TY - CONF
AU - Götte, Thorsten
AU - Hinnenthal, Kristian
AU - Scheideler, Christian
ID - 12944
T2 - Structural Information and Communication Complexity
TI - Faster Construction of Overlay Networks
ER -
TY - CONF
AU - Augustine, John
AU - Hinnenthal, Kristian
AU - Kuhn, Fabian
AU - Scheideler, Christian
AU - Schneider, Philipp
ID - 15627
SN - 9781611975994
T2 - Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms
TI - Shortest Paths in a Hybrid Network Model
ER -
TY - JOUR
AU - Gmyr, Robert
AU - Lefevre, Jonas
AU - Scheideler, Christian
ID - 14830
IS - 2
JF - Theory Comput. Syst.
TI - Self-Stabilizing Metric Graphs
VL - 63
ER -
TY - CONF
AU - Castenow, Jannik
AU - Kolb, Christina
AU - Scheideler, Christian
ID - 14539
T2 - Proceedings of the 26th International Colloquium on Structural Information and Communication Complexity (SIROCCO)
TI - A Bounding Box Overlay for Competitive Routing in Hybrid Communication Networks
ER -
TY - CONF
AB - We consider congestion control in peer-to-peer distributed systems.
The problem can be reduced to the following scenario: Consider a set $V$ of $n$ peers (called \emph{clients} in this paper) that want to send messages to a fixed common peer (called \emph{server} in this paper).
We assume that each client $v \in V$ sends a message with probability $p(v) \in [0,1)$ and the server has a capacity of $\sigma \in \mathbb{N}$, i.e., it can recieve at most $\sigma$ messages per round and excess messages are dropped.
The server can modify these probabilities when clients send messages.
Ideally, we wish to converge to a state with $\sum p(v) = \sigma$ and $p(v) = p(w)$ for all $v,w \in V$.
We propose a \emph{loosely} self-stabilizing protocol with a slightly relaxed legitimate state.
Our protocol lets the system converge from \emph{any} initial state to a state where $\sum p(v) \in \left[\sigma \pm \epsilon\right]$ and $|p(v)-p(w)| \in O(\frac{1}{n})$.
This property is then maintained for $\Omega(n^{\mathfrak{c}})$ rounds in expectation.
In particular, the initial client probabilities and server variables are not necessarily well-defined, i.e., they may have arbitrary values.
Our protocol uses only $O(W + \log n)$ bits of memory where $W$ is length of node identifiers, making it very lightweight.
Finally we state a lower bound on the convergence time an see that our protocol performs asymptotically optimal (up to some polylogarithmic factor).
AU - Feldmann, Michael
AU - Götte, Thorsten
AU - Scheideler, Christian
ID - 13182
T2 - Proceedings of the 21st International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS)
TI - A Loosely Self-stabilizing Protocol for Randomized Congestion Control with Logarithmic Memory
ER -
TY - CONF
AU - Hinnenthal, Kristian
AU - Scheideler, Christian
AU - Struijs, Martijn
ID - 13652
T2 - 33rd International Symposium on Distributed Computing (DISC 2019)
TI - Fast Distributed Algorithms for LP-Type Problems of Low Dimension
ER -
TY - CONF
AB - We study the consensus problem in a synchronous distributed system of n nodes under an adaptive adversary that has a slightly outdated view of the system and can block all incoming and outgoing communication of a constant fraction of the nodes in each round. Motivated by a result of Ben-Or and Bar-Joseph (1998), showing that any consensus algorithm that is resilient against a linear number of crash faults requires $\tilde \Omega(\sqrt n)$ rounds in an n-node network against an adaptive adversary, we consider a late adaptive adversary, who has full knowledge of the network state at the beginning of the previous round and unlimited computational power, but is oblivious to the current state of the nodes.
