--- _id: '3422' abstract: - lang: eng text: "We study the consensus problem in a synchronous distributed system of n nodes under an adaptive adversary that has a slightly outdated view of the system and can block all incoming and outgoing communication of a constant fraction of the nodes in each round. Motivated by a result of Ben-Or and Bar-Joseph (1998), showing that any consensus algorithm that is resilient against a linear number of crash faults requires $\\tilde \\Omega(\\sqrt n)$ rounds in an n-node network against an adaptive adversary, we consider a late adaptive adversary, who has full knowledge of the network state at the beginning of the previous round and unlimited computational power, but is oblivious to the current state of the nodes. \r\n\r\nOur main contributions are randomized distributed algorithms that achieve consensus with high probability among all except a small constant fraction of the nodes (i.e., \"almost-everywhere'') against a late adaptive adversary who can block up to ε n$ nodes in each round, for a small constant ε >0$. Our first protocol achieves binary almost-everywhere consensus and also guarantees a decision on the majority input value, thus ensuring plurality consensus. We also present an algorithm that achieves the same time complexity for multi-value consensus. Both of our algorithms succeed in $O(log n)$ rounds with high probability, thus showing an exponential gap to the $\\tilde\\Omega(\\sqrt n)$ lower bound of Ben-Or and Bar-Joseph for strongly adaptive crash-failure adversaries, which can be strengthened to $\\Omega(n)$ when allowing the adversary to block nodes instead of permanently crashing them. Our algorithms are scalable to large systems as each node contacts only an (amortized) constant number of peers in each communication round. We show that our algorithms are optimal up to constant (resp.\\ sub-logarithmic) factors by proving that every almost-everywhere consensus protocol takes $\\Omega(log_d n)$ rounds in the worst case, where d is an upper bound on the number of communication requests initiated per node in each round. We complement our theoretical results with an experimental evaluation of the binary almost-everywhere consensus protocol revealing a short convergence time even against an adversary blocking a large fraction of nodes." author: - first_name: Peter full_name: Robinson, Peter last_name: Robinson - first_name: Christian full_name: Scheideler, Christian id: '20792' last_name: Scheideler - first_name: Alexander full_name: Setzer, Alexander id: '11108' last_name: Setzer citation: ama: 'Robinson P, Scheideler C, Setzer A. Breaking the $\tilde\Omega(\sqrt{n})$ Barrier: Fast Consensus under a Late Adversary. In: Proceedings of the 30th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA). doi:10.1145/3210377.3210399' apa: 'Robinson, P., Scheideler, C., & Setzer, A. (n.d.). Breaking the $\tilde\Omega(\sqrt{n})$ Barrier: Fast Consensus under a Late Adversary. In Proceedings of the 30th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA). Wien. https://doi.org/10.1145/3210377.3210399' bibtex: '@inproceedings{Robinson_Scheideler_Setzer, title={Breaking the $\tilde\Omega(\sqrt{n})$ Barrier: Fast Consensus under a Late Adversary}, DOI={10.1145/3210377.3210399}, booktitle={Proceedings of the 30th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA)}, author={Robinson, Peter and Scheideler, Christian and Setzer, Alexander} }' chicago: 'Robinson, Peter, Christian Scheideler, and Alexander Setzer. “Breaking the $\tilde\Omega(\sqrt{n})$ Barrier: Fast Consensus under a Late Adversary.” In Proceedings of the 30th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), n.d. https://doi.org/10.1145/3210377.3210399.' ieee: 'P. Robinson, C. Scheideler, and A. Setzer, “Breaking the $\tilde\Omega(\sqrt{n})$ Barrier: Fast Consensus under a Late Adversary,” in Proceedings of the 30th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), Wien.' mla: 'Robinson, Peter, et al. “Breaking the $\tilde\Omega(\sqrt{n})$ Barrier: Fast Consensus under a Late Adversary.” Proceedings of the 30th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), doi:10.1145/3210377.3210399.' short: 'P. Robinson, C. Scheideler, A. Setzer, in: Proceedings of the 30th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), n.d.' conference: end_date: 2018-07-18 location: Wien name: 30th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA) start_date: 2018-07-16 date_created: 2018-07-04T08:55:45Z date_updated: 2022-01-06T06:59:16Z ddc: - '040' department: - _id: '79' - _id: '34' - _id: '7' doi: 10.1145/3210377.3210399 file: - access_level: closed content_type: application/pdf creator: asetzer date_created: 2018-10-31T13:30:40Z date_updated: 2018-10-31T13:30:40Z file_id: '5215' file_name: p173-robinson.pdf file_size: 1675407 relation: main_file success: 1 file_date_updated: 2018-10-31T13:30:40Z has_accepted_license: '1' keyword: - distributed consensus - randomized algorithm - adaptive adversary - complexity lower bound language: - iso: eng project: - _id: '1' name: SFB 901 - _id: '4' name: SFB 901 - Project Area C - _id: '13' name: SFB 901 - Subproject C1 publication: Proceedings of the 30th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA) publication_identifier: isbn: - 978-1-4503-5799-9/18/07 publication_status: accepted status: public title: 'Breaking the $\tilde\Omega(\sqrt{n})$ Barrier: Fast Consensus under a Late Adversary' type: conference user_id: '11108' year: '2018' ... --- _id: '1163' abstract: - lang: eng text: "In this paper we present two major results:\r\nFirst, we introduce the first self-stabilizing version of a supervised overlay network (as introduced in~\\cite{DBLP:conf/ispan/KothapalliS05}) by presenting a self-stabilizing supervised skip ring.\r\nSecondly, we show how to use the self-stabilizing supervised skip ring to construct an efficient self-stabilizing publish-subscribe system.\r\nThat is, in addition to stabilizing the overlay network, every subscriber of a topic will eventually know all of the publications that have been issued so far for that topic. The communication work needed to processes a subscribe or unsubscribe operation is just a constant in a legitimate state, and the communication work of checking whether the system is still in a legitimate state is just a constant on expectation for the supervisor as well as any process in the system.\r\n" author: - first_name: Michael full_name: Feldmann, Michael id: '23538' last_name: Feldmann - first_name: Christina full_name: Kolb, Christina id: '43647' last_name: Kolb - first_name: Christian full_name: Scheideler, Christian id: '20792' last_name: Scheideler - first_name: Thim Frederik full_name: Strothmann, Thim Frederik id: '11319' last_name: Strothmann citation: ama: 'Feldmann M, Kolb C, Scheideler C, Strothmann TF. Self-Stabilizing Supervised Publish-Subscribe Systems. In: Proceedings of the 32nd IEEE International Parallel & Distributed Processing Symposium (IPDPS). IEEE; 2018. doi:10.1109/IPDPS.2018.00114' apa: 'Feldmann, M., Kolb, C., Scheideler, C., & Strothmann, T. F. (2018). Self-Stabilizing Supervised Publish-Subscribe Systems. In Proceedings of the 32nd IEEE International Parallel & Distributed Processing Symposium (IPDPS). Vancouver: IEEE. https://doi.org/10.1109/IPDPS.2018.00114' bibtex: '@inproceedings{Feldmann_Kolb_Scheideler_Strothmann_2018, title={Self-Stabilizing Supervised Publish-Subscribe Systems}, DOI={10.1109/IPDPS.2018.00114}, booktitle={Proceedings of the 32nd IEEE International Parallel & Distributed Processing Symposium (IPDPS)}, publisher={IEEE}, author={Feldmann, Michael and Kolb, Christina and Scheideler, Christian and Strothmann, Thim Frederik}, year={2018} }' chicago: Feldmann, Michael, Christina Kolb, Christian Scheideler, and Thim Frederik Strothmann. “Self-Stabilizing Supervised Publish-Subscribe Systems.” In Proceedings of the 32nd IEEE International Parallel & Distributed Processing Symposium (IPDPS). IEEE, 2018. https://doi.org/10.1109/IPDPS.2018.00114. ieee: M. Feldmann, C. Kolb, C. Scheideler, and T. F. Strothmann, “Self-Stabilizing Supervised Publish-Subscribe Systems,” in Proceedings of the 32nd IEEE International Parallel & Distributed Processing Symposium (IPDPS), Vancouver, 2018. mla: Feldmann, Michael, et al. “Self-Stabilizing Supervised Publish-Subscribe Systems.” Proceedings of the 32nd IEEE International Parallel & Distributed Processing Symposium (IPDPS), IEEE, 2018, doi:10.1109/IPDPS.2018.00114. short: 'M. Feldmann, C. Kolb, C. Scheideler, T.F. Strothmann, in: Proceedings of the 32nd IEEE International Parallel & Distributed Processing Symposium (IPDPS), IEEE, 2018.' conference: end_date: 2018-5-24 location: Vancouver name: 32nd IEEE International Parallel & Distributed Processing Symposium (IPDPS) start_date: 2018-5-22 date_created: 2018-02-01T13:56:01Z date_updated: 2022-01-06T06:51:05Z ddc: - '040' department: - _id: '79' - _id: '66' doi: 10.1109/IPDPS.2018.00114 external_id: arxiv: - '1710.08128' file: - access_level: closed content_type: application/pdf creator: mfeldma2 date_created: 2018-10-31T13:25:37Z date_updated: 2018-10-31T13:25:37Z file_id: '5211' file_name: 08425258.pdf file_size: 239559 relation: main_file success: 1 file_date_updated: 2018-10-31T13:25:37Z has_accepted_license: '1' keyword: - Topological Self-stabilization - Supervised Overlay - Publish-Subscribe System language: - iso: eng project: - _id: '1' name: SFB 901 - _id: '2' name: SFB 901 - Project Area A - _id: '5' name: SFB 901 - Subproject A1 publication: Proceedings of the 32nd IEEE International Parallel & Distributed Processing Symposium (IPDPS) publisher: IEEE status: public title: Self-Stabilizing Supervised Publish-Subscribe Systems type: conference user_id: '11319' year: '2018' ... --- _id: '1164' abstract: - lang: eng text: "We propose a distributed protocol for a queue, called Skueue, which spreads its data fairly onto multiple processes, avoiding bottlenecks in high throughput scenarios.\r\nSkueuecan be used in highly dynamic environments, through the addition of join and leave requests to the standard queue operations enqueue and dequeue.\r\nFurthermore Skueue satisfies sequential consistency in the asynchronous message passing model.\r\nScalability is achieved by aggregating multiple requests to a batch, which can then be processed in a distributed fashion without hurting the queue semantics.\r\nOperations in Skueue need a logarithmic number of rounds w.h.p. until they are processed, even under a high rate of incoming requests." author: - first_name: Michael full_name: Feldmann, Michael id: '23538' last_name: Feldmann - first_name: Christian full_name: Scheideler, Christian id: '20792' last_name: Scheideler - first_name: Alexander full_name: Setzer, Alexander id: '11108' last_name: Setzer citation: ama: 'Feldmann M, Scheideler C, Setzer A. Skueue: A Scalable and Sequentially Consistent Distributed Queue. In: Proceedings of the 32nd IEEE International Parallel & Distributed Processing Symposium (IPDPS). IEEE; 2018. doi:10.1109/IPDPS.2018.00113' apa: 'Feldmann, M., Scheideler, C., & Setzer, A. (2018). Skueue: A Scalable and Sequentially Consistent Distributed Queue. In Proceedings of the 32nd IEEE International Parallel & Distributed Processing Symposium (IPDPS). Vancouver: IEEE. https://doi.org/10.1109/IPDPS.2018.00113' bibtex: '@inproceedings{Feldmann_Scheideler_Setzer_2018, title={Skueue: A Scalable and Sequentially Consistent Distributed Queue}, DOI={10.1109/IPDPS.2018.00113}, booktitle={Proceedings of the 32nd IEEE International Parallel & Distributed Processing Symposium (IPDPS)}, publisher={IEEE}, author={Feldmann, Michael and Scheideler, Christian and Setzer, Alexander}, year={2018} }' chicago: 'Feldmann, Michael, Christian Scheideler, and Alexander Setzer. “Skueue: A Scalable and Sequentially Consistent Distributed Queue.” In Proceedings of the 32nd IEEE International Parallel & Distributed Processing Symposium (IPDPS). IEEE, 2018. https://doi.org/10.1109/IPDPS.2018.00113.' ieee: 'M. Feldmann, C. Scheideler, and A. Setzer, “Skueue: A Scalable and Sequentially Consistent Distributed Queue,” in Proceedings of the 32nd IEEE International Parallel & Distributed Processing Symposium (IPDPS), Vancouver, 2018.' mla: 'Feldmann, Michael, et al. “Skueue: A Scalable and Sequentially Consistent Distributed Queue.” Proceedings of the 32nd IEEE International Parallel & Distributed Processing Symposium (IPDPS), IEEE, 2018, doi:10.1109/IPDPS.2018.00113.' short: 'M. Feldmann, C. Scheideler, A. Setzer, in: Proceedings of the 32nd IEEE International Parallel & Distributed Processing Symposium (IPDPS), IEEE, 2018.' conference: end_date: 2018-5-24 location: Vancouver name: 32nd IEEE International Parallel & Distributed Processing Symposium (IPDPS) start_date: 2018-5-22 date_created: 2018-02-01T14:00:36Z date_updated: 2022-01-06T06:51:05Z ddc: - '040' department: - _id: '79' doi: 10.1109/IPDPS.2018.00113 external_id: arxiv: - '1802.07504' file: - access_level: closed content_type: application/pdf creator: mfeldma2 date_created: 2018-10-31T13:29:26Z date_updated: 2018-10-31T13:29:26Z file_id: '5212' file_name: 08425257.pdf file_size: 218420 relation: main_file success: 1 file_date_updated: 2018-10-31T13:29:26Z has_accepted_license: '1' language: - iso: eng project: - _id: '1' name: SFB 901 - _id: '2' name: SFB 901 - Project Area A - _id: '5' name: SFB 901 - Subproject A1 publication: Proceedings of the 32nd IEEE International Parallel & Distributed Processing Symposium (IPDPS) publisher: IEEE status: public title: 'Skueue: A Scalable and Sequentially Consistent Distributed Queue' type: conference user_id: '23538' year: '2018' ... --- _id: '1796' author: - first_name: Joshua full_name: J. Daymude, Joshua last_name: J. Daymude - first_name: Zahra full_name: Derakhshandeh, Zahra last_name: Derakhshandeh - first_name: Robert full_name: Gmyr, Robert last_name: Gmyr - first_name: Alexandra full_name: Porter, Alexandra last_name: Porter - first_name: Andrea full_name: W. Richa, Andrea last_name: W. Richa - first_name: Christian full_name: Scheideler, Christian id: '20792' last_name: Scheideler - first_name: Thim Frederik full_name: Strothmann, Thim Frederik id: '11319' last_name: Strothmann citation: ama: J. Daymude J, Derakhshandeh Z, Gmyr R, et al. On the runtime of universal coating for programmable matter. Natural Computing. 