {{2018}}, } @inproceedings{4565, author = {{Jung, Daniel and Kolb, Christina and Scheideler, Christian and Sundermeier, Jannik}}, booktitle = {{Proceedings of the 30th on Symposium on Parallelism in Algorithms and Architectures (SPAA)}}, isbn = {{9781450357999}}, location = {{Wien}}, publisher = {{ACM Press}}, title = {{{Brief Announcement: Competitive Routing in Hybrid Communication Networks}}}, doi = {{10.1145/3210377.3210663}}, year = {{2018}}, } @inproceedings{4351, abstract = {{ We extend the concept of monotonic searchability~\cite{DBLP:conf/opodis/ScheidelerSS15}~\cite{DBLP:conf/wdag/ScheidelerSS16} for self-stabilizing systems from one to multiple dimensions. A system is self-stabilizing if it can recover to a legitimate state from any initial illegal state. These kind of systems are most often used in distributed applications. Monotonic searchability provides guarantees when searching for nodes while the recovery process is going on. More precisely, if a search request started at some node $u$ succeeds in reaching its destination $v$, then all future search requests from $u$ to $v$ succeed as well. Although there already exists a self-stabilizing protocol for a two-dimensional topology~\cite{DBLP:journals/tcs/JacobRSS12} and an universal approach for monotonic searchability~\cite{DBLP:conf/wdag/ScheidelerSS16}, it is not clear how both of these concepts fit together effectively. The latter concept even comes with some restrictive assumptions on messages, which is not the case for our protocol. We propose a simple novel protocol for a self-stabilizing two-dimensional quadtree that satisfies monotonic searchability. Our protocol can easily be extended to higher dimensions and offers routing in $\mathcal O(\log n)$ hops for any search request. }}, author = {{Feldmann, Michael and Kolb, Christina and Scheideler, Christian}}, booktitle = {{Proceedings of the 20th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS)}}, pages = {{16--31 }}, publisher = {{Springer, Cham}}, title = {{{Self-stabilizing Overlays for high-dimensional Monotonic Searchability}}}, doi = {{10.1007/978-3-030-03232-6_2}}, volume = {{11201}}, year = {{2018}}, } @inproceedings{5216, abstract = {{A fundamental problem for overlay networks is to safely exclude leaving nodes, i.e., the nodes requesting to leave the overlay network are excluded from it without affecting its connectivity. To rigorously study self-stabilizing solutions to this problem, the Finite Departure Problem (FDP) has been proposed [9]. In the FDP we are given a network of processes in an arbitrary state, and the goal is to eventually arrive at (and stay in) a state in which all leaving processes irrevocably decided to leave the system while for all weakly-connected components in the initial overlay network, all staying processes in that component will still form a weakly connected component. In the standard interconnection model, the FDP is known to be unsolvable by local control protocols, so oracles have been investigated that allow the problem to be solved [9]. To avoid the use of oracles, we introduce a new interconnection model based on relays. Despite the relay model appearing to be rather restrictive, we show that it is universal, i.e., it is possible to transform any weakly-connected topology into any other weakly-connected topology, which is important for being a useful interconnection model for overlay networks. Apart from this, our model allows processes to grant and revoke access rights, which is why we believe it to be of interest beyond the scope of this paper. We show how to implement the relay layer in a self-stabilizing way and identify properties protocols need to satisfy so that the relay layer can recover while serving protocol requests.