TY - CONF AB - We study the consensus problem in a synchronous distributed system of n nodes under an adaptive adversary that has a slightly outdated view of the system and can block all incoming and outgoing communication of a constant fraction of the nodes in each round. Motivated by a result of Ben-Or and Bar-Joseph (1998), showing that any consensus algorithm that is resilient against a linear number of crash faults requires $\tilde \Omega(\sqrt n)$ rounds in an n-node network against an adaptive adversary, we consider a late adaptive adversary, who has full knowledge of the network state at the beginning of the previous round and unlimited computational power, but is oblivious to the current state of the nodes. Our main contributions are randomized distributed algorithms that achieve consensus with high probability among all except a small constant fraction of the nodes (i.e., "almost-everywhere'') against a late adaptive adversary who can block up to ε n$ nodes in each round, for a small constant ε >0$. Our first protocol achieves binary almost-everywhere consensus and also guarantees a decision on the majority input value, thus ensuring plurality consensus. We also present an algorithm that achieves the same time complexity for multi-value consensus. Both of our algorithms succeed in $O(log n)$ rounds with high probability, thus showing an exponential gap to the $\tilde\Omega(\sqrt n)$ lower bound of Ben-Or and Bar-Joseph for strongly adaptive crash-failure adversaries, which can be strengthened to $\Omega(n)$ when allowing the adversary to block nodes instead of permanently crashing them. Our algorithms are scalable to large systems as each node contacts only an (amortized) constant number of peers in each communication round. We show that our algorithms are optimal up to constant (resp.\ sub-logarithmic) factors by proving that every almost-everywhere consensus protocol takes $\Omega(log_d n)$ rounds in the worst case, where d is an upper bound on the number of communication requests initiated per node in each round. We complement our theoretical results with an experimental evaluation of the binary almost-everywhere consensus protocol revealing a short convergence time even against an adversary blocking a large fraction of nodes. AU - Robinson, Peter AU - Scheideler, Christian AU - Setzer, Alexander ID - 3422 KW - distributed consensus KW - randomized algorithm KW - adaptive adversary KW - complexity lower bound SN - 978-1-4503-5799-9/18/07 T2 - Proceedings of the 30th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA) TI - Breaking the $\tilde\Omega(\sqrt{n})$ Barrier: Fast Consensus under a Late Adversary ER - TY - CONF AB - In this paper we present two major results: First, we introduce the first self-stabilizing version of a supervised overlay network (as introduced in~\cite{DBLP:conf/ispan/KothapalliS05}) by presenting a self-stabilizing supervised skip ring. Secondly, we show how to use the self-stabilizing supervised skip ring to construct an efficient self-stabilizing publish-subscribe system. That is, in addition to stabilizing the overlay network, every subscriber of a topic will eventually know all of the publications that have been issued so far for that topic. The communication work needed to processes a subscribe or unsubscribe operation is just a constant in a legitimate state, and the communication work of checking whether the system is still in a legitimate state is just a constant on expectation for the supervisor as well as any process in the system. AU - Feldmann, Michael AU - Kolb, Christina AU - Scheideler, Christian AU - Strothmann, Thim Frederik ID - 1163 KW - Topological Self-stabilization KW - Supervised Overlay KW - Publish-Subscribe System T2 - Proceedings of the 32nd IEEE International Parallel & Distributed Processing Symposium (IPDPS) TI - Self-Stabilizing Supervised Publish-Subscribe Systems ER - TY - CONF AB - We propose a distributed protocol for a queue, called Skueue, which spreads its data fairly onto multiple processes, avoiding bottlenecks in high throughput scenarios. Skueuecan be used in highly dynamic environments, through the addition of join and leave requests to the standard queue operations enqueue and dequeue. Furthermore Skueue satisfies sequential consistency in the asynchronous message passing model. Scalability is achieved by aggregating multiple requests to a batch, which can then be processed