2018;(1):81--96. doi:10.1007/s11047-017-9658-6 apa: J. Daymude, J., Derakhshandeh, Z., Gmyr, R., Porter, A., W. Richa, A., Scheideler, C., & Strothmann, T. F. (2018). On the runtime of universal coating for programmable matter. Natural Computing, (1), 81--96. https://doi.org/10.1007/s11047-017-9658-6 bibtex: '@article{J. Daymude_Derakhshandeh_Gmyr_Porter_W. Richa_Scheideler_Strothmann_2018, title={On the runtime of universal coating for programmable matter}, DOI={10.1007/s11047-017-9658-6}, number={1}, journal={Natural Computing}, author={J. Daymude, Joshua and Derakhshandeh, Zahra and Gmyr, Robert and Porter, Alexandra and W. Richa, Andrea and Scheideler, Christian and Strothmann, Thim Frederik}, year={2018}, pages={81--96} }' chicago: 'J. Daymude, Joshua, Zahra Derakhshandeh, Robert Gmyr, Alexandra Porter, Andrea W. Richa, Christian Scheideler, and Thim Frederik Strothmann. “On the Runtime of Universal Coating for Programmable Matter.” Natural Computing, no. 1 (2018): 81--96. https://doi.org/10.1007/s11047-017-9658-6.' ieee: J. J. Daymude et al., “On the runtime of universal coating for programmable matter,” Natural Computing, no. 1, pp. 81--96, 2018. mla: J. Daymude, Joshua, et al. “On the Runtime of Universal Coating for Programmable Matter.” Natural Computing, no. 1, 2018, pp. 81--96, doi:10.1007/s11047-017-9658-6. short: J. J. Daymude, Z. Derakhshandeh, R. Gmyr, A. Porter, A. W. Richa, C. Scheideler, T.F. Strothmann, Natural Computing (2018) 81--96. date_created: 2018-03-27T06:23:58Z date_updated: 2022-01-06T06:53:24Z department: - _id: '79' - _id: '66' doi: 10.1007/s11047-017-9658-6 issue: '1' language: - iso: eng page: 81--96 publication: Natural Computing status: public title: On the runtime of universal coating for programmable matter type: journal_article user_id: '11319' year: '2018' ... --- _id: '5764' author: - first_name: Robert full_name: Gmyr, Robert last_name: Gmyr - first_name: Kristian full_name: Hinnenthal, Kristian id: '32229' last_name: Hinnenthal - first_name: Irina full_name: Kostitsyna, Irina last_name: Kostitsyna - first_name: Fabian full_name: Kuhn, Fabian last_name: Kuhn - first_name: Dorian full_name: Rudolph, Dorian last_name: Rudolph - first_name: Christian full_name: Scheideler, Christian id: '20792' last_name: Scheideler - first_name: Thim Frederik full_name: Strothmann, Thim Frederik id: '11319' last_name: Strothmann citation: ama: 'Gmyr R, Hinnenthal K, Kostitsyna I, et al. Forming Tile Shapes with Simple Robots. In: Proceedings of the 24th International Conference on DNA Computing and Molecular Programming. Springer International Publishing; 2018:122-138. doi:10.1007/978-3-030-00030-1_8' apa: Gmyr, R., Hinnenthal, K., Kostitsyna, I., Kuhn, F., Rudolph, D., Scheideler, C., & Strothmann, T. F. (2018). Forming Tile Shapes with Simple Robots. In Proceedings of the 24th International Conference on DNA Computing and Molecular Programming (pp. 122–138). Springer International Publishing. https://doi.org/10.1007/978-3-030-00030-1_8 bibtex: '@inproceedings{Gmyr_Hinnenthal_Kostitsyna_Kuhn_Rudolph_Scheideler_Strothmann_2018, title={Forming Tile Shapes with Simple Robots}, DOI={10.1007/978-3-030-00030-1_8}, booktitle={Proceedings of the 24th International Conference on DNA Computing and Molecular Programming}, publisher={Springer International Publishing}, author={Gmyr, Robert and Hinnenthal, Kristian and Kostitsyna, Irina and Kuhn, Fabian and Rudolph, Dorian and Scheideler, Christian and Strothmann, Thim Frederik}, year={2018}, pages={122–138} }' chicago: Gmyr, Robert, Kristian Hinnenthal, Irina Kostitsyna, Fabian Kuhn, Dorian Rudolph, Christian Scheideler, and Thim Frederik Strothmann. “Forming Tile Shapes with Simple Robots.” In Proceedings of the 24th International Conference on DNA Computing and Molecular Programming, 122–38. Springer International Publishing, 2018. https://doi.org/10.1007/978-3-030-00030-1_8. ieee: R. Gmyr et al., “Forming Tile Shapes with Simple Robots,” in Proceedings of the 24th International Conference on DNA Computing and Molecular Programming, 2018, pp. 122–138. mla: Gmyr, Robert, et al. “Forming Tile Shapes with Simple Robots.” Proceedings of the 24th International Conference on DNA Computing and Molecular Programming, Springer International Publishing, 2018, pp. 122–38, doi:10.1007/978-3-030-00030-1_8. short: 'R. Gmyr, K. Hinnenthal, I. Kostitsyna, F. Kuhn, D. Rudolph, C. Scheideler, T.F. Strothmann, in: Proceedings of the 24th International Conference on DNA Computing and Molecular Programming, Springer International Publishing, 2018, pp. 122–138.' date_created: 2018-11-19T15:35:45Z date_updated: 2022-01-06T07:02:38Z department: - _id: '79' - _id: '66' doi: 10.1007/978-3-030-00030-1_8 language: - iso: eng page: 122-138 publication: Proceedings of the 24th International Conference on DNA Computing and Molecular Programming publication_status: published publisher: Springer International Publishing status: public title: Forming Tile Shapes with Simple Robots type: conference user_id: '11319' year: '2018' ... --- _id: '5820' abstract: - lang: eng text: "In this paper, we investigate the use of trusted execution environments (TEEs, such as Intel's SGX) for an anonymous communication infrastructure over untrusted networks.\r\nFor this, we present the general idea of exploiting trusted execution environments for the purpose of anonymous communication, including a continuous-time security framework that models strong anonymity guarantees in the presence of an adversary that observes all network traffic and can adaptively corrupt a constant fraction of participating nodes.\r\nIn our framework, a participating node can generate a number of unlinkable pseudonyms. Messages are sent from and to pseudonyms, allowing both senders and receivers of messages to remain anonymous. We introduce a concrete construction, which shows viability of our TEE-based approach to anonymous communication. The construction draws from techniques from cryptography and overlay networks. \r\nOur techniques are very general and can be used as a basis for future constructions with similar goals." author: - first_name: Johannes full_name: Blömer, Johannes id: '23' last_name: Blömer - first_name: Jan full_name: Bobolz, Jan id: '27207' last_name: Bobolz - first_name: Christian full_name: Scheideler, Christian id: '20792' last_name: Scheideler - first_name: Alexander full_name: Setzer, Alexander id: '11108' last_name: Setzer citation: ama: Blömer J, Bobolz J, Scheideler C, Setzer A. Provably Anonymous Communication Based on Trusted Execution Environments. apa: Blömer, J., Bobolz, J., Scheideler, C., & Setzer, A. (n.d.). Provably Anonymous Communication Based on Trusted Execution Environments. bibtex: '@book{Blömer_Bobolz_Scheideler_Setzer, title={Provably Anonymous Communication Based on Trusted Execution Environments}, author={Blömer, Johannes and Bobolz, Jan and Scheideler, Christian and Setzer, Alexander} }' chicago: Blömer, Johannes, Jan Bobolz, Christian Scheideler, and Alexander Setzer. Provably Anonymous Communication Based on Trusted Execution Environments, n.d. ieee: J. Blömer, J. Bobolz, C. Scheideler, and A. Setzer, Provably Anonymous Communication Based on Trusted Execution Environments. . mla: Blömer, Johannes, et al. Provably Anonymous Communication Based on Trusted Execution Environments. short: J. Blömer, J. Bobolz, C. Scheideler, A. Setzer, Provably Anonymous Communication Based on Trusted Execution Environments, n.d. date_created: 2018-11-25T08:08:40Z date_updated: 2022-01-06T07:02:43Z ddc: - '000' department: - _id: '7' - _id: '64' - _id: '79' file: - access_level: closed content_type: application/pdf creator: jbobolz date_created: 2018-12-31T09:55:30Z date_updated: 2018-12-31T09:55:30Z file_id: '6435' file_name: draft-2018.pdf file_size: 470968 relation: main_file success: 1 file_date_updated: 2018-12-31T09:55:30Z has_accepted_license: '1' language: - iso: eng project: - _id: '1' name: SFB 901 - _id: '4' name: SFB 901 - Project Area C - _id: '13' name: SFB 901 - Subproject C1 publication_status: draft status: public title: Provably Anonymous Communication Based on Trusted Execution Environments type: working_paper user_id: '27207' year: '2018' ... --- _id: '5984' alternative_title: - Special Issue of SIROCCO 2015 author: - first_name: Christian full_name: Scheideler, Christian id: '20792' last_name: Scheideler citation: ama: Scheideler C. Preface. Theor Comput Sci. 2018;751:1. doi:10.1016/j.tcs.2018.11.004 apa: Scheideler, C. (2018). Preface. Theor. Comput. Sci., 751, 1. https://doi.org/10.1016/j.tcs.2018.11.004 bibtex: '@article{Scheideler_2018, title={Preface}, volume={751}, DOI={10.1016/j.tcs.2018.11.004}, journal={Theor. Comput. Sci.}, author={Scheideler, Christian}, year={2018}, pages={1} }' chicago: 'Scheideler, Christian. “Preface.” Theor. Comput. Sci. 751 (2018): 1. https://doi.org/10.1016/j.tcs.2018.11.004.' ieee: C. Scheideler, “Preface,” Theor. Comput. Sci., vol. 751, p. 1, 2018. mla: Scheideler, Christian. “Preface.” Theor. Comput. Sci., vol. 751, 2018, p. 1, doi:10.1016/j.tcs.2018.11.004. short: C. Scheideler, Theor. Comput. Sci. 751 (2018) 1. date_created: 2018-11-30T08:08:23Z date_updated: 2022-01-06T07:02:49Z ddc: - '040' department: - _id: '79' doi: 10.1016/j.tcs.2018.11.004 file: - access_level: closed content_type: application/pdf creator: florida date_created: 2019-01-11T10:20:16Z date_updated: 2019-01-11T10:20:16Z file_id: '6620' file_name: Preface.pdf file_size: 112676 relation: main_file success: 1 file_date_updated: 2019-01-11T10:20:16Z has_accepted_license: '1' intvolume: ' 751' language: - iso: eng page: '1' project: - _id: '1' name: SFB 901 - _id: '2' name: SFB 901 - Project Area A - _id: '5' name: SFB 901 - Subproject A1 publication: Theor. Comput. Sci. status: public title: Preface type: journal_article user_id: '15504' volume: 751 year: '2018' ... --- _id: '5985' author: - first_name: Christian full_name: Scheideler, Christian id: '20792' last_name: Scheideler citation: ama: 'Scheideler C. Relays: Towards a Link Layer for Robust and Secure Fog Computing. In: Proceedings of the 2018 Workshop on Theory and Practice for Integrated Cloud, Fog and Edge Computing Paradigms, TOPIC@PODC 2018, Egham, United Kingdom, July 27, 2018. ; 2018:1-2. doi:10.1145/3229774.3229781' apa: 'Scheideler, C. (2018). Relays: Towards a Link Layer for Robust and Secure Fog Computing. In Proceedings of the 2018 Workshop on Theory and Practice for Integrated Cloud, Fog and Edge Computing Paradigms, TOPIC@PODC 2018, Egham, United Kingdom, July 27, 2018 (pp. 1–2). https://doi.org/10.1145/3229774.3229781' bibtex: '@inproceedings{Scheideler_2018, title={Relays: Towards a Link Layer for Robust and Secure Fog Computing}, DOI={10.1145/3229774.3229781}, booktitle={Proceedings of the 2018 Workshop on Theory and Practice for Integrated Cloud, Fog and Edge Computing Paradigms, TOPIC@PODC 2018, Egham, United Kingdom, July 27, 2018}, author={Scheideler, Christian}, year={2018}, pages={1–2} }' chicago: 'Scheideler, Christian. “Relays: Towards a Link Layer for Robust and Secure Fog Computing.” In Proceedings of the 2018 Workshop on Theory and Practice for Integrated Cloud, Fog and Edge Computing Paradigms, TOPIC@PODC 2018, Egham, United Kingdom, July 27, 2018, 1–2, 2018. https://doi.org/10.1145/3229774.3229781.' ieee: 'C. Scheideler, “Relays: Towards a Link Layer for Robust and Secure Fog Computing,” in Proceedings of the 2018 Workshop on Theory and Practice for Integrated Cloud, Fog and Edge Computing Paradigms, TOPIC@PODC 2018, Egham, United Kingdom, July 27, 2018, 2018, pp. 1–2.' mla: 'Scheideler, Christian. “Relays: Towards a Link Layer for Robust and Secure Fog Computing.” Proceedings of the 2018 Workshop on Theory and Practice for Integrated Cloud, Fog and Edge Computing Paradigms, TOPIC@PODC 2018, Egham, United Kingdom, July 27, 2018, 2018, pp. 1–2, doi:10.1145/3229774.3229781.' short: 'C. Scheideler, in: Proceedings of the 2018 Workshop on Theory and Practice for Integrated Cloud, Fog and Edge Computing Paradigms, TOPIC@PODC 2018, Egham, United Kingdom, July 27, 2018, 2018, pp. 1–2.' date_created: 2018-11-30T08:11:27Z date_updated: 2022-01-06T07:02:49Z ddc: - '004' department: - _id: '79' doi: 10.1145/3229774.3229781 file: - access_level: closed content_type: application/pdf creator: ups date_created: 2018-12-12T15:12:02Z date_updated: 2018-12-12T15:12:02Z file_id: '6194' file_name: p1-scheideler.pdf file_size: 1420210 relation: main_file file_date_updated: 2018-12-12T15:12:02Z has_accepted_license: '1' language: - iso: eng page: 1-2 project: - _id: '1' name: SFB 901 - _id: '4' name: SFB 901 - Project Area C - _id: '13' name: SFB 901 - Subproject C1 publication: Proceedings of the 2018 Workshop on Theory and Practice for Integrated Cloud, Fog and Edge Computing Paradigms, TOPIC@PODC 2018, Egham, United Kingdom, July 27, 2018 status: public title: 'Relays: Towards a Link Layer for Robust and Secure Fog Computing' type: conference user_id: '477' year: '2018' ... --- _id: '5986' author: - first_name: Robert full_name: Gmyr, Robert last_name: Gmyr - first_name: Kristian full_name: Hinnenthal, Kristian id: '32229' last_name: Hinnenthal - first_name: Irina full_name: Kostitsyna, Irina last_name: Kostitsyna - first_name: Fabian full_name: Kuhn, Fabian last_name: Kuhn - first_name: Dorian full_name: Rudolph, Dorian last_name: Rudolph - first_name: Christian full_name: Scheideler, Christian id: '20792' last_name: Scheideler citation: ama: 'Gmyr R, Hinnenthal K, Kostitsyna I, Kuhn F, Rudolph D, Scheideler C. Shape Recognition by a Finite Automaton Robot. In: 43rd International Symposium on Mathematical Foundations of Computer Science, MFCS 2018, August 27-31, 2018, Liverpool, UK. ; 2018:52:1-52:15. doi:10.4230/LIPIcs.MFCS.2018.52' apa: Gmyr, R., Hinnenthal, K., Kostitsyna, I., Kuhn, F., Rudolph, D., & Scheideler, C. (2018). Shape Recognition by a Finite Automaton Robot. In 43rd International Symposium on Mathematical Foundations of Computer Science, MFCS 2018, August 27-31, 2018, Liverpool, UK (pp. 52:1-52:15). https://doi.org/10.4230/LIPIcs.MFCS.2018.52 bibtex: '@inproceedings{Gmyr_Hinnenthal_Kostitsyna_Kuhn_Rudolph_Scheideler_2018, title={Shape Recognition by a Finite Automaton Robot}, DOI={10.4230/LIPIcs.MFCS.2018.52}, booktitle={43rd International Symposium on Mathematical Foundations of Computer Science, MFCS 2018, August 27-31, 2018, Liverpool, UK}, author={Gmyr, Robert and Hinnenthal, Kristian and Kostitsyna, Irina and Kuhn, Fabian and Rudolph, Dorian and Scheideler, Christian}, year={2018}, pages={52:1-52:15} }' chicago: Gmyr, Robert, Kristian Hinnenthal, Irina Kostitsyna, Fabian Kuhn, Dorian Rudolph, and Christian Scheideler. “Shape Recognition by a Finite Automaton Robot.” In 43rd International Symposium on Mathematical Foundations of Computer Science, MFCS 2018, August 27-31, 2018, Liverpool, UK, 52:1-52:15, 2018. https://doi.org/10.4230/LIPIcs.MFCS.2018.52. ieee: R. Gmyr, K. Hinnenthal, I. Kostitsyna, F. Kuhn, D. Rudolph, and C. Scheideler, “Shape Recognition by a Finite Automaton Robot,” in 43rd International Symposium on Mathematical Foundations of Computer Science, MFCS 2018, August 27-31, 2018, Liverpool, UK, 2018, pp. 52:1-52:15. mla: Gmyr, Robert, et al. “Shape Recognition by a Finite Automaton Robot.” 