}}, author = {{Scheideler, Christian and Setzer, Alexander}}, booktitle = {{Proceedings of the 20th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS 2018)}}, location = {{Tokyo, Japan}}, title = {{{Relays: A New Approach for the Finite Departure Problem in Overlay Networks}}}, doi = {{10.1007/978-3-030-03232-6_16}}, year = {{2018}}, } @inproceedings{5222, abstract = {{We present a self-stabilizing protocol for an overlay network that constructs the Minimum Spanning Tree (MST) for an underlay that is modeled by a weighted tree. The weight of an overlay edge between two nodes is the weighted length of their shortest path in the tree. We rigorously prove that our protocol works correctly under asynchronous and non-FIFO message delivery. Further, the protocol stabilizes after O(N^2) asynchronous rounds where N is the number of nodes in the overlay. }}, author = {{Götte, Thorsten and Scheideler, Christian and Setzer, Alexander}}, booktitle = {{Proceedings of the 20th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS 2018)}}, location = {{Tokyo, Japan}}, pages = {{50--64}}, publisher = {{Springer}}, title = {{{On Underlay-Aware Self-Stabilizing Overlay Networks}}}, volume = {{11201}}, year = {{2018}}, } @article{3872, abstract = {{This paper considers the problem of how to efficiently share a wireless medium which is subject to harsh external interference or even jamming. So far, this problem is understood only in simplistic single-hop or unit disk graph models. We in this paper initiate the study of MAC protocols for the SINR interference model (a.k.a. physical model). This paper makes two contributions. First, we introduce a new adversarial SINR model which captures a wide range of interference phenomena. Concretely, we consider a powerful, adaptive adversary which can jam nodes at arbitrary times and which is only limited by some energy budget. Our second contribution is a distributed MAC protocol called Sade which provably achieves a constant competitive throughput in this environment: we show that, with high probability, the protocol ensures that a constant fraction of the non-blocked time periods is used for successful transmissions.}}, author = {{Ogierman, Adrian and Richa, Andrea and Scheideler, Christian and Schmid, Stefan and Zhang, Jin}}, issn = {{0178-2770}}, journal = {{Distributed Computing}}, number = {{3}}, pages = {{241--254}}, publisher = {{Springer Nature}}, title = {{{Sade: competitive MAC under adversarial SINR}}}, doi = {{10.1007/s00446-017-0307-1}}, volume = {{31}}, year = {{2017}}, } @article{1812, author = {{Koutsopoulos, Andreas and Scheideler, Christian and Strothmann, Thim Frederik}}, journal = {{Inf. Comput.}}, pages = {{408----424}}, title = {{{Towards a universal approach for the finite departure problem in overlay networks}}}, doi = {{10.1016/j.ic.2016.12.006}}, year = {{2017}}, } @article{1813, author = {{P. Fekete, Sandor and W. Richa, Andrea and Römer, Kay and Scheideler, Christian}}, journal = {{SIGACT News}}, number = {{2}}, pages = {{87----94}}, title = {{{Algorithmic Foundations of Programmable Matter Dagstuhl Seminar 16271}}}, doi = {{10.1145/3106700.3106713}}, year = {{2017}}, } @article{1814, author = {{Derakhshandeh, Zahra and Gmyr, Robert and W. Richa, Andrea and Scheideler, Christian and Strothmann, Thim Frederik}}, journal = {{Theor. Comput. Sci.}}, pages = {{56----68}}, title = {{{Universal coating for programmable matter}}}, doi = {{10.1016/j.tcs.2016.02.039}}, year = {{2017}}, } @inproceedings{1815, author = {{J. Daymude, Joshua and Gmyr, Robert and W. Richa, Andrea and Scheideler, Christian and Strothmann, Thim Frederik}}, booktitle = {{Algorithms for Sensor Systems - 13th International Symposium on Algorithms and Experiments for Wireless Sensor Networks, ALGOSENSORS 2017, Vienna, Austria, September 7-8, 2017, Revised Selected Papers}}, pages = {{127----140}}, title = {{{Improved Leader Election for Self-organizing Programmable Matter}}}, doi = {{10.1007/978-3-319-72751-6_10}}, year = {{2017}}, } @inproceedings{105, abstract = {{We initiate the study of network monitoring algorithms in a class of hybrid networks in which the nodes are connected by an external network and an internal network (as a short form for externally and internally controlled network). While the external network lies outside of the control of the nodes (or in our case, the monitoring protocol running in them) and might be exposed to continuous changes, the internal network is fully under the control of the nodes. As an example, consider a group of users with mobile devices having access to the cell phone infrastructure. While the network formed by the WiFi connections of the devices is an external network (as its structure is not necessarily under the control of the monitoring protocol), the connections between the devices via the cell phone infrastructure represent an internal network (as it can be controlled by the monitoring protocol). Our goal is to continuously monitor properties of the external network with the help of the internal network. We present scalable distributed algorithms that efficiently monitor the number of edges, the average node degree, the clustering coefficient, the bipartiteness, and the weight of a minimum spanning tree. Their performance bounds demonstrate that monitoring the external network state with the help of an internal network can be done much more efficiently than just using the external network, as is usually done in the literature.