in a distributed fashion without hurting the queue semantics. Operations in Skueue need a logarithmic number of rounds w.h.p. until they are processed, even under a high rate of incoming requests. AU - Feldmann, Michael AU - Scheideler, Christian AU - Setzer, Alexander ID - 1164 T2 - Proceedings of the 32nd IEEE International Parallel & Distributed Processing Symposium (IPDPS) TI - Skueue: A Scalable and Sequentially Consistent Distributed Queue ER - TY - JOUR AU - J. Daymude, Joshua AU - Derakhshandeh, Zahra AU - Gmyr, Robert AU - Porter, Alexandra AU - W. Richa, Andrea AU - Scheideler, Christian AU - Strothmann, Thim Frederik ID - 1796 IS - 1 JF - Natural Computing TI - On the runtime of universal coating for programmable matter ER - TY - CONF AU - Gmyr, Robert AU - Hinnenthal, Kristian AU - Kostitsyna, Irina AU - Kuhn, Fabian AU - Rudolph, Dorian AU - Scheideler, Christian AU - Strothmann, Thim Frederik ID - 5764 T2 - Proceedings of the 24th International Conference on DNA Computing and Molecular Programming TI - Forming Tile Shapes with Simple Robots ER - TY - GEN AB - In this paper, we investigate the use of trusted execution environments (TEEs, such as Intel's SGX) for an anonymous communication infrastructure over untrusted networks. For this, we present the general idea of exploiting trusted execution environments for the purpose of anonymous communication, including a continuous-time security framework that models strong anonymity guarantees in the presence of an adversary that observes all network traffic and can adaptively corrupt a constant fraction of participating nodes. In our framework, a participating node can generate a number of unlinkable pseudonyms. Messages are sent from and to pseudonyms, allowing both senders and receivers of messages to remain anonymous. We introduce a concrete construction, which shows viability of our TEE-based approach to anonymous communication. The construction draws from techniques from cryptography and overlay networks. Our techniques are very general and can be used as a basis for future constructions with similar goals. AU - Blömer, Johannes AU - Bobolz, Jan AU - Scheideler, Christian AU - Setzer, Alexander ID - 5820 TI - Provably Anonymous Communication Based on Trusted Execution Environments ER - TY - JOUR AU - Scheideler, Christian ID - 5984 JF - Theor. Comput. Sci. TI - Preface VL - 751 ER - TY - CONF AU - Scheideler, Christian ID - 5985 T2 - Proceedings of the 2018 Workshop on Theory and Practice for Integrated Cloud, Fog and Edge Computing Paradigms, TOPIC@PODC 2018, Egham, United Kingdom, July 27, 2018 TI - Relays: Towards a Link Layer for Robust and Secure Fog Computing ER - TY - CONF AU - Gmyr, Robert AU - Hinnenthal, Kristian AU - Kostitsyna, Irina AU - Kuhn, Fabian AU - Rudolph, Dorian AU - Scheideler, Christian ID - 5986 T2 - 43rd International Symposium on Mathematical Foundations of Computer Science, MFCS 2018, August 27-31, 2018, Liverpool, UK TI - Shape Recognition by a Finite Automaton Robot ER - TY - CONF AB - While a lot of research in distributed computing has covered solutions for self-stabilizing computing and topologies, there is far less work on self-stabilization for distributed data structures. Considering crashing peers in peer-to-peer networks, it should not be taken for granted that a distributed data structure remains intact. In this work, we present a self-stabilizing protocol for a distributed data structure called the hashed Patricia Trie (Kniesburges and Scheideler WALCOM'11) that enables efficient prefix search on a set of keys. The data structure has a wide area of applications including string matching problems while offering low overhead and efficient operations when embedded on top of a distributed hash table. Especially, longest prefix matching for $x$ can be done in $\mathcal{O}(\log |x|)$ hash table read accesses. We show how to maintain the structure in a self-stabilizing way. Our protocol assures low overhead in a legal state and a total (asymptotically optimal) memory demand of $\Theta(d)$ bits, where $d$ is the number of bits needed for storing all keys. AU - Knollmann, Till AU - Scheideler, Christian ED - Izumi, Taisuke ED - Kuznetsov, Petr ID - 4411 KW - Self-Stabilizing KW - Prefix Search KW - Distributed Data Structure T2 - Proceedings of the 20th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS) TI - A Self-Stabilizing Hashed Patricia Trie VL - 11201 ER -