43rd International Symposium on Mathematical Foundations of Computer Science, MFCS 2018, August 27-31, 2018, Liverpool, UK, 2018, pp. 52:1-52:15, doi:10.4230/LIPIcs.MFCS.2018.52. short: 'R. Gmyr, K. Hinnenthal, I. Kostitsyna, F. Kuhn, D. Rudolph, C. Scheideler, in: 43rd International Symposium on Mathematical Foundations of Computer Science, MFCS 2018, August 27-31, 2018, Liverpool, UK, 2018, pp. 52:1-52:15.' date_created: 2018-11-30T08:13:58Z date_updated: 2022-01-06T07:02:49Z department: - _id: '79' doi: 10.4230/LIPIcs.MFCS.2018.52 language: - iso: eng page: 52:1-52:15 publication: 43rd International Symposium on Mathematical Foundations of Computer Science, MFCS 2018, August 27-31, 2018, Liverpool, UK status: public title: Shape Recognition by a Finite Automaton Robot type: conference user_id: '15504' year: '2018' ... --- _id: '4411' abstract: - lang: eng text: "While a lot of research in distributed computing has covered solutions for self-stabilizing computing and topologies, there is far less work on self-stabilization for distributed data structures.\r\nConsidering crashing peers in peer-to-peer networks, it should not be taken for granted that a distributed data structure remains intact.\r\nIn this work, we present a self-stabilizing protocol for a distributed data structure called the hashed Patricia Trie (Kniesburges and Scheideler WALCOM'11) that enables efficient prefix search on a set of keys.\r\nThe data structure has a wide area of applications including string matching problems while offering low overhead and efficient operations when embedded on top of a distributed hash table.\r\nEspecially, longest prefix matching for $x$ can be done in $\\mathcal{O}(\\log |x|)$ hash table read accesses.\r\nWe show how to maintain the structure in a self-stabilizing way.\r\nOur protocol assures low overhead in a legal state and a total (asymptotically optimal) memory demand of $\\Theta(d)$ bits, where $d$ is the number of bits needed for storing all keys." author: - first_name: Till full_name: Knollmann, Till id: '39241' last_name: Knollmann orcid: 0000-0003-2014-4696 - first_name: Christian full_name: Scheideler, Christian id: '20792' last_name: Scheideler citation: ama: 'Knollmann T, Scheideler C. A Self-Stabilizing Hashed Patricia Trie. In: Izumi T, Kuznetsov P, eds. Proceedings of the 20th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS). Vol 11201. Lecture Notes of Computer Science. Springer, Cham; 2018. doi:10.1007/978-3-030-03232-6_1' apa: 'Knollmann, T., & Scheideler, C. (2018). A Self-Stabilizing Hashed Patricia Trie. In T. Izumi & P. Kuznetsov (Eds.), Proceedings of the 20th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS) (Vol. 11201). Tokyo: Springer, Cham. https://doi.org/10.1007/978-3-030-03232-6_1' bibtex: '@inproceedings{Knollmann_Scheideler_2018, series={Lecture Notes of Computer Science}, title={A Self-Stabilizing Hashed Patricia Trie}, volume={11201}, DOI={10.1007/978-3-030-03232-6_1}, booktitle={Proceedings of the 20th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS)}, publisher={Springer, Cham}, author={Knollmann, Till and Scheideler, Christian}, editor={Izumi, Taisuke and Kuznetsov, PetrEditors}, year={2018}, collection={Lecture Notes of Computer Science} }' chicago: Knollmann, Till, and Christian Scheideler. “A Self-Stabilizing Hashed Patricia Trie.” In Proceedings of the 20th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS), edited by Taisuke Izumi and Petr Kuznetsov, Vol. 11201. Lecture Notes of Computer Science. Springer, Cham, 2018. https://doi.org/10.1007/978-3-030-03232-6_1. ieee: T. Knollmann and C. Scheideler, “A Self-Stabilizing Hashed Patricia Trie,” in Proceedings of the 20th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS), Tokyo, 2018, vol. 11201. mla: Knollmann, Till, and Christian Scheideler. “A Self-Stabilizing Hashed Patricia Trie.” Proceedings of the 20th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS), edited by Taisuke Izumi and Petr Kuznetsov, vol. 11201, Springer, Cham, 2018, doi:10.1007/978-3-030-03232-6_1. short: 'T. Knollmann, C. Scheideler, in: T. Izumi, P. Kuznetsov (Eds.), Proceedings of the 20th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS), Springer, Cham, 2018.' conference: end_date: 2018-11-07 location: Tokyo name: 20th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS) start_date: 2018-11-04 date_created: 2018-09-17T13:12:18Z date_updated: 2022-01-06T07:01:02Z ddc: - '000' department: - _id: '63' - _id: '79' doi: 10.1007/978-3-030-03232-6_1 editor: - first_name: Taisuke full_name: Izumi, Taisuke last_name: Izumi - first_name: Petr full_name: Kuznetsov, Petr last_name: Kuznetsov external_id: arxiv: - '1809.04923' file: - access_level: closed content_type: application/pdf creator: ups date_created: 2018-11-02T14:38:37Z date_updated: 2018-11-02T14:38:37Z file_id: '5277' file_name: ASelf-stabilizingHashedPatrici.pdf file_size: 500005 relation: main_file success: 1 file_date_updated: 2018-11-02T14:38:37Z has_accepted_license: '1' intvolume: ' 11201' keyword: - Self-Stabilizing - Prefix Search - Distributed Data Structure language: - iso: eng project: - _id: '1' name: SFB 901 - _id: '2' name: SFB 901 - Project Area A - _id: '5' name: SFB 901 - Subproject A1 publication: Proceedings of the 20th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS) publisher: Springer, Cham series_title: Lecture Notes of Computer Science status: public title: A Self-Stabilizing Hashed Patricia Trie type: conference user_id: '39241' volume: 11201 year: '2018' ... --- _id: '4563' abstract: - lang: eng text: "Routing is a challenging problem for wireless ad hoc networks, especially when the nodes are mobile and spread so widely that in most cases multiple hops are needed to route a message from one node to another. In fact, it is known that any online routing protocol has a poor performance in the worst case, in a sense that there is a distribution of nodes resulting in bad routing paths for that protocol, even if the nodes know their geographic positions and the geographic position of the destination of a message is known. The reason for that is that radio holes in the ad hoc network may require messages to take long detours in order to get to a destination, which are hard to find in an online fashion.\r\n\r\nIn this paper, we assume that the wireless ad hoc network can make limited use of long-range links provided by a global communication infrastructure like a cellular infrastructure or a satellite in order to compute an abstraction of the wireless ad hoc network that allows the messages to be sent along near-shortest paths in the ad hoc network. We present distributed algorithms that compute an abstraction of the ad hoc network in $\\mathcal{O}\\left(\\log ^2 n\\right)$ time using long-range links, which results in $c$-competitive routing paths between any two nodes of the ad hoc network for some constant $c$ if the convex hulls of the radio holes do not intersect. We also show that the storage needed for the abstraction just depends on the number and size of the radio holes in the wireless ad hoc network and is independent on the total number of nodes, and this information just has to be known to a few nodes for the routing to work.\r\n" author: - first_name: Daniel full_name: Jung, Daniel id: '37827' last_name: Jung - first_name: Christina full_name: Kolb, Christina id: '43647' last_name: Kolb - first_name: Christian full_name: Scheideler, Christian id: '20792' last_name: Scheideler - first_name: Jannik full_name: Sundermeier, Jannik id: '38705' last_name: Sundermeier citation: ama: 'Jung D, Kolb C, Scheideler C, Sundermeier J. Competitive Routing in Hybrid Communication Networks. In: Proceedings of the 14th International Symposium on Algorithms and Experiments for Wireless Networks (ALGOSENSORS) . Springer; 2018.' apa: 'Jung, D., Kolb, C., Scheideler, C., & Sundermeier, J. (2018). Competitive Routing in Hybrid Communication Networks. In Proceedings of the 14th International Symposium on Algorithms and Experiments for Wireless Networks (ALGOSENSORS) . Helsinki: Springer.' bibtex: '@inproceedings{Jung_Kolb_Scheideler_Sundermeier_2018, title={Competitive Routing in Hybrid Communication Networks}, booktitle={Proceedings of the 14th International Symposium on Algorithms and Experiments for Wireless Networks (ALGOSENSORS) }, publisher={Springer}, author={Jung, Daniel and Kolb, Christina and Scheideler, Christian and Sundermeier, Jannik}, year={2018} }' chicago: Jung, Daniel, Christina Kolb, Christian Scheideler, and Jannik Sundermeier. “Competitive Routing in Hybrid Communication Networks.” In Proceedings of the 14th International Symposium on Algorithms and Experiments for Wireless Networks (ALGOSENSORS) . Springer, 2018. ieee: D. Jung, C. Kolb, C. Scheideler, and J. Sundermeier, “Competitive Routing in Hybrid Communication Networks,” in Proceedings of the 14th International Symposium on Algorithms and Experiments for Wireless Networks (ALGOSENSORS) , Helsinki, 2018. mla: Jung, Daniel, et al. “Competitive Routing in Hybrid Communication Networks.” Proceedings of the 14th International Symposium on Algorithms and Experiments for Wireless Networks (ALGOSENSORS) , Springer, 2018. short: 'D. Jung, C. Kolb, C. Scheideler, J. Sundermeier, in: Proceedings of the 14th International Symposium on Algorithms and Experiments for Wireless Networks (ALGOSENSORS) , Springer, 2018.' conference: end_date: 2018-08-24 location: Helsinki name: '14th International Symposium on Algorithms and Experiments for Wireless Networks (ALGOSENSORS) ' start_date: 2018-08-23 date_created: 2018-10-02T07:06:05Z date_updated: 2022-01-06T07:01:11Z ddc: - '000' department: - _id: '63' - _id: '79' file: - access_level: closed content_type: application/pdf creator: ups date_created: 2019-01-11T10:32:38Z date_updated: 2019-01-11T10:32:38Z file_id: '6621' file_name: 23hybrid.pdf file_size: 349034 relation: main_file success: 1 file_date_updated: 2019-01-11T10:32:38Z has_accepted_license: '1' keyword: - greedy routing - ad hoc networks - convex hulls - c-competitiveness language: - iso: eng project: - _id: '1' name: SFB 901 - _id: '2' name: SFB 901 - Project Area A - _id: '5' name: SFB 901 - Subproject A1 publication: 'Proceedings of the 14th International Symposium on Algorithms and Experiments for Wireless Networks (ALGOSENSORS) ' publisher: Springer status: public title: Competitive Routing in Hybrid Communication Networks type: conference user_id: '38705' year: '2018' ... --- _id: '4565' author: - first_name: Daniel full_name: Jung, Daniel id: '37827' last_name: Jung - first_name: Christina full_name: Kolb, Christina id: '43647' last_name: Kolb - first_name: Christian full_name: Scheideler, Christian id: '20792' last_name: Scheideler - first_name: Jannik full_name: Sundermeier, Jannik id: '38705' last_name: Sundermeier citation: ama: 'Jung D, Kolb C, Scheideler C, Sundermeier J. Brief Announcement: Competitive Routing in Hybrid Communication Networks. In: Proceedings of the 30th on Symposium on Parallelism in Algorithms and Architectures (SPAA). ACM Press; 2018. doi:10.1145/3210377.3210663' apa: 'Jung, D., Kolb, C., Scheideler, C., & Sundermeier, J. (2018). Brief Announcement: Competitive Routing in Hybrid Communication Networks. In Proceedings of the 30th on Symposium on Parallelism in Algorithms and Architectures (SPAA). Wien: ACM Press. https://doi.org/10.1145/3210377.3210663' bibtex: '@inproceedings{Jung_Kolb_Scheideler_Sundermeier_2018, title={Brief Announcement: Competitive Routing in Hybrid Communication Networks}, DOI={10.1145/3210377.3210663}, booktitle={Proceedings of the 30th on Symposium on Parallelism in Algorithms and Architectures (SPAA)}, publisher={ACM Press}, author={Jung, Daniel and Kolb, Christina and Scheideler, Christian and Sundermeier, Jannik}, year={2018} }' chicago: 