}}, author = {{Gmyr, Robert and Hinnenthal, Kristian and Scheideler, Christian and Sohler, Christian}}, booktitle = {{Proceedings of the 44th International Colloquium on Automata, Languages, and Programming (ICALP)}}, pages = {{137:1----137:15}}, title = {{{Distributed Monitoring of Network Properties: The Power of Hybrid Networks}}}, doi = {{10.4230/LIPIcs.ICALP.2017.137}}, year = {{2017}}, } @inproceedings{125, abstract = {{Searching for other participants is one of the most important operations in a distributed system.We are interested in topologies in which it is possible to route a packet in a fixed number of hops until it arrives at its destination.Given a constant $d$, this paper introduces a new self-stabilizing protocol for the $q$-ary $d$-dimensional de Bruijn graph ($q = \sqrt[d]{n}$) that is able to route any search request in at most $d$ hops w.h.p., while significantly lowering the node degree compared to the clique: We require nodes to have a degree of $\mathcal O(\sqrt[d]{n})$, which is asymptotically optimal for a fixed diameter $d$.The protocol keeps the expected amount of edge redirections per node in $\mathcal O(\sqrt[d]{n})$, when the number of nodes in the system increases by factor $2^d$.The number of messages that are periodically sent out by nodes is constant.}}, author = {{Feldmann, Michael and Scheideler, Christian}}, booktitle = {{Proceedings of the 19th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS)}}, isbn = {{978-3-319-69083-4}}, pages = {{250--264 }}, publisher = {{Springer, Cham}}, title = {{{A Self-Stabilizing General De Bruijn Graph}}}, doi = {{10.1007/978-3-319-69084-1_17}}, volume = {{10616}}, year = {{2017}}, } @inproceedings{215, abstract = {{We present three robust overlay networks: First, we present a network that organizes the nodes into an expander and is resistant to even massive adversarial churn. Second, we develop a network based on the hypercube that maintains connectivity under adversarial DoS-attacks. For the DoS-attacks we use the notion of a Omega(log log n)-late adversary which only has access to topological information that is at least Omega(log log n) rounds old. Finally, we develop a network that combines both churn- and DoS-resistance. The networks gain their robustness through constant network reconfiguration, i.e., the topology of the networks changes constantly. Our reconguration algorithms are based on node sampling primitives for expanders and hypercubes that allow each node to sample a logarithmic number of nodes uniformly at random in O(log log n) communication rounds. These primitives are specific to overlay networks and their optimal runtime represents an exponential improvement over known techniques. Our results have a wide range of applications, for example in the area of scalable and robust peer-to-peer systems.}}, author = {{Drees, Maximilian and Gmyr, Robert and Scheideler, Christian}}, booktitle = {{Proceedings of the 28th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA)}}, pages = {{417----427}}, title = {{{Churn- and DoS-resistant Overlay Networks Based on Network Reconfiguration}}}, doi = {{10.1145/2935764.2935783}}, year = {{2016}}, } @article{1835, author = {{Schmid, Stefan and Avin, Chen and Scheideler, Christian and Borokhovich, Michael and Haeupler, Bernhard and Lotker, Zvi}}, journal = {{IEEE/ACM Trans. Netw.