Our main contributions are randomized distributed algorithms that achieve consensus with high probability among all except a small constant fraction of the nodes (i.e., "almost-everywhere'') against a late adaptive adversary who can block up to ε n$ nodes in each round, for a small constant ε >0$. Our first protocol achieves binary almost-everywhere consensus and also guarantees a decision on the majority input value, thus ensuring plurality consensus. We also present an algorithm that achieves the same time complexity for multi-value consensus. Both of our algorithms succeed in $O(log n)$ rounds with high probability, thus showing an exponential gap to the $\tilde\Omega(\sqrt n)$ lower bound of Ben-Or and Bar-Joseph for strongly adaptive crash-failure adversaries, which can be strengthened to $\Omega(n)$ when allowing the adversary to block nodes instead of permanently crashing them. Our algorithms are scalable to large systems as each node contacts only an (amortized) constant number of peers in each communication round. We show that our algorithms are optimal up to constant (resp.\ sub-logarithmic) factors by proving that every almost-everywhere consensus protocol takes $\Omega(log_d n)$ rounds in the worst case, where d is an upper bound on the number of communication requests initiated per node in each round. We complement our theoretical results with an experimental evaluation of the binary almost-everywhere consensus protocol revealing a short convergence time even against an adversary blocking a large fraction of nodes.
AU - Robinson, Peter
AU - Scheideler, Christian
AU - Setzer, Alexander
ID - 3422
KW - distributed consensus
KW - randomized algorithm
KW - adaptive adversary
KW - complexity lower bound
SN - 978-1-4503-5799-9/18/07
T2 - Proceedings of the 30th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA)
TI - Breaking the $\tilde\Omega(\sqrt{n})$ Barrier: Fast Consensus under a Late Adversary
ER -
TY - CONF
AB - In this paper we present two major results:
First, we introduce the first self-stabilizing version of a supervised overlay network (as introduced in~\cite{DBLP:conf/ispan/KothapalliS05}) by presenting a self-stabilizing supervised skip ring.
Secondly, we show how to use the self-stabilizing supervised skip ring to construct an efficient self-stabilizing publish-subscribe system.
That is, in addition to stabilizing the overlay network, every subscriber of a topic will eventually know all of the publications that have been issued so far for that topic. The communication work needed to processes a subscribe or unsubscribe operation is just a constant in a legitimate state, and the communication work of checking whether the system is still in a legitimate state is just a constant on expectation for the supervisor as well as any process in the system.
AU - Feldmann, Michael
AU - Kolb, Christina
AU - Scheideler, Christian
AU - Strothmann, Thim Frederik
ID - 1163
KW - Topological Self-stabilization
KW - Supervised Overlay
KW - Publish-Subscribe System
T2 - Proceedings of the 32nd IEEE International Parallel & Distributed Processing Symposium (IPDPS)
TI - Self-Stabilizing Supervised Publish-Subscribe Systems
ER -
TY - CONF
AB - We propose a distributed protocol for a queue, called Skueue, which spreads its data fairly onto multiple processes, avoiding bottlenecks in high throughput scenarios.
Skueuecan be used in highly dynamic environments, through the addition of join and leave requests to the standard queue operations enqueue and dequeue.
Furthermore Skueue satisfies sequential consistency in the asynchronous message passing model.
Scalability is achieved by aggregating multiple requests to a batch, which can then be processed in a distributed fashion without hurting the queue semantics.
Operations in Skueue need a logarithmic number of rounds w.h.p. until they are processed, even under a high rate of incoming requests.
AU - Feldmann, Michael
AU - Scheideler, Christian
AU - Setzer, Alexander
ID - 1164
T2 - Proceedings of the 32nd IEEE International Parallel & Distributed Processing Symposium (IPDPS)
TI - Skueue: A Scalable and Sequentially Consistent Distributed Queue
ER -
TY - JOUR
AU - J. Daymude, Joshua
AU - Derakhshandeh, Zahra
AU - Gmyr, Robert
AU - Porter, Alexandra
AU - W. Richa, Andrea
AU - Scheideler, Christian
AU - Strothmann, Thim Frederik
ID - 1796
IS - 1
JF - Natural Computing
TI - On the runtime of universal coating for programmable matter
ER -