'Jung, Daniel, Christina Kolb, Christian Scheideler, and Jannik Sundermeier. “Brief Announcement: Competitive Routing in Hybrid Communication Networks.” In Proceedings of the 30th on Symposium on Parallelism in Algorithms and Architectures (SPAA). ACM Press, 2018. https://doi.org/10.1145/3210377.3210663.' ieee: 'D. Jung, C. Kolb, C. Scheideler, and J. Sundermeier, “Brief Announcement: Competitive Routing in Hybrid Communication Networks,” in Proceedings of the 30th on Symposium on Parallelism in Algorithms and Architectures (SPAA), Wien, 2018.' mla: 'Jung, Daniel, et al. “Brief Announcement: Competitive Routing in Hybrid Communication Networks.” Proceedings of the 30th on Symposium on Parallelism in Algorithms and Architectures (SPAA), ACM Press, 2018, doi:10.1145/3210377.3210663.' short: 'D. Jung, C. Kolb, C. Scheideler, J. Sundermeier, in: Proceedings of the 30th on Symposium on Parallelism in Algorithms and Architectures (SPAA), ACM Press, 2018.' conference: end_date: 2018-07-18 location: Wien name: SPAA'18 start_date: 2018-07-17 date_created: 2018-10-02T07:34:47Z date_updated: 2022-01-06T07:01:12Z ddc: - '000' department: - _id: '63' - _id: '79' doi: 10.1145/3210377.3210663 file: - access_level: closed content_type: application/pdf creator: ups date_created: 2018-11-02T13:48:10Z date_updated: 2018-11-02T13:48:10Z file_id: '5254' file_name: p231-jung-1.pdf file_size: 1025077 relation: main_file success: 1 file_date_updated: 2018-11-02T13:48:10Z has_accepted_license: '1' language: - iso: eng project: - _id: '1' name: SFB 901 - _id: '2' name: SFB 901 - Project Area A - _id: '5' name: SFB 901 - Subproject A1 publication: Proceedings of the 30th on Symposium on Parallelism in Algorithms and Architectures (SPAA) publication_identifier: isbn: - '9781450357999' publication_status: published publisher: ACM Press status: public title: 'Brief Announcement: Competitive Routing in Hybrid Communication Networks' type: conference user_id: '38705' year: '2018' ... --- _id: '4351' abstract: - lang: eng text: "\tWe extend the concept of monotonic searchability~\\cite{DBLP:conf/opodis/ScheidelerSS15}~\\cite{DBLP:conf/wdag/ScheidelerSS16} for self-stabilizing systems from one to multiple dimensions.\r\n\tA system is self-stabilizing if it can recover to a legitimate state from any initial illegal state.\r\n\tThese kind of systems are most often used in distributed applications.\r\n\tMonotonic searchability provides guarantees when searching for nodes while the recovery process is going on.\r\n\tMore precisely, if a search request started at some node $u$ succeeds in reaching its destination $v$, then all future search requests from $u$ to $v$ succeed as well.\r\n\tAlthough there already exists a self-stabilizing protocol for a two-dimensional topology~\\cite{DBLP:journals/tcs/JacobRSS12} and an universal approach for monotonic searchability~\\cite{DBLP:conf/wdag/ScheidelerSS16}, it is not clear how both of these concepts fit together effectively.\r\n\tThe latter concept even comes with some restrictive assumptions on messages, which is not the case for our protocol.\r\n\tWe propose a simple novel protocol for a self-stabilizing two-dimensional quadtree that satisfies monotonic searchability.\r\n\tOur protocol can easily be extended to higher dimensions and offers routing in $\\mathcal O(\\log n)$ hops for any search request.\r\n" author: - first_name: Michael full_name: Feldmann, Michael id: '23538' last_name: Feldmann - first_name: Christina full_name: Kolb, Christina id: '43647' last_name: Kolb - first_name: Christian full_name: Scheideler, Christian id: '20792' last_name: Scheideler citation: ama: 'Feldmann M, Kolb C, Scheideler C. Self-stabilizing Overlays for high-dimensional Monotonic Searchability. In: Proceedings of the 20th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS). Vol 11201. Lecture Notes in Computer Science. Springer, Cham; 2018:16-31. doi:10.1007/978-3-030-03232-6_2' apa: Feldmann, M., Kolb, C., & Scheideler, C. (2018). Self-stabilizing Overlays for high-dimensional Monotonic Searchability. In Proceedings of the 20th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS) (Vol. 11201, pp. 16–31). Springer, Cham. https://doi.org/10.1007/978-3-030-03232-6_2 bibtex: '@inproceedings{Feldmann_Kolb_Scheideler_2018, series={Lecture Notes in Computer Science}, title={Self-stabilizing Overlays for high-dimensional Monotonic Searchability}, volume={11201}, DOI={10.1007/978-3-030-03232-6_2}, booktitle={Proceedings of the 20th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS)}, publisher={Springer, Cham}, author={Feldmann, Michael and Kolb, Christina and Scheideler, Christian}, year={2018}, pages={16–31}, collection={Lecture Notes in Computer Science} }' chicago: Feldmann, Michael, Christina Kolb, and Christian Scheideler. “Self-Stabilizing Overlays for High-Dimensional Monotonic Searchability.” In Proceedings of the 20th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS), 11201:16–31. Lecture Notes in Computer Science. Springer, Cham, 2018. https://doi.org/10.1007/978-3-030-03232-6_2. ieee: M. Feldmann, C. Kolb, and C. Scheideler, “Self-stabilizing Overlays for high-dimensional Monotonic Searchability,” in Proceedings of the 20th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS), 2018, vol. 11201, pp. 16–31. mla: Feldmann, Michael, et al. “Self-Stabilizing Overlays for High-Dimensional Monotonic Searchability.” Proceedings of the 20th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS), vol. 11201, Springer, Cham, 2018, pp. 16–31, doi:10.1007/978-3-030-03232-6_2. short: 'M. Feldmann, C. Kolb, C. Scheideler, in: Proceedings of the 20th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS), Springer, Cham, 2018, pp. 16–31.' date_created: 2018-09-04T14:15:39Z date_updated: 2022-01-06T07:00:58Z ddc: - '040' department: - _id: '79' doi: 10.1007/978-3-030-03232-6_2 external_id: arxiv: - '1808.10300' file: - access_level: closed content_type: application/pdf creator: mfeldma2 date_created: 2018-10-31T13:24:17Z date_updated: 2018-10-31T13:24:17Z file_id: '5210' file_name: Feldmann2018_Chapter_Self-stabilizingOverlaysForHig.pdf file_size: 329823 relation: main_file success: 1 file_date_updated: 2018-10-31T13:24:17Z has_accepted_license: '1' intvolume: ' 11201' language: - iso: eng page: '16-31 ' project: - _id: '1' name: SFB 901 - _id: '2' name: SFB 901 - Project Area A - _id: '5' name: SFB 901 - Subproject A1 publication: Proceedings of the 20th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS) publication_identifier: unknown: - 978-3-030-03231-9 publisher: Springer, Cham series_title: Lecture Notes in Computer Science status: public title: Self-stabilizing Overlays for high-dimensional Monotonic Searchability type: conference user_id: '23538' volume: 11201 year: '2018' ... --- _id: '5216' abstract: - lang: eng text: A fundamental problem for overlay networks is to safely exclude leaving nodes, i.e., the nodes requesting to leave the overlay network are excluded from it without affecting its connectivity. To rigorously study self-stabilizing solutions to this problem, the Finite Departure Problem (FDP) has been proposed [9]. In the FDP we are given a network of processes in an arbitrary state, and the goal is to eventually arrive at (and stay in) a state in which all leaving processes irrevocably decided to leave the system while for all weakly-connected components in the initial overlay network, all staying processes in that component will still form a weakly connected component. In the standard interconnection model, the FDP is known to be unsolvable by local control protocols, so oracles have been investigated that allow the problem to be solved [9]. To avoid the use of oracles, we introduce a new interconnection model based on relays. Despite the relay model appearing to be rather restrictive, we show that it is universal, i.e., it is possible to transform any weakly-connected topology into any other weakly-connected topology, which is important for being a useful interconnection model for overlay networks. Apart from this, our model allows processes to grant and revoke access rights, which is why we believe it to be of interest beyond the scope of this paper. We show how to implement the relay layer in a self-stabilizing way and identify properties protocols need to satisfy so that the relay layer can recover while serving protocol requests. author: - first_name: Christian full_name: Scheideler, Christian id: '20792' last_name: Scheideler - first_name: Alexander full_name: Setzer, Alexander id: '11108' last_name: Setzer citation: ama: 'Scheideler C, Setzer A. Relays: A New Approach for the Finite Departure Problem in Overlay Networks. In: Proceedings of the 20th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS 2018). ; 2018. doi:10.1007/978-3-030-03232-6_16' apa: 'Scheideler, C., & Setzer, A. (2018). Relays: A New Approach for the Finite Departure Problem in Overlay Networks. In Proceedings of the 20th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS 2018). Tokyo, Japan. https://doi.org/10.1007/978-3-030-03232-6_16' bibtex: '@inproceedings{Scheideler_Setzer_2018, title={Relays: A New Approach for the Finite Departure Problem in Overlay Networks}, DOI={10.1007/978-3-030-03232-6_16}, booktitle={Proceedings of the 20th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS 2018)}, author={Scheideler, Christian and Setzer, Alexander}, year={2018} }' chicago: 'Scheideler, Christian, and Alexander Setzer. “Relays: A New Approach for the Finite Departure Problem in Overlay Networks.” In Proceedings of the 20th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS 2018), 2018. https://doi.org/10.1007/978-3-030-03232-6_16.' ieee: 'C. Scheideler and A. Setzer, “Relays: A New Approach for the Finite Departure Problem in Overlay Networks,” in Proceedings of the 20th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS 2018), Tokyo, Japan, 2018.' mla: 'Scheideler, Christian, and Alexander Setzer. “Relays: A New Approach for the Finite Departure Problem in Overlay Networks.” Proceedings of the 20th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS 2018), 2018, doi:10.1007/978-3-030-03232-6_16.' short: 'C. Scheideler, A. Setzer, in: Proceedings of the 20th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS 2018), 2018.' conference: location: Tokyo, Japan name: 20th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS 2018) date_created: 2018-10-31T13:33:05Z date_updated: 2022-01-06T07:01:47Z ddc: - '040' department: - _id: '79' doi: 10.1007/978-3-030-03232-6_16 file: - access_level: closed content_type: application/pdf creator: asetzer date_created: 2018-10-31T15:51:45Z date_updated: 2018-10-31T16:09:48Z file_id: '5223' file_name: Scheideler-Setzer2018_Chapter_RelaysANewApproachForTheFinite.pdf file_size: 369818 relation: main_file file_date_updated: 2018-10-31T16:09:48Z has_accepted_license: '1' language: - iso: eng project: - _id: '1' name: SFB 901 - _id: '4' name: SFB 901 - Project Area C - _id: '13' name: SFB 901 - Subproject C1 publication: Proceedings of the 20th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS 2018) publication_status: published status: public title: 'Relays: A New Approach for the Finite Departure Problem in Overlay Networks' type: conference user_id: '11108' year: '2018' ... --- _id: '5222' abstract: - lang: eng text: 'We present a self-stabilizing protocol for an overlay network that constructs the Minimum Spanning Tree (MST) for an underlay that is modeled by a weighted tree. The weight of an overlay edge between two nodes is the weighted length of their shortest path in the tree. We rigorously prove that our protocol works correctly under asynchronous and non-FIFO message delivery. Further, the protocol stabilizes after O(N^2) asynchronous rounds where N is the number of nodes in the overlay. ' author: - first_name: Thorsten full_name: Götte, Thorsten id: '34727' last_name: Götte - first_name: Christian full_name: Scheideler, Christian id: '20792' last_name: Scheideler - first_name: Alexander full_name: Setzer, Alexander id: '11108' last_name: Setzer citation: ama: 'Götte T, Scheideler C, Setzer A. On Underlay-Aware Self-Stabilizing Overlay Networks. In: Proceedings of the 20th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS 2018). Vol 11201. Lecture Notes in Computer Science. Springer; 2018:50-64.' apa: 'Götte, T., Scheideler, C., & Setzer, A. (2018). On Underlay-Aware Self-Stabilizing Overlay Networks. In Proceedings of the 20th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS 2018) (Vol. 11201, pp. 50–64). Tokyo, Japan: Springer.' bibtex: '@inproceedings{Götte_Scheideler_Setzer_2018, series={Lecture Notes in Computer Science}, title={On Underlay-Aware Self-Stabilizing Overlay Networks}, volume={11201}, booktitle={Proceedings of the 20th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS 2018)}, publisher={Springer}, author={Götte, Thorsten and Scheideler, Christian and Setzer, Alexander}, year={2018}, pages={50–64}, collection={Lecture Notes in Computer Science} }' chicago: Götte, Thorsten, Christian Scheideler, and Alexander Setzer. “On Underlay-Aware Self-Stabilizing Overlay Networks.” In Proceedings of the 20th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS 2018), 11201:50–64. Lecture Notes in Computer Science. Springer, 2018. ieee: T. Götte, C. Scheideler, and A. Setzer, “On Underlay-Aware Self-Stabilizing Overlay Networks,” in Proceedings of the 20th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS 2018), Tokyo, Japan, 2018, vol. 11201, pp. 50–64. mla: Götte, Thorsten, et al. “On Underlay-Aware Self-Stabilizing Overlay Networks.” Proceedings of the 20th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS 2018), vol. 11201, Springer, 2018, pp. 50–64. short: 'T. Götte, C. Scheideler, A. Setzer, in: Proceedings of the 20th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS 2018), Springer, 2018, pp. 50–64.' conference: location: Tokyo, Japan name: ' 20th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS 2018)' date_created: 2018-10-31T15:44:30Z date_updated: 2022-01-06T07:01:47Z ddc: - '040' department: - _id: '79' file: - access_level: closed content_type: application/pdf creator: thgoette date_created: 2018-10-31T15:59:26Z date_updated: 2018-10-31T15:59:26Z file_id: '5224' file_name: sss18_camera.pdf file_size: 367812 relation: main_file success: 1 file_date_updated: 2018-10-31T15:59:26Z has_accepted_license: '1' intvolume: ' 11201' language: - iso: eng page: 50-64 project: - _id: '1' name: SFB 901 - _id: '2' name: SFB 901 - Project Area A - _id: '5' name: SFB 901 - Subproject A1 publication: Proceedings of the 20th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS 2018) publisher: Springer series_title: Lecture Notes in Computer Science status: public title: On Underlay-Aware Self-Stabilizing Overlay Networks type: conference user_id: '477' volume: 11201 year: '2018' ... --- _id: '3872' abstract: - lang: eng text: 'This paper considers the problem of how to efficiently share a wireless medium which is subject to harsh external interference or even jamming. So far, this problem is understood only in simplistic single-hop or unit disk graph models. We in this paper initiate the study of MAC protocols for the SINR interference model (a.k.a. physical model). This paper makes two contributions. First, we introduce a new adversarial SINR model which captures a wide range of interference phenomena. Concretely, we consider a powerful, adaptive adversary which can jam nodes at arbitrary times and which is only limited by some energy budget. Our second contribution is a distributed MAC protocol called Sade which provably achieves a constant competitive throughput in this environment: we show that, with high probability, the protocol ensures that a constant fraction of the non-blocked time periods is used for successful transmissions.' author: - first_name: Adrian full_name: Ogierman, Adrian last_name: Ogierman - first_name: Andrea full_name: Richa, Andrea last_name: Richa - first_name: Christian full_name: Scheideler, Christian id: '20792' last_name: Scheideler - first_name: Stefan full_name: Schmid, Stefan last_name: Schmid - first_name: Jin full_name: Zhang, Jin last_name: Zhang citation: ama: 'Ogierman A, Richa A, Scheideler C, Schmid S, Zhang J. Sade: competitive MAC under adversarial SINR. Distributed Computing. 2017;31(3):241-254. doi:10.1007/s00446-017-0307-1' apa: 'Ogierman, A., Richa, A., Scheideler, C., Schmid, S., & Zhang, J. (2017). Sade: competitive MAC under adversarial SINR. Distributed Computing, 31(3), 241–254. https://doi.org/10.1007/s00446-017-0307-1' bibtex: '@article{Ogierman_Richa_Scheideler_Schmid_Zhang_2017, title={Sade: competitive MAC under adversarial SINR}, volume={31}, DOI={10.1007/s00446-017-0307-1}, number={3}, journal={Distributed Computing}, publisher={Springer Nature}, author={Ogierman, Adrian and Richa, Andrea and Scheideler, Christian and Schmid, Stefan and Zhang, Jin}, year={2017}, pages={241–254} }' chicago: 'Ogierman, Adrian, Andrea Richa, Christian Scheideler, Stefan Schmid, and Jin Zhang. “Sade: Competitive MAC under Adversarial SINR.” Distributed Computing 31, no. 3 (2017): 241–54. https://doi.org/10.1007/s00446-017-0307-1.' ieee: 'A. Ogierman, A. Richa, C. Scheideler, S. Schmid, and J. Zhang, “Sade: competitive MAC under adversarial SINR,” Distributed Computing, vol. 31, no. 3, pp. 241–254, 2017.' mla: 'Ogierman, Adrian, et al. “Sade: Competitive MAC under Adversarial SINR.” Distributed Computing, vol. 31, no. 3, Springer Nature, 2017, pp. 241–54, doi:10.1007/s00446-017-0307-1.' short: A. Ogierman, A. Richa, C. Scheideler, S. Schmid, J. Zhang, Distributed Computing 31 (2017) 241–254. date_created: 2018-08-10T07:05:12Z date_updated: 2022-01-06T06:59:47Z department: - _id: '79' doi: 10.1007/s00446-017-0307-1 intvolume: ' 31' issue: '3' page: 241-254 publication: Distributed Computing publication_identifier: issn: - 0178-2770 - 1432-0452 publication_status: published publisher: Springer Nature status: public title: 'Sade: competitive MAC under adversarial SINR' type: journal_article user_id: '15504' volume: 31 year: '2017' ... --- _id: '1812' author: - first_name: Andreas full_name: Koutsopoulos, Andreas last_name: Koutsopoulos - first_name: Christian full_name: Scheideler, Christian id: '20792' last_name: Scheideler - first_name: Thim Frederik full_name: Strothmann, Thim Frederik id: '11319' last_name: Strothmann citation: ama: Koutsopoulos A, Scheideler C, Strothmann TF. Towards a universal approach for the finite departure problem in overlay networks. Inf Comput. 2017:408--424. doi:10.1016/j.ic.2016.12.006 apa: Koutsopoulos, A., Scheideler, C., & Strothmann, T. F. (2017). Towards a universal approach for the finite departure problem in overlay networks. Inf. Comput., 408--424. https://doi.org/10.1016/j.ic.2016.12.006 bibtex: '@article{Koutsopoulos_Scheideler_Strothmann_2017, title={Towards a universal approach for the finite departure problem in overlay networks}, DOI={10.1016/j.ic.2016.12.006}, journal={Inf. Comput.}, author={Koutsopoulos, Andreas and Scheideler, Christian and Strothmann, Thim Frederik}, year={2017}, pages={408--424} }' chicago: Koutsopoulos, Andreas, Christian Scheideler, and Thim Frederik Strothmann. “Towards a Universal Approach for the Finite Departure Problem in Overlay Networks.” Inf. Comput., 2017, 408--424. https://doi.org/10.1016/j.ic.2016.12.006. ieee: A. Koutsopoulos, C. Scheideler, and T. F. Strothmann, “Towards a universal approach for the finite departure problem in overlay networks,” Inf. Comput., pp. 408--424, 2017. mla: Koutsopoulos, Andreas, et al. “Towards a Universal Approach for the Finite Departure Problem in Overlay Networks.” Inf. Comput., 2017, pp. 408--424, doi:10.1016/j.ic.2016.12.006. short: A. Koutsopoulos, C. Scheideler, T.F. Strothmann, Inf. Comput. (2017) 408--424. date_created: 2018-03-27T11:23:36Z date_updated: 2022-01-06T06:53:26Z department: - _id: '79' doi: 10.1016/j.ic.2016.12.006 language: - iso: eng page: 408--424 publication: Inf. Comput. status: public title: Towards a universal approach for the finite departure problem in overlay networks type: journal_article user_id: '15504' year: '2017' ... --- _id: '1813' author: - first_name: Sandor full_name: P. Fekete, Sandor last_name: P. Fekete - first_name: Andrea full_name: W. Richa, Andrea last_name: W. Richa - first_name: Kay full_name: Römer, Kay last_name: Römer - first_name: Christian full_name: Scheideler, Christian id: '20792' last_name: Scheideler citation: ama: P. Fekete S, W. Richa A, Römer K, Scheideler C. Algorithmic Foundations of Programmable Matter Dagstuhl Seminar 16271. SIGACT News. 2017;(2):87--94. doi:10.1145/3106700.3106713 apa: P. Fekete, S., W. Richa, A., Römer, K., & Scheideler, C. (2017). Algorithmic Foundations of Programmable Matter Dagstuhl Seminar 16271. SIGACT News, (2), 87--94. https://doi.org/10.1145/3106700.3106713 bibtex: '@article{P. Fekete_W. Richa_Römer_Scheideler_2017, title={Algorithmic Foundations of Programmable Matter Dagstuhl Seminar 16271}, DOI={10.1145/3106700.3106713}, number={2}, journal={SIGACT News}, author={P. Fekete, Sandor and W. Richa, Andrea and Römer, Kay and Scheideler, Christian}, year={2017}, pages={87--94} }' chicago: 'P. Fekete, Sandor, Andrea W. Richa, Kay Römer, and Christian Scheideler. “Algorithmic Foundations of Programmable Matter Dagstuhl Seminar 16271.” SIGACT News, no. 2 (2017): 87--94. https://doi.org/10.1145/3106700.3106713.' ieee: S. P. Fekete, A. W. Richa, K. Römer, and C. Scheideler, “Algorithmic Foundations of Programmable Matter Dagstuhl Seminar 16271,” SIGACT News, no. 2, pp. 87--94, 2017. mla: P. Fekete, Sandor, et al. “Algorithmic Foundations of Programmable Matter Dagstuhl Seminar 16271.” SIGACT News, no. 2, 2017, pp. 87--94, doi:10.1145/3106700.3106713. short: S. P. Fekete, A. W. Richa, K. Römer, C. Scheideler, SIGACT News (2017) 87--94. date_created: 2018-03-27T11:24:15Z date_updated: 2022-01-06T06:53:26Z department: - _id: '79' doi: 10.1145/3106700.3106713 issue: '2' page: 87--94 publication: SIGACT News status: public title: Algorithmic Foundations of Programmable Matter Dagstuhl Seminar 16271 type: journal_article user_id: '15504' year: '2017' ... --- _id: '1814' author: - first_name: Zahra full_name: Derakhshandeh, Zahra last_name: Derakhshandeh - first_name: Robert full_name: Gmyr, Robert last_name: Gmyr - first_name: Andrea full_name: W. Richa, Andrea last_name: W. Richa - first_name: Christian full_name: Scheideler, Christian id: '20792' last_name: Scheideler - first_name: Thim Frederik full_name: Strothmann, Thim Frederik id: '11319' last_name: Strothmann citation: ama: Derakhshandeh Z, Gmyr R, W. Richa A, Scheideler C, Strothmann TF. Universal coating for programmable matter. Theor Comput Sci. 2017:56--68. doi:10.1016/j.tcs.2016.02.039 apa: Derakhshandeh, Z., Gmyr, R., W. Richa, A., Scheideler, C., & Strothmann, T. F. (2017). Universal coating for programmable matter. Theor. Comput. Sci., 56--68. https://doi.org/10.1016/j.tcs.2016.02.039 bibtex: '@article{Derakhshandeh_Gmyr_W. Richa_Scheideler_Strothmann_2017, title={Universal coating for programmable matter}, DOI={10.1016/j.tcs.2016.02.039}, journal={Theor. Comput. Sci.}, author={Derakhshandeh, Zahra and Gmyr, Robert and W. Richa, Andrea and Scheideler, Christian and Strothmann, Thim Frederik}, year={2017}, pages={56--68} }' chicago: Derakhshandeh, Zahra, Robert Gmyr, Andrea W. Richa, Christian Scheideler, and Thim Frederik Strothmann. “Universal Coating for Programmable Matter.” Theor. Comput. Sci., 2017, 56--68. https://doi.org/10.1016/j.tcs.2016.02.039. ieee: Z. Derakhshandeh, R. Gmyr, A. W. Richa, C. Scheideler, and T. F. Strothmann, “Universal coating for programmable matter,” Theor. Comput. Sci., pp. 56--68, 2017. mla: Derakhshandeh, Zahra, et al. “Universal Coating for Programmable Matter.” Theor. Comput. Sci., 2017, pp. 56--68, doi:10.1016/j.tcs.2016.02.039. short: Z. Derakhshandeh, R. Gmyr, A. W. Richa, C. Scheideler, T.F. Strothmann, Theor. Comput. Sci. (2017) 56--68. date_created: 2018-03-27T11:24:57Z date_updated: 2022-01-06T06:53:26Z department: - _id: '79' doi: 10.1016/j.tcs.2016.02.039 language: - iso: eng page: 56--68 publication: Theor. Comput. Sci. status: public title: Universal coating for programmable matter type: journal_article user_id: '15504' year: '2017' ... --- _id: '1815' author: - first_name: Joshua full_name: J. Daymude, Joshua last_name: J. Daymude - first_name: Robert full_name: Gmyr, Robert last_name: Gmyr - first_name: Andrea full_name: W. Richa, Andrea last_name: W. Richa - first_name: Christian full_name: Scheideler, Christian id: '20792' last_name: Scheideler - first_name: Thim Frederik full_name: Strothmann, Thim Frederik id: '11319' last_name: Strothmann citation: ama: 'J. Daymude J, Gmyr R, W. Richa A, Scheideler C, Strothmann TF. Improved Leader Election for Self-organizing Programmable Matter. In: Algorithms for Sensor Systems - 13th International Symposium on Algorithms and Experiments for Wireless Sensor Networks, ALGOSENSORS 2017, Vienna, Austria, September 7-8, 2017, Revised Selected Papers. ; 2017:127--140. doi:10.1007/978-3-319-72751-6_10' apa: J. Daymude, J., Gmyr, R., W. Richa, A., Scheideler, C., & Strothmann, T. F. (2017). Improved Leader Election for Self-organizing Programmable Matter. In Algorithms for Sensor Systems - 13th International Symposium on Algorithms and Experiments for Wireless Sensor Networks, ALGOSENSORS 2017, Vienna, Austria, September 7-8, 2017, Revised Selected Papers (pp. 127--140). https://doi.org/10.1007/978-3-319-72751-6_10 bibtex: '@inproceedings{J. Daymude_Gmyr_W. Richa_Scheideler_Strothmann_2017, title={Improved Leader Election for Self-organizing Programmable Matter}, DOI={10.1007/978-3-319-72751-6_10}, booktitle={Algorithms for Sensor Systems - 13th International Symposium on Algorithms and Experiments for Wireless Sensor Networks, ALGOSENSORS 2017, Vienna, Austria, September 7-8, 2017, Revised Selected Papers}, author={J. Daymude, Joshua and Gmyr, Robert and W. Richa, Andrea and Scheideler, Christian and Strothmann, Thim Frederik}, year={2017}, pages={127--140} }' chicago: J. Daymude, Joshua, Robert Gmyr, Andrea W. Richa, Christian Scheideler, and Thim Frederik Strothmann. “Improved Leader Election for Self-Organizing Programmable Matter.” In Algorithms for Sensor Systems - 13th International Symposium on Algorithms and Experiments for Wireless Sensor Networks, ALGOSENSORS 2017, Vienna, Austria, September 7-8, 2017, Revised Selected Papers, 127--140, 2017. https://doi.org/10.1007/978-3-319-72751-6_10. ieee: J. J. Daymude, R. Gmyr, A. W. Richa, C. Scheideler, and T. F. Strothmann, “Improved Leader Election for Self-organizing Programmable Matter,” in Algorithms for Sensor Systems - 13th International Symposium on Algorithms and Experiments for Wireless Sensor Networks, ALGOSENSORS 2017, Vienna, Austria, September 7-8, 2017, Revised Selected Papers, 2017, pp. 127--140. mla: J. Daymude, Joshua, et al. “Improved Leader Election for Self-Organizing Programmable Matter.” Algorithms for Sensor Systems - 13th International Symposium on Algorithms and Experiments for Wireless Sensor Networks, ALGOSENSORS 2017, Vienna, Austria, September 7-8, 2017, Revised Selected Papers, 2017, pp. 127--140, doi:10.1007/978-3-319-72751-6_10. short: 'J. J. Daymude, R. Gmyr, A. W. Richa, C. Scheideler, T.F. Strothmann, in: Algorithms for Sensor Systems - 13th International Symposium on Algorithms and Experiments for Wireless Sensor Networks, ALGOSENSORS 2017, Vienna, Austria, September 7-8, 2017, Revised Selected Papers, 2017, pp. 127--140.' date_created: 