}}, number = {{3}}, pages = {{1421----1433}}, title = {{{SplayNet: Towards Locally Self-Adjusting Networks}}}, doi = {{10.1109/TNET.2015.2410313}}, year = {{2016}}, } @inproceedings{1836, author = {{Derakhshandeh, Zahra and Gmyr, Robert and Porter, Alexandra and W. Richa, Andrea and Scheideler, Christian and Strothmann, Thim Frederik}}, booktitle = {{DNA Computing and Molecular Programming - 22nd International Conference, DNA 22, Munich, Germany, September 4-8, 2016, Proceedings}}, pages = {{148----164}}, title = {{{On the Runtime of Universal Coating for Programmable Matter}}}, doi = {{10.1007/978-3-319-43994-5_10}}, volume = {{9818}}, year = {{2016}}, } @inproceedings{1837, author = {{Derakhshandeh, Zahra and Gmyr, Robert and W. Richa, Andrea and Scheideler, Christian and Strothmann, Thim Frederik}}, booktitle = {{Proceedings of the 28th ACM Symposium on Parallelism in Algorithms and Architectures, SPAA 2016, Asilomar State Beach/Pacific Grove, CA, USA, July 11-13, 2016}}, pages = {{289----299}}, publisher = {{ACM}}, title = {{{Universal Shape Formation for Programmable Matter}}}, doi = {{10.1145/2935764.2935784}}, year = {{2016}}, } @inbook{1845, author = {{W. Richa, Andrea and Scheideler, Christian}}, booktitle = {{Encyclopedia of Algorithms}}, pages = {{999----1002}}, title = {{{Jamming-Resistant MAC Protocols for Wireless Networks}}}, doi = {{10.1007/978-1-4939-2864-4_593}}, year = {{2016}}, } @inproceedings{155, abstract = {{We present a self-stabilizing algorithm for overlay networks that, for an arbitrary metric given by a distance oracle, constructs the graph representing that metric. The graph representing a metric is the unique minimal undirected graph such that for any pair of nodes the length of a shortest path between the nodes corresponds to the distance between the nodes according to the metric. The algorithm works under both an asynchronous and a synchronous daemon. In the synchronous case, the algorithm stablizes in time O(n) and it is almost silent in that after stabilization a node sends and receives a constant number of messages per round.}}, author = {{Gmyr, Robert and Lefèvre, Jonas and Scheideler, Christian}}, booktitle = {{Proceedings of the 18th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS)}}, pages = {{248----262}}, title = {{{Self-stabilizing Metric Graphs}}}, doi = {{10.1007/978-3-319-49259-9_20}}, year = {{2016}}, } @inproceedings{142, abstract = {{For overlay networks, the ability to recover from a variety of problems like membership changes or faults is a key element to preserve their functionality. In recent years, various self-stabilizing overlay networks have been proposed that have the advantage of being able to recover from any illegal state. However, the vast majority of these networks cannot give any guarantees on its functionality while the recovery process is going on. We are especially interested in searchability, i.e., the functionality that search messages for a specific identifier are answered successfully if a node with that identifier exists in the network. We investigate overlay networks that are not only self-stabilizing but that also ensure that monotonic searchability is maintained while the recovery process is going on, as long as there are no corrupted messages in the system. More precisely, once a search message from node u to another node v is successfully delivered, all future search messages from u to v succeed as well. Monotonic searchability was recently introduced in OPODIS 2015, in which the authors provide a solution for a simple line topology.We present the first universal approach to maintain monotonic searchability that is applicable to a wide range of topologies. As the base for our approach, we introduce a set of primitives for manipulating overlay networks that allows us to maintain searchability and show how existing protocols can be transformed to use theses primitives.We complement this result with a generic search protocol that together with the use of our primitives guarantees monotonic searchability.As an additional feature, searching existing nodes with the generic search protocol is as fast as searching a node with any other fixed routing protocol once the topology has stabilized.}}, author = {{Scheideler, Christian and Setzer, Alexander and Strothmann, Thim Frederik}}, booktitle = {{Proceedings of the 30th International Symposium on Distributed Computing (DISC)}}, pages = {{71----84}}, title = {{{Towards a Universal Approach for Monotonic Searchability in Self-stabilizing Overlay Networks}}}, doi = {{10.1007/978-3-662-53426-7_6}}, year = {{2016}}, } @article{284, abstract = {{In this work, we present the first scalable distributed information system, that is, a system with low storage overhead, that is provably robust against denial-of-service (DoS) attacks by a current insider. We allow a current insider to have complete knowledge about the information system and to have the power to block any ϵ-fraction of its servers by a DoS attack, where ϵ can be chosen up to a constant. The task of the system is to serve any collection of lookup requests with at most one per nonblocked server in an efficient way despite this attack. Previously, scalable solutions were only known for DoS attacks of past insiders, where a past insider only has complete knowledge about some past time point t0 of the information system. Scheideler et al. [Awerbuch and Scheideler 2007; Baumgart et al. 2009] showed that in this case, it is possible to design an information system so that any information that was inserted or last updated after t0 is safe against a DoS attack. But their constructions would not work at all for a current insider. The key idea behind our IRIS system is to make extensive use of coding. More precisely, we present two alternative distributed coding strategies with an at most logarithmic storage overhead that can handle up to a constant fraction of blocked servers.}}, author = {{Eikel, Martina and Scheideler, Christian}}, journal = {{Transactions on Parallel Computing}}, number = {{3}}, pages = {{18:1----18:33}}, publisher = {{ACM}}, title = {{{IRIS: A Robust Information System Against Insider DoS Attacks}}}, doi = {{10.1145/2809806}}, year = {{2015}}, } @inproceedings{241, abstract = {{Distributed applications are commonly based on overlay networks interconnecting their sites so that they can exchange information. For these overlay networks to preserve their functionality, they should be able to recover from various problems like membership changes or faults. Various self-stabilizing overlay networks have already been proposed in recent years, which have the advantage of being able to recover from any illegal state, but none of these networks can give any guarantees on its functionality while the recovery process is going on. We initiate research on overlay networks that are not only self-stabilizing but that also ensure that searchability is maintained while the recovery process is going on, as long as there are no corrupted messages in the system. More precisely, once a search message from node u to another node v is successfully delivered, all future search messages from u to v succeed as well. We call this property monotonic searchability. We show that in general it is impossible to provide monotonic searchability if corrupted messages are present in the system, which justifies the restriction to system states without corrupted messages. Furthermore, we provide a self-stabilizing protocol for the line for which we can also show monotonic searchability. It turns out that even for the line it is non-trivial to achieve this property. Additionally, we extend our protocol to deal with node departures in terms of the Finite Departure Problem of Foreback et. al (SSS 2014). This makes our protocol even capable of handling node dynamics.}}, author = {{Scheideler, Christian and Setzer, Alexander and Strothmann, Thim Frederik}}, booktitle = {{Proceedings of the 19th International Conference on Principles of Distributed Systems (OPODIS)}}, title = {{{Towards Establishing Monotonic Searchability in Self-Stabilizing Data Structures}}}, doi = {{10.4230/LIPIcs.OPODIS.2015.24}}, year = {{2015}}, } @inproceedings{242, abstract = {{A fundamental problem for overlay networks is to safely exclude leaving nodes, i.e., the nodes requesting to leave the overlay network are excluded from it without affecting its connectivity. There are a number of studies for safe node exclusion if the overlay is in a well-defined state, but almost no formal results are known for the case in which the overlay network is in an arbitrary initial state, i.e., when looking for a self-stabilizing solution for excluding leaving nodes. We study this problem in two variants: the Finite Departure Problem (FDP) and the Finite Sleep Problem (FSP). In the FDP the leaving nodes have to irrevocably decide when it is safe to leave the network, whereas in the FSP, this leaving decision does not have to be final: the nodes may resume computation when woken up by an incoming message. We are the first to present a self-stabilizing protocol for the FDP and the FSP that can be combined with a large class of overlay maintenance protocols so that these are then guaranteed to safely exclude leaving nodes from the system from any initial state while operating as specified for the staying nodes. In order to formally define the properties these overlay maintenance protocols have to satisfy, we identify four basic primitives for manipulating edges in an overlay network that might be of independent interest.