2018-03-27T11:25:58Z date_updated: 2022-01-06T06:53:26Z department: - _id: '79' doi: 10.1007/978-3-319-72751-6_10 language: - iso: eng page: 127--140 publication: Algorithms for Sensor Systems - 13th International Symposium on Algorithms and Experiments for Wireless Sensor Networks, ALGOSENSORS 2017, Vienna, Austria, September 7-8, 2017, Revised Selected Papers status: public title: Improved Leader Election for Self-organizing Programmable Matter type: conference user_id: '15504' year: '2017' ... --- _id: '105' abstract: - lang: eng text: We initiate the study of network monitoring algorithms in a class of hybrid networks in which the nodes are connected by an external network and an internal network (as a short form for externally and internally controlled network). While the external network lies outside of the control of the nodes (or in our case, the monitoring protocol running in them) and might be exposed to continuous changes, the internal network is fully under the control of the nodes. As an example, consider a group of users with mobile devices having access to the cell phone infrastructure. While the network formed by the WiFi connections of the devices is an external network (as its structure is not necessarily under the control of the monitoring protocol), the connections between the devices via the cell phone infrastructure represent an internal network (as it can be controlled by the monitoring protocol). Our goal is to continuously monitor properties of the external network with the help of the internal network. We present scalable distributed algorithms that efficiently monitor the number of edges, the average node degree, the clustering coefficient, the bipartiteness, and the weight of a minimum spanning tree. Their performance bounds demonstrate that monitoring the external network state with the help of an internal network can be done much more efficiently than just using the external network, as is usually done in the literature. author: - first_name: Robert full_name: Gmyr, Robert last_name: Gmyr - first_name: Kristian full_name: Hinnenthal, Kristian id: '32229' last_name: Hinnenthal - first_name: Christian full_name: Scheideler, Christian id: '20792' last_name: Scheideler - first_name: Christian full_name: Sohler, Christian last_name: Sohler citation: ama: 'Gmyr R, Hinnenthal K, Scheideler C, Sohler C. Distributed Monitoring of Network Properties: The Power of Hybrid Networks. In: Proceedings of the 44th International Colloquium on Automata, Languages, and Programming (ICALP). Leibniz International Proceedings in Informatics (LIPIcs). ; 2017:137:1--137:15. doi:10.4230/LIPIcs.ICALP.2017.137' apa: 'Gmyr, R., Hinnenthal, K., Scheideler, C., & Sohler, C. (2017). Distributed Monitoring of Network Properties: The Power of Hybrid Networks. In Proceedings of the 44th International Colloquium on Automata, Languages, and Programming (ICALP) (pp. 137:1--137:15). https://doi.org/10.4230/LIPIcs.ICALP.2017.137' bibtex: '@inproceedings{Gmyr_Hinnenthal_Scheideler_Sohler_2017, series={Leibniz International Proceedings in Informatics (LIPIcs)}, title={Distributed Monitoring of Network Properties: The Power of Hybrid Networks}, DOI={10.4230/LIPIcs.ICALP.2017.137}, booktitle={Proceedings of the 44th International Colloquium on Automata, Languages, and Programming (ICALP)}, author={Gmyr, Robert and Hinnenthal, Kristian and Scheideler, Christian and Sohler, Christian}, year={2017}, pages={137:1--137:15}, collection={Leibniz International Proceedings in Informatics (LIPIcs)} }' chicago: 'Gmyr, Robert, Kristian Hinnenthal, Christian Scheideler, and Christian Sohler. “Distributed Monitoring of Network Properties: The Power of Hybrid Networks.” In Proceedings of the 44th International Colloquium on Automata, Languages, and Programming (ICALP), 137:1--137:15. Leibniz International Proceedings in Informatics (LIPIcs), 2017. https://doi.org/10.4230/LIPIcs.ICALP.2017.137.' ieee: 'R. Gmyr, K. Hinnenthal, C. Scheideler, and C. Sohler, “Distributed Monitoring of Network Properties: The Power of Hybrid Networks,” in Proceedings of the 44th International Colloquium on Automata, Languages, and Programming (ICALP), 2017, pp. 137:1--137:15.' mla: 'Gmyr, Robert, et al. “Distributed Monitoring of Network Properties: The Power of Hybrid Networks.” Proceedings of the 44th International Colloquium on Automata, Languages, and Programming (ICALP), 2017, pp. 137:1--137:15, doi:10.4230/LIPIcs.ICALP.2017.137.' short: 'R. Gmyr, K. Hinnenthal, C. Scheideler, C. Sohler, in: Proceedings of the 44th International Colloquium on Automata, Languages, and Programming (ICALP), 2017, pp. 137:1--137:15.' date_created: 2017-10-17T12:41:12Z date_updated: 2022-01-06T06:50:42Z ddc: - '040' department: - _id: '79' doi: 10.4230/LIPIcs.ICALP.2017.137 file: - access_level: closed content_type: application/pdf creator: florida date_created: 2018-03-13T09:23:11Z date_updated: 2018-03-13T09:23:11Z file_id: '1207' file_name: 105-ICALP17-GHSS.pdf file_size: 504161 relation: main_file success: 1 file_date_updated: 2018-03-13T09:23:11Z has_accepted_license: '1' language: - iso: eng page: 137:1--137:15 project: - _id: '1' name: SFB 901 - _id: '2' name: SFB 901 - Project Area A - _id: '5' name: SFB 901 - Subproject A1 publication: Proceedings of the 44th International Colloquium on Automata, Languages, and Programming (ICALP) series_title: Leibniz International Proceedings in Informatics (LIPIcs) status: public title: 'Distributed Monitoring of Network Properties: The Power of Hybrid Networks' type: conference user_id: '20792' year: '2017' ... --- _id: '125' abstract: - lang: eng text: 'Searching for other participants is one of the most important operations in a distributed system.We are interested in topologies in which it is possible to route a packet in a fixed number of hops until it arrives at its destination.Given a constant $d$, this paper introduces a new self-stabilizing protocol for the $q$-ary $d$-dimensional de Bruijn graph ($q = \sqrt[d]{n}$) that is able to route any search request in at most $d$ hops w.h.p., while significantly lowering the node degree compared to the clique: We require nodes to have a degree of $\mathcal O(\sqrt[d]{n})$, which is asymptotically optimal for a fixed diameter $d$.The protocol keeps the expected amount of edge redirections per node in $\mathcal O(\sqrt[d]{n})$, when the number of nodes in the system increases by factor $2^d$.The number of messages that are periodically sent out by nodes is constant.' author: - first_name: Michael full_name: Feldmann, Michael id: '23538' last_name: Feldmann - first_name: Christian full_name: Scheideler, Christian id: '20792' last_name: Scheideler citation: ama: 'Feldmann M, Scheideler C. A Self-Stabilizing General De Bruijn Graph. In: Proceedings of the 19th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS). Vol 10616. Lecture Notes in Computer Science. Springer, Cham; 2017:250-264. doi:10.1007/978-3-319-69084-1_17' apa: Feldmann, M., & Scheideler, C. (2017). A Self-Stabilizing General De Bruijn Graph. In Proceedings of the 19th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS) (Vol. 10616, pp. 250–264). Springer, Cham. https://doi.org/10.1007/978-3-319-69084-1_17 bibtex: '@inproceedings{Feldmann_Scheideler_2017, series={Lecture Notes in Computer Science}, title={A Self-Stabilizing General De Bruijn Graph}, volume={10616}, DOI={10.1007/978-3-319-69084-1_17}, booktitle={Proceedings of the 19th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS)}, publisher={Springer, Cham}, author={Feldmann, Michael and Scheideler, Christian}, year={2017}, pages={250–264}, collection={Lecture Notes in Computer Science} }' chicago: Feldmann, Michael, and Christian Scheideler. “A Self-Stabilizing General De Bruijn Graph.” In Proceedings of the 19th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS), 10616:250–64. Lecture Notes in Computer Science. Springer, Cham, 2017. https://doi.org/10.1007/978-3-319-69084-1_17. ieee: M. Feldmann and C. Scheideler, “A Self-Stabilizing General De Bruijn Graph,” in Proceedings of the 19th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS), 2017, vol. 10616, pp. 250–264. mla: Feldmann, Michael, and Christian Scheideler. “A Self-Stabilizing General De Bruijn Graph.” Proceedings of the 19th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS), vol. 10616, Springer, Cham, 2017, pp. 250–64, doi:10.1007/978-3-319-69084-1_17. short: 'M. Feldmann, C. Scheideler, in: Proceedings of the 19th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS), Springer, Cham, 2017, pp. 250–264.' date_created: 2017-10-17T12:41:16Z date_updated: 2022-01-06T06:51:19Z ddc: - '040' department: - _id: '79' doi: 10.1007/978-3-319-69084-1_17 external_id: arxiv: - '1708.06542' file: - access_level: closed content_type: application/pdf creator: mfeldma2 date_created: 2018-10-31T13:30:13Z date_updated: 2018-10-31T13:30:13Z file_id: '5214' file_name: Feldmann-Scheideler2017_Chapter_ASelf-stabilizingGeneralDeBrui.pdf file_size: 311204 relation: main_file success: 1 file_date_updated: 2018-10-31T13:30:13Z has_accepted_license: '1' intvolume: ' 10616' language: - iso: eng page: '250-264 ' project: - _id: '1' name: SFB 901 - _id: '5' name: SFB 901 - Subprojekt A1 - _id: '2' name: SFB 901 - Project Area A publication: Proceedings of the 19th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS) publication_identifier: isbn: - 978-3-319-69083-4 publication_status: published publisher: Springer, Cham series_title: Lecture Notes in Computer Science status: public title: A Self-Stabilizing General De Bruijn Graph type: conference user_id: '23538' volume: 10616 year: '2017' ... --- _id: '215' abstract: - lang: eng text: 'We present three robust overlay networks: First, we present a network that organizes the nodes into an expander and is resistant to even massive adversarial churn. Second, we develop a network based on the hypercube that maintains connectivity under adversarial DoS-attacks. For the DoS-attacks we use the notion of a Omega(log log n)-late adversary which only has access to topological information that is at least Omega(log log n) rounds old. Finally, we develop a network that combines both churn- and DoS-resistance. The networks gain their robustness through constant network reconfiguration, i.e., the topology of the networks changes constantly. Our reconguration algorithms are based on node sampling primitives for expanders and hypercubes that allow each node to sample a logarithmic number of nodes uniformly at random in O(log log n) communication rounds. These primitives are specific to overlay networks and their optimal runtime represents an exponential improvement over known techniques. Our results have a wide range of applications, for example in the area of scalable and robust peer-to-peer systems.' author: - first_name: Maximilian full_name: Drees, Maximilian last_name: Drees - first_name: Robert full_name: Gmyr, Robert last_name: Gmyr - first_name: Christian full_name: Scheideler, Christian id: '20792' last_name: Scheideler citation: ama: 'Drees M, Gmyr R, Scheideler C. Churn- and DoS-resistant Overlay Networks Based on Network Reconfiguration. In: Proceedings of the 28th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA). ; 2016:417--427. doi:10.1145/2935764.2935783' apa: Drees, M., Gmyr, R., & Scheideler, C. (2016). Churn- and DoS-resistant Overlay Networks Based on Network Reconfiguration. In Proceedings of the 28th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA) (pp. 417--427). https://doi.org/10.1145/2935764.2935783 bibtex: '@inproceedings{Drees_Gmyr_Scheideler_2016, title={Churn- and DoS-resistant Overlay Networks Based on Network Reconfiguration}, DOI={10.1145/2935764.2935783}, booktitle={Proceedings of the 28th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA)}, author={Drees, Maximilian and Gmyr, Robert and Scheideler, Christian}, year={2016}, pages={417--427} }' chicago: Drees, Maximilian, Robert Gmyr, and Christian Scheideler. “Churn- and DoS-Resistant Overlay Networks Based on Network Reconfiguration.” In Proceedings of the 28th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), 417--427, 2016. https://doi.org/10.1145/2935764.2935783. ieee: M. Drees, R. Gmyr, and C. Scheideler, “Churn- and DoS-resistant Overlay Networks Based on Network Reconfiguration,” in Proceedings of the 28th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), 2016, pp. 417--427. mla: Drees, Maximilian, et al. “Churn- and DoS-Resistant Overlay Networks Based on Network Reconfiguration.” Proceedings of the 28th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), 2016, pp. 417--427, doi:10.1145/2935764.2935783. short: 'M. Drees, R. Gmyr, C. Scheideler, in: Proceedings of the 28th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), 2016, pp. 417--427.' date_created: 2017-10-17T12:41:33Z date_updated: 2022-01-06T06:55:02Z ddc: - '040' department: - _id: '79' - _id: '63' doi: 10.1145/2935764.2935783 file: - access_level: closed content_type: application/pdf creator: florida date_created: 2018-03-21T10:41:40Z date_updated: 2018-03-21T10:41:40Z file_id: '1518' file_name: 215-SPAA16-Drees_Gmyr_Scheideler.pdf file_size: 352996 relation: main_file success: 1 file_date_updated: 2018-03-21T10:41:40Z has_accepted_license: '1' language: - iso: eng page: 417--427 project: - _id: '1' name: SFB 901 - _id: '13' name: SFB 901 - Subprojekt C1 - _id: '4' name: SFB 901 - Project Area C publication: Proceedings of the 28th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA) status: public title: Churn- and DoS-resistant Overlay Networks Based on Network Reconfiguration type: conference user_id: '14955' year: '2016' ... --- _id: '1835' author: - first_name: Stefan full_name: Schmid, Stefan last_name: Schmid - first_name: Chen full_name: Avin, Chen last_name: Avin - first_name: Christian full_name: Scheideler, Christian id: '20792' last_name: Scheideler - first_name: Michael full_name: Borokhovich, Michael last_name: Borokhovich - first_name: Bernhard full_name: Haeupler, Bernhard last_name: Haeupler - first_name: Zvi full_name: Lotker, Zvi last_name: Lotker citation: ama: 'Schmid S, Avin C, Scheideler C, Borokhovich M, Haeupler B, Lotker Z. SplayNet: Towards Locally Self-Adjusting Networks. IEEE/ACM Trans Netw. 2016;(3):1421--1433. doi:10.1109/TNET.2015.2410313' apa: 'Schmid, S., Avin, C., Scheideler, C., Borokhovich, M., Haeupler, B., & Lotker, Z. (2016). SplayNet: Towards Locally Self-Adjusting Networks. IEEE/ACM Trans. Netw., (3), 1421--1433. https://doi.org/10.1109/TNET.2015.2410313' bibtex: '@article{Schmid_Avin_Scheideler_Borokhovich_Haeupler_Lotker_2016, title={SplayNet: Towards Locally Self-Adjusting Networks}, DOI={10.1109/TNET.2015.2410313}, number={3}, journal={IEEE/ACM Trans. Netw.}, author={Schmid, Stefan and Avin, Chen and Scheideler, Christian and Borokhovich, Michael and Haeupler, Bernhard and Lotker, Zvi}, year={2016}, pages={1421--1433} }' chicago: 'Schmid, Stefan, Chen Avin, Christian Scheideler, Michael Borokhovich, Bernhard Haeupler, and Zvi Lotker. “SplayNet: Towards Locally Self-Adjusting Networks.” IEEE/ACM Trans. Netw., no. 3 (2016): 1421--1433. https://doi.org/10.1109/TNET.2015.2410313.' ieee: 'S. Schmid, C. Avin, C. Scheideler, M. Borokhovich, B. Haeupler, and Z. Lotker, “SplayNet: Towards Locally Self-Adjusting Networks,” IEEE/ACM Trans. Netw., no. 3, pp. 1421--1433, 2016.' mla: 'Schmid, Stefan, et al. “SplayNet: Towards Locally Self-Adjusting Networks.” IEEE/ACM Trans. Netw., no. 3, 2016, pp. 1421--1433, doi:10.1109/TNET.2015.2410313.' short: S. Schmid, C. Avin, C. Scheideler, M. Borokhovich, B. Haeupler, Z. Lotker, IEEE/ACM Trans. Netw. (2016) 1421--1433. date_created: 2018-03-27T12:40:24Z date_updated: 2022-01-06T06:53:29Z department: - _id: '79' doi: 10.1109/TNET.2015.2410313 issue: '3' page: 1421--1433 publication: IEEE/ACM Trans. Netw. status: public title: 'SplayNet: Towards Locally Self-Adjusting Networks' type: journal_article user_id: '15504' year: '2016' ... --- _id: '1836' author: - first_name: Zahra full_name: Derakhshandeh, Zahra last_name: Derakhshandeh - first_name: Robert full_name: Gmyr, Robert last_name: Gmyr - first_name: Alexandra full_name: Porter, Alexandra last_name: Porter - first_name: Andrea full_name: W. Richa, Andrea last_name: W. Richa - first_name: Christian full_name: Scheideler, Christian id: '20792' last_name: Scheideler - first_name: Thim Frederik full_name: Strothmann, Thim Frederik id: '11319' last_name: Strothmann citation: ama: 'Derakhshandeh Z, Gmyr R, Porter A, W. Richa A, Scheideler C, Strothmann TF. On the Runtime of Universal Coating for Programmable Matter. In: DNA Computing and Molecular Programming - 22nd International Conference, DNA 22, Munich, Germany, September 4-8, 2016, Proceedings. Vol 9818. Lecture Notes in Computer Science. ; 2016:148--164. doi:10.1007/978-3-319-43994-5_10' apa: Derakhshandeh, Z., Gmyr, R., Porter, A., W. Richa, A., Scheideler, C., & Strothmann, T. F. (2016). On the Runtime of Universal Coating for Programmable Matter. In DNA Computing and Molecular Programming - 22nd International Conference, DNA 22, Munich, Germany, September 4-8, 2016, Proceedings (Vol. 9818, pp. 148--164). https://doi.org/10.1007/978-3-319-43994-5_10 bibtex: '@inproceedings{Derakhshandeh_Gmyr_Porter_W. Richa_Scheideler_Strothmann_2016, series={Lecture Notes in Computer Science}, title={On the Runtime of Universal Coating for Programmable Matter}, volume={9818}, DOI={10.1007/978-3-319-43994-5_10}, booktitle={DNA Computing and Molecular Programming - 22nd International Conference, DNA 22, Munich, Germany, September 4-8, 2016, Proceedings}, author={Derakhshandeh, Zahra and Gmyr, Robert and Porter, Alexandra and W. Richa, Andrea and Scheideler, Christian and Strothmann, Thim Frederik}, year={2016}, pages={148--164}, collection={Lecture Notes in Computer Science} }' chicago: Derakhshandeh, Zahra, Robert Gmyr, Alexandra Porter, Andrea W. Richa, Christian Scheideler, and Thim Frederik Strothmann. “On the Runtime of Universal Coating for Programmable Matter.” In DNA Computing and Molecular Programming - 22nd International Conference, DNA 22, Munich, Germany, September 4-8, 2016, Proceedings, 9818:148--164. Lecture Notes in Computer Science, 2016. https://doi.org/10.1007/978-3-319-43994-5_10. ieee: Z. Derakhshandeh, R. Gmyr, A. Porter, A. W. Richa, C. Scheideler, and T. F. Strothmann, “On the Runtime of Universal Coating for Programmable Matter,” in DNA Computing and Molecular Programming - 22nd International Conference, DNA 22, Munich, Germany, September 4-8, 2016, Proceedings, 2016, vol. 9818, pp. 148--164. mla: Derakhshandeh, Zahra, et al. “On the Runtime of Universal Coating for Programmable Matter.” DNA Computing and Molecular Programming - 22nd International Conference, DNA 22, Munich, Germany, September 4-8, 2016, Proceedings, vol. 9818, 2016, pp. 148--164, doi:10.1007/978-3-319-43994-5_10. short: 'Z. Derakhshandeh, R. Gmyr, A. Porter, A. W. Richa, C. Scheideler, T.F. Strothmann, in: DNA Computing and Molecular Programming - 22nd International Conference, DNA 22, Munich, Germany, September 4-8, 2016, Proceedings, 2016, pp. 148--164.' date_created: 2018-03-27T12:41:45Z date_updated: 2022-01-06T06:53:30Z department: - _id: '79' doi: 10.1007/978-3-319-43994-5_10 intvolume: ' 9818' language: - iso: eng page: 148--164 publication: DNA Computing and Molecular Programming - 22nd International Conference, DNA 22, Munich, Germany, September 4-8, 2016, Proceedings publication_identifier: unknown: - 978-3-319-43993-8 series_title: Lecture Notes in Computer Science status: public title: On the Runtime of Universal Coating for Programmable Matter type: conference user_id: '15504' volume: 9818 year: '2016' ... --- _id: '1837' author: - first_name: Zahra full_name: Derakhshandeh, Zahra last_name: Derakhshandeh - first_name: Robert full_name: Gmyr, Robert last_name: Gmyr - first_name: Andrea full_name: W. Richa, Andrea last_name: W. Richa - first_name: Christian full_name: Scheideler, Christian id: '20792' last_name: Scheideler - first_name: Thim Frederik full_name: Strothmann, Thim Frederik id: '11319' last_name: Strothmann citation: ama: 'Derakhshandeh Z, Gmyr R, W. Richa A, Scheideler C, Strothmann TF. Universal Shape Formation for Programmable Matter. In: Proceedings of the 28th ACM Symposium on Parallelism in Algorithms and Architectures, SPAA 2016, Asilomar State Beach/Pacific Grove, CA, USA, July 11-13, 2016. ACM; 2016:289--299. doi:10.1145/2935764.2935784' apa: Derakhshandeh, Z., Gmyr, R., W. Richa, A., Scheideler, C., & Strothmann, T. F. (2016). Universal Shape Formation for Programmable Matter. In Proceedings of the 28th ACM Symposium on Parallelism in Algorithms and Architectures, SPAA 2016, Asilomar State Beach/Pacific Grove, CA, USA, July 11-13, 2016 (pp. 289--299). ACM. https://doi.org/10.1145/2935764.2935784 bibtex: '@inproceedings{Derakhshandeh_Gmyr_W. Richa_Scheideler_Strothmann_2016, title={Universal Shape Formation for Programmable Matter}, DOI={10.1145/2935764.2935784}, booktitle={Proceedings of the 28th ACM Symposium on Parallelism in Algorithms and Architectures, SPAA 2016, Asilomar State Beach/Pacific Grove, CA, USA, July 11-13, 2016}, publisher={ACM}, author={Derakhshandeh, Zahra and Gmyr, Robert and W. Richa, Andrea and Scheideler, Christian and Strothmann, Thim Frederik}, year={2016}, pages={289--299} }' chicago: Derakhshandeh, Zahra, Robert Gmyr, Andrea W. Richa, Christian Scheideler, and Thim Frederik Strothmann. “Universal Shape Formation for Programmable Matter.” In Proceedings of the 28th ACM Symposium on Parallelism in Algorithms and Architectures, SPAA 2016, Asilomar State Beach/Pacific Grove, CA, USA, July 11-13, 2016, 289--299. ACM, 2016. https://doi.org/10.1145/2935764.2935784. ieee: Z. Derakhshandeh, R. Gmyr, A. W. Richa, C. Scheideler, and T. F. Strothmann, “Universal Shape Formation for Programmable Matter,” in Proceedings of the 28th ACM Symposium on Parallelism in Algorithms and Architectures, SPAA 2016, Asilomar State Beach/Pacific Grove, CA, USA, July 11-13, 2016, 2016, pp. 289--299. mla: Derakhshandeh, Zahra, et al. “Universal Shape Formation for Programmable Matter.” Proceedings of the 28th ACM Symposium on Parallelism in Algorithms and Architectures, SPAA 2016, Asilomar State Beach/Pacific Grove, CA, USA, July 11-13, 2016, ACM, 2016, pp. 289--299, doi:10.1145/2935764.2935784. short: 'Z. Derakhshandeh, R. Gmyr, A. W. Richa, C. Scheideler, T.F. Strothmann, in: Proceedings of the 28th ACM Symposium on Parallelism in Algorithms and Architectures, SPAA 2016, Asilomar State Beach/Pacific Grove, CA, USA, July 11-13, 2016, ACM, 2016, pp. 289--299.' date_created: 2018-03-27T12:44:09Z date_updated: 2022-01-06T06:53:30Z department: - _id: '79' doi: 10.1145/2935764.2935784 language: - iso: eng page: 289--299 publication: Proceedings of the 28th ACM Symposium on Parallelism in Algorithms and Architectures, SPAA 2016, Asilomar State Beach/Pacific Grove, CA, USA, July 11-13, 2016 publication_identifier: unknown: - 978-1-4503-4210-0 publisher: ACM status: public title: Universal Shape Formation for Programmable Matter type: conference user_id: '15504' year: '2016' ... --- _id: '1845' author: - first_name: Andrea full_name: W. Richa, Andrea last_name: W. Richa - first_name: Christian full_name: Scheideler, Christian id: '20792' last_name: Scheideler citation: ama: 'W. Richa A, Scheideler C. Jamming-Resistant MAC Protocols for Wireless Networks. In: Encyclopedia of Algorithms. ; 2016:999--1002. doi:10.1007/978-1-4939-2864-4_593' apa: W. Richa, A., & Scheideler, C. (2016). Jamming-Resistant MAC Protocols for Wireless Networks. In Encyclopedia of Algorithms (pp. 999--1002). https://doi.org/10.1007/978-1-4939-2864-4_593 bibtex: '@inbook{W. Richa_Scheideler_2016, title={Jamming-Resistant MAC Protocols for Wireless Networks}, DOI={10.1007/978-1-4939-2864-4_593}, booktitle={Encyclopedia of Algorithms}, author={W. Richa, Andrea and Scheideler, Christian}, year={2016}, pages={999--1002} }' chicago: W. Richa, Andrea, and Christian Scheideler. “Jamming-Resistant MAC Protocols for Wireless Networks.” In Encyclopedia of Algorithms, 999--1002, 2016. https://doi.org/10.1007/978-1-4939-2864-4_593. ieee: A. W. Richa and C. Scheideler, “Jamming-Resistant MAC Protocols for Wireless Networks,” in Encyclopedia of Algorithms, 2016, pp. 999--1002. mla: W. Richa, Andrea, and Christian Scheideler. “Jamming-Resistant MAC Protocols for Wireless Networks.” Encyclopedia of Algorithms, 2016, pp. 999--1002, doi:10.1007/978-1-4939-2864-4_593. short: 'A. W. Richa, C. Scheideler, in: Encyclopedia of Algorithms, 2016, pp. 999--1002.' date_created: 2018-03-28T05:45:04Z date_updated: 2022-01-06T06:53:32Z department: - _id: '79' doi: 10.1007/978-1-4939-2864-4_593 page: 999--1002 publication: Encyclopedia of Algorithms status: public title: Jamming-Resistant MAC Protocols for Wireless Networks type: book_chapter user_id: '15504' year: '2016' ... --- _id: '155' abstract: - lang: eng text: We present a self-stabilizing algorithm for overlay networks that, for an arbitrary metric given by a distance oracle, constructs the graph representing that metric. The graph representing a metric is the unique minimal undirected graph such that for any pair of nodes the length of a shortest path between the nodes corresponds to the distance between the nodes according to the metric. The algorithm works under both an asynchronous and a synchronous daemon. In the synchronous case, the algorithm stablizes in time O(n) and it is almost silent in that after stabilization a node sends and receives a constant number of messages per round. author: - first_name: Robert full_name: Gmyr, Robert last_name: Gmyr - first_name: Jonas full_name: Lefèvre, Jonas last_name: Lefèvre - first_name: Christian full_name: Scheideler, Christian id: '20792' last_name: Scheideler citation: ama: 'Gmyr R, Lefèvre J, Scheideler C. Self-stabilizing Metric Graphs. In: Proceedings of the 18th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS). LNCS. ; 2016:248--262. doi:10.1007/978-3-319-49259-9_20' apa: Gmyr, R., Lefèvre, J., & Scheideler, C. (2016). Self-stabilizing Metric Graphs. In Proceedings of the 18th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS) (pp. 248--262). https://doi.org/10.1007/978-3-319-49259-9_20 bibtex: '@inproceedings{Gmyr_Lefèvre_Scheideler_2016, series={LNCS}, title={Self-stabilizing Metric Graphs}, DOI={10.1007/978-3-319-49259-9_20}, booktitle={Proceedings of the 18th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS)}, author={Gmyr, Robert and Lefèvre, Jonas and Scheideler, Christian}, year={2016}, pages={248--262}, collection={LNCS} }' chicago: Gmyr, Robert, Jonas Lefèvre, and Christian Scheideler. “Self-Stabilizing Metric Graphs.” In Proceedings of the 18th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS), 248--262. LNCS, 2016. https://doi.org/10.1007/978-3-319-49259-9_20. ieee: R. Gmyr, J. Lefèvre, and C. Scheideler, “Self-stabilizing Metric Graphs,” in Proceedings of the 18th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS), 2016, pp. 248--262. mla: Gmyr, Robert, et al. “Self-Stabilizing Metric Graphs.” Proceedings of the 18th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS), 2016, pp. 248--262, doi:10.1007/978-3-319-49259-9_20. short: 'R. Gmyr, J. Lefèvre, C. Scheideler, in: Proceedings of the 18th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS), 2016, pp. 248--262.' date_created: 2017-10-17T12:41:22Z date_updated: 2022-01-06T06:52:28Z ddc: - '040' department: - _id: '79' doi: 10.1007/978-3-319-49259-9_20 file: - access_level: closed content_type: application/pdf creator: florida date_created: 