}}, author = {{Koutsopoulos, Andreas and Scheideler, Christian and Strothmann, Thim Frederik}}, booktitle = {{Proceedings of the 17th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS)}}, pages = {{201--216}}, title = {{{Towards a Universal Approach for the Finite Departure Problem in Overlay Networks}}}, doi = {{10.1007/978-3-319-21741-3_14}}, year = {{2015}}, } @article{327, abstract = {{We consider the problem of resource discovery in distributed systems. In particular we give an algorithm, such that each node in a network discovers the address of any other node in the network. We model the knowledge of the nodes as a virtual overlay network given by a directed graph such that complete knowledge of all nodes corresponds to a complete graph in the overlay network. Although there are several solutions for resource discovery, our solution is the first that achieves worst-case optimal work for each node, i.e. the number of addresses (O(n)O(n)) or bits (O(nlog⁡n)O(nlog⁡n)) a node receives or sends coincides with the lower bound, while ensuring only a linear runtime (O(n)O(n)) on the number of rounds.}}, author = {{Kniesburges, Sebastian and Koutsopoulos, Andreas and Scheideler, Christian}}, journal = {{Theoretical Computer Science}}, pages = {{67--79}}, publisher = {{Elsevier}}, title = {{{A deterministic worst-case message complexity optimal solution for resource discovery}}}, doi = {{10.1016/j.tcs.2014.11.027}}, year = {{2015}}, } @inproceedings{1850, author = {{Derakhshandeh, Zahra and Gmyr, Robert and Strothmann, Thim Frederik and A. Bazzi, Rida and W. Richa, Andrea and Scheideler, Christian}}, booktitle = {{DNA Computing and Molecular Programming - 21st International Conference, DNA 21, Boston and Cambridge, MA, USA, August 17-21, 2015. Proceedings}}, isbn = {{978-3-319-21998-1}}, pages = {{117----132}}, title = {{{Leader Election and Shape Formation with Self-organizing Programmable Matter}}}, doi = {{10.1007/978-3-319-21999-8_8}}, volume = {{9211}}, year = {{2015}}, } @inproceedings{1851, author = {{Derakhshandeh, Zahra and Gmyr, Robert and W. Richa, Andrea and Scheideler, Christian and Strothmann, Thim Frederik}}, booktitle = {{Proceedings of the Second Annual International Conference on Nanoscale Computing and Communication, NANOCOM' 15, Boston, MA, USA, September 21-22, 2015}}, isbn = {{978-1-4503-3674-1}}, pages = {{21:1----21:2}}, publisher = {{ACM}}, title = {{{An Algorithmic Framework for Shape Formation Problems in Self-Organizing Particle Systems}}}, doi = {{10.1145/2800795.2800829}}, year = {{2015}}, } @inproceedings{1852, author = {{Derakhshandeh, Zahra and Gmyr, Robert and Strothmann, Thim Frederik and A. Bazzi, Rida and W. Richa, Andrea and Scheideler, Christian}}, booktitle = {{Proceedings of the 2015 ACM Symposium on Principles of Distributed Computing, PODC 2015, Donostia-San Sebasti{\'{a}}n, Spain, July 21 - 23, 2015}}, isbn = {{978-1-4503-3617-8}}, pages = {{67----69}}, publisher = {{ACM}}, title = {{{Brief Announcement: On the Feasibility of Leader Election and Shape Formation with Self-Organizing Programmable Matter}}}, doi = {{10.1145/2767386.2767451}}, year = {{2015}}, } @inproceedings{1853, author = {{Koutsopoulos, Andreas and Scheideler, Christian and Strothmann, Thim Frederik}}, booktitle = {{Proceedings of the 27th ACM on Symposium on Parallelism in Algorithms and Architectures, SPAA 2015, Portland, OR, USA, June 13-15, 2015}}, isbn = {{978-1-4503-3588-1}}, pages = {{77----79}}, publisher = {{ACM}}, title = {{{Brief Announcement: Towards a Universal Approach for the Finite Departure Problem in Overlay Networks}}}, doi = {{10.1145/2755573.2755614}}, year = {{2015}}, } @inproceedings{371, abstract = {{In this work we present the first distributed storage system that is provably robust against crash failures issued by an adaptive adversary, i.e., for each batch of requests the adversary can decide based on the entire system state which servers will be unavailable for that batch of requests. Despite up to \gamma n^{1/\log\log n} crashed servers, with \gamma>0 constant and n denoting the number of servers, our system can correctly process any batch of lookup and write requests (with at most a polylogarithmic number of requests issued at each non-crashed server) in at most a polylogarithmic number of communication rounds, with at most polylogarithmic time and work at each server and only a logarithmic storage overhead. Our system is based on previous work by Eikel and Scheideler (SPAA 2013), who presented IRIS, a distributed information system that is provably robust against the same kind of crash failures. However, IRIS is only able to serve lookup requests. Handling both lookup and write requests has turned out to require major changes in the design of IRIS.}}, author = {{Scheideler, Christian and Setzer, Alexander and Eikel, Martina}}, booktitle = {{Proceedings of the 18th International Conference on Principles of Distributed Systems (OPODIS)}}, pages = {{107----122}}, title = {{{RoBuSt: A Crash-Failure-Resistant Distributed Storage System}}}, doi = {{10.1007/978-3-319-14472-6_8}}, year = {{2014}}, } @article{378, abstract = {{The Chord peer-to-peer system is considered, together with CAN, Tapestry and Pastry, as one of the pioneering works on peer-to-peer distributed hash tables (DHT) that inspired a large volume of papers and projects on DHTs as well as peer-to-peer systems in general. Chord, in particular, has been studied thoroughly, and many variants of Chord have been presented that optimize various criteria. Also, several implementations of Chord are available on various platforms. Though Chord is known to be very efficient and scalable and it can handle churn quite well, no protocol is known yet that guarantees that Chord is self-stabilizing, i.e., the Chord network can be recovered from any initial state in which the network is still weakly connected. This is not too surprising since it is known that the Chord network is not locally checkable for its current topology. We present a slight extension of the Chord network, called Re-Chord (reactive Chord), that turns out to be locally checkable, and we present a self-stabilizing distributed protocol for it that can recover the Re-Chord network from any initial state, in which the n peers are weakly connected, in O(nlogn) communication rounds. We also show that our protocol allows a new peer to join or an old peer to leave an already stable Re-Chord network so that within O(logn)^2) communication rounds the Re-Chord network is stable again.}}, author = {{Kniesburges, Sebastian and Koutsopoulos, Andreas and Scheideler, Christian}}, journal = {{Theory of Computing Systems}}, number = {{3}}, pages = {{591--612}}, publisher = {{Springer}}, title = {{{Re-Chord: A Self-stabilizing Chord Overlay Network}}}, doi = {{10.1007/s00224-012-9431-2}}, year = {{2014}}, } @article{387, abstract = {{This article studies the design of medium access control (MAC) protocols for wireless networks that are provably robust against arbitrary and unpredictable disruptions (e.g., due to unintentional external interference from co-existing networks or due to jamming). We consider a wireless network consisting of a set of n honest and reliable nodes within transmission (and interference) range of each other, and we model the external disruptions with a powerful adaptive adversary. This adversary may know the protocol and its entire history and can use this knowledge to jam the wireless channel at will at any time. It is allowed to jam a (1 − )-fraction of the timesteps, for an arbitrary constant > 0 unknown to the nodes. The nodes cannot distinguish between the adversarial jamming or a collision of two or more messages that are sent at the same time. We demonstrate, for the first time, that there is a local-control MAC protocol requiring only very limited knowledge about the adversary and the network that achieves a constant (asymptotically optimal) throughput for the nonjammed time periods under any of the aforementioned adversarial strategies. The derived principles are also useful to build robust applications on top of the MAC layer, and we present an exemplary study for leader election, one of the most fundamental tasks in distributed computing.}}, author = {{Awerbuch, Baruch and Richa, Andrea W. and Scheideler, Christian and Schmid, Stefan and Zhang, Jin}}, journal = {{Transactions on Algorithms}}, number = {{4}}, publisher = {{ACM}}, title = {{{Principles of Robust Medium Access and an Application to Leader Election}}}, doi = {{10.1145/2635818}}, year = {{2014}}, }