2018-03-21T12:51:24Z date_updated: 2018-03-21T12:51:24Z file_id: '1550' file_name: 155-SSS16-GLS.pdf file_size: 389136 relation: main_file success: 1 file_date_updated: 2018-03-21T12:51:24Z has_accepted_license: '1' page: 248--262 project: - _id: '1' name: SFB 901 - _id: '13' name: SFB 901 - Subprojekt C1 - _id: '4' name: SFB 901 - Project Area C publication: Proceedings of the 18th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS) series_title: LNCS status: public title: Self-stabilizing Metric Graphs type: conference user_id: '15504' year: '2016' ... --- _id: '142' abstract: - lang: eng text: For overlay networks, the ability to recover from a variety of problems like membership changes or faults is a key element to preserve their functionality. In recent years, various self-stabilizing overlay networks have been proposed that have the advantage of being able to recover from any illegal state. However, the vast majority of these networks cannot give any guarantees on its functionality while the recovery process is going on. We are especially interested in searchability, i.e., the functionality that search messages for a specific identifier are answered successfully if a node with that identifier exists in the network. We investigate overlay networks that are not only self-stabilizing but that also ensure that monotonic searchability is maintained while the recovery process is going on, as long as there are no corrupted messages in the system. More precisely, once a search message from node u to another node v is successfully delivered, all future search messages from u to v succeed as well. Monotonic searchability was recently introduced in OPODIS 2015, in which the authors provide a solution for a simple line topology.We present the first universal approach to maintain monotonic searchability that is applicable to a wide range of topologies. As the base for our approach, we introduce a set of primitives for manipulating overlay networks that allows us to maintain searchability and show how existing protocols can be transformed to use theses primitives.We complement this result with a generic search protocol that together with the use of our primitives guarantees monotonic searchability.As an additional feature, searching existing nodes with the generic search protocol is as fast as searching a node with any other fixed routing protocol once the topology has stabilized. author: - first_name: Christian full_name: Scheideler, Christian id: '20792' last_name: Scheideler - first_name: Alexander full_name: Setzer, Alexander id: '11108' last_name: Setzer - first_name: Thim Frederik full_name: Strothmann, Thim Frederik id: '11319' last_name: Strothmann citation: ama: 'Scheideler C, Setzer A, Strothmann TF. Towards a Universal Approach for Monotonic Searchability in Self-stabilizing Overlay Networks. In: Proceedings of the 30th International Symposium on Distributed Computing (DISC). LNCS. ; 2016:71--84. doi:10.1007/978-3-662-53426-7_6' apa: Scheideler, C., Setzer, A., & Strothmann, T. F. (2016). Towards a Universal Approach for Monotonic Searchability in Self-stabilizing Overlay Networks. In Proceedings of the 30th International Symposium on Distributed Computing (DISC) (pp. 71--84). https://doi.org/10.1007/978-3-662-53426-7_6 bibtex: '@inproceedings{Scheideler_Setzer_Strothmann_2016, series={LNCS}, title={Towards a Universal Approach for Monotonic Searchability in Self-stabilizing Overlay Networks}, DOI={10.1007/978-3-662-53426-7_6}, booktitle={Proceedings of the 30th International Symposium on Distributed Computing (DISC)}, author={Scheideler, Christian and Setzer, Alexander and Strothmann, Thim Frederik}, year={2016}, pages={71--84}, collection={LNCS} }' chicago: Scheideler, Christian, Alexander Setzer, and Thim Frederik Strothmann. “Towards a Universal Approach for Monotonic Searchability in Self-Stabilizing Overlay Networks.” In Proceedings of the 30th International Symposium on Distributed Computing (DISC), 71--84. LNCS, 2016. https://doi.org/10.1007/978-3-662-53426-7_6. ieee: C. Scheideler, A. Setzer, and T. F. Strothmann, “Towards a Universal Approach for Monotonic Searchability in Self-stabilizing Overlay Networks,” in Proceedings of the 30th International Symposium on Distributed Computing (DISC), 2016, pp. 71--84. mla: Scheideler, Christian, et al. “Towards a Universal Approach for Monotonic Searchability in Self-Stabilizing Overlay Networks.” Proceedings of the 30th International Symposium on Distributed Computing (DISC), 2016, pp. 71--84, doi:10.1007/978-3-662-53426-7_6. short: 'C. Scheideler, A. Setzer, T.F. Strothmann, in: Proceedings of the 30th International Symposium on Distributed Computing (DISC), 2016, pp. 71--84.' date_created: 2017-10-17T12:41:19Z date_updated: 2022-01-06T06:51:56Z ddc: - '040' department: - _id: '79' doi: 10.1007/978-3-662-53426-7_6 file: - access_level: closed content_type: application/pdf creator: florida date_created: 2018-03-21T12:59:29Z date_updated: 2018-03-21T12:59:29Z file_id: '1558' file_name: 142-SchSetStrDISC16.pdf file_size: 209638 relation: main_file success: 1 file_date_updated: 2018-03-21T12:59:29Z has_accepted_license: '1' language: - iso: eng page: 71--84 project: - _id: '1' name: SFB 901 - _id: '5' name: SFB 901 - Subprojekt A1 - _id: '2' name: SFB 901 - Project Area A publication: Proceedings of the 30th International Symposium on Distributed Computing (DISC) series_title: LNCS status: public title: Towards a Universal Approach for Monotonic Searchability in Self-stabilizing Overlay Networks type: conference user_id: '477' year: '2016' ... --- _id: '284' abstract: - lang: eng text: In this work, we present the first scalable distributed information system, that is, a system with low storage overhead, that is provably robust against denial-of-service (DoS) attacks by a current insider. We allow a current insider to have complete knowledge about the information system and to have the power to block any ϵ-fraction of its servers by a DoS attack, where ϵ can be chosen up to a constant. The task of the system is to serve any collection of lookup requests with at most one per nonblocked server in an efficient way despite this attack. Previously, scalable solutions were only known for DoS attacks of past insiders, where a past insider only has complete knowledge about some past time point t0 of the information system. Scheideler et al. [Awerbuch and Scheideler 2007; Baumgart et al. 2009] showed that in this case, it is possible to design an information system so that any information that was inserted or last updated after t0 is safe against a DoS attack. But their constructions would not work at all for a current insider. The key idea behind our IRIS system is to make extensive use of coding. More precisely, we present two alternative distributed coding strategies with an at most logarithmic storage overhead that can handle up to a constant fraction of blocked servers. author: - first_name: Martina full_name: Eikel, Martina last_name: Eikel - first_name: Christian full_name: Scheideler, Christian id: '20792' last_name: Scheideler citation: ama: 'Eikel M, Scheideler C. IRIS: A Robust Information System Against Insider DoS Attacks. Transactions on Parallel Computing. 2015;(3):18:1--18:33. doi:10.1145/2809806' apa: 'Eikel, M., & Scheideler, C. (2015). IRIS: A Robust Information System Against Insider DoS Attacks. Transactions on Parallel Computing, (3), 18:1--18:33. https://doi.org/10.1145/2809806' bibtex: '@article{Eikel_Scheideler_2015, title={IRIS: A Robust Information System Against Insider DoS Attacks}, DOI={10.1145/2809806}, number={3}, journal={Transactions on Parallel Computing}, publisher={ACM}, author={Eikel, Martina and Scheideler, Christian}, year={2015}, pages={18:1--18:33} }' chicago: 'Eikel, Martina, and Christian Scheideler. “IRIS: A Robust Information System Against Insider DoS Attacks.” Transactions on Parallel Computing, no. 3 (2015): 18:1--18:33. https://doi.org/10.1145/2809806.' ieee: 'M. Eikel and C. Scheideler, “IRIS: A Robust Information System Against Insider DoS Attacks,” Transactions on Parallel Computing, no. 3, pp. 18:1--18:33, 2015.' mla: 'Eikel, Martina, and Christian Scheideler. “IRIS: A Robust Information System Against Insider DoS Attacks.” Transactions on Parallel Computing, no. 3, ACM, 2015, pp. 18:1--18:33, doi:10.1145/2809806.' short: M. Eikel, C. Scheideler, Transactions on Parallel Computing (2015) 18:1--18:33. date_created: 2017-10-17T12:41:47Z date_updated: 2022-01-06T06:58:03Z ddc: - '040' department: - _id: '79' doi: 10.1145/2809806 file: - access_level: closed content_type: application/pdf creator: florida date_created: 2018-03-21T09:25:04Z date_updated: 2018-03-21T09:25:04Z file_id: '1468' file_name: 284-Eikel-Scheideler-ACM2015.pdf file_size: 651726 relation: main_file success: 1 file_date_updated: 2018-03-21T09:25:04Z has_accepted_license: '1' issue: '3' page: 18:1--18:33 project: - _id: '1' name: SFB 901 - _id: '13' name: SFB 901 - Subprojekt C1 - _id: '4' name: SFB 901 - Project Area C publication: Transactions on Parallel Computing publisher: ACM status: public title: 'IRIS: A Robust Information System Against Insider DoS Attacks' type: journal_article user_id: '477' year: '2015' ... --- _id: '241' abstract: - lang: eng text: Distributed applications are commonly based on overlay networks interconnecting their sites so that they can exchange information. For these overlay networks to preserve their functionality, they should be able to recover from various problems like membership changes or faults. Various self-stabilizing overlay networks have already been proposed in recent years, which have the advantage of being able to recover from any illegal state, but none of these networks can give any guarantees on its functionality while the recovery process is going on. We initiate research on overlay networks that are not only self-stabilizing but that also ensure that searchability is maintained while the recovery process is going on, as long as there are no corrupted messages in the system. More precisely, once a search message from node u to another node v is successfully delivered, all future search messages from u to v succeed as well. We call this property monotonic searchability. We show that in general it is impossible to provide monotonic searchability if corrupted messages are present in the system, which justifies the restriction to system states without corrupted messages. Furthermore, we provide a self-stabilizing protocol for the line for which we can also show monotonic searchability. It turns out that even for the line it is non-trivial to achieve this property. Additionally, we extend our protocol to deal with node departures in terms of the Finite Departure Problem of Foreback et. al (SSS 2014). This makes our protocol even capable of handling node dynamics. author: - first_name: Christian full_name: Scheideler, Christian id: '20792' last_name: Scheideler - first_name: Alexander full_name: Setzer, Alexander id: '11108' last_name: Setzer - first_name: Thim Frederik full_name: Strothmann, Thim Frederik id: '11319' last_name: Strothmann citation: ama: 'Scheideler C, Setzer A, Strothmann TF. Towards Establishing Monotonic Searchability in Self-Stabilizing Data Structures. In: Proceedings of the 19th International Conference on Principles of Distributed Systems (OPODIS). Leibniz International Proceedings in Informatics (LIPIcs). ; 2015. doi:10.4230/LIPIcs.OPODIS.2015.24' apa: Scheideler, C., Setzer, A., & Strothmann, T. F. (2015). Towards Establishing Monotonic Searchability in Self-Stabilizing Data Structures. In Proceedings of the 19th International Conference on Principles of Distributed Systems (OPODIS). https://doi.org/10.4230/LIPIcs.OPODIS.2015.24 bibtex: '@inproceedings{Scheideler_Setzer_Strothmann_2015, series={Leibniz International Proceedings in Informatics (LIPIcs)}, title={Towards Establishing Monotonic Searchability in Self-Stabilizing Data Structures}, DOI={10.4230/LIPIcs.OPODIS.2015.24}, booktitle={Proceedings of the 19th International Conference on Principles of Distributed Systems (OPODIS)}, author={Scheideler, Christian and Setzer, Alexander and Strothmann, Thim Frederik}, year={2015}, collection={Leibniz International Proceedings in Informatics (LIPIcs)} }' chicago: Scheideler, Christian, Alexander Setzer, and Thim Frederik Strothmann. “Towards Establishing Monotonic Searchability in Self-Stabilizing Data Structures.” In Proceedings of the 19th International Conference on Principles of Distributed Systems (OPODIS). Leibniz International Proceedings in Informatics (LIPIcs), 2015. https://doi.org/10.4230/LIPIcs.OPODIS.2015.24. ieee: C. Scheideler, A. Setzer, and T. F. Strothmann, “Towards Establishing Monotonic Searchability in Self-Stabilizing Data Structures,” in Proceedings of the 19th International Conference on Principles of Distributed Systems (OPODIS), 2015. mla: Scheideler, Christian, et al. “Towards Establishing Monotonic Searchability in Self-Stabilizing Data Structures.” Proceedings of the 19th International Conference on Principles of Distributed Systems (OPODIS), 2015, doi:10.4230/LIPIcs.OPODIS.2015.24. short: 'C. Scheideler, A. Setzer, T.F. Strothmann, in: Proceedings of the 19th International Conference on Principles of Distributed Systems (OPODIS), 2015.' date_created: 2017-10-17T12:41:39Z date_updated: 2022-01-06T06:56:07Z ddc: - '040' department: - _id: '79' doi: 10.4230/LIPIcs.OPODIS.2015.24 file: - access_level: closed content_type: application/pdf creator: florida date_created: 2018-03-21T10:28:21Z date_updated: 2018-03-21T10:28:21Z file_id: '1497' file_name: 241-ScheidelerSetzerStrothmann2015.pdf file_size: 692363 relation: main_file success: 1 file_date_updated: 2018-03-21T10:28:21Z has_accepted_license: '1' language: - iso: eng project: - _id: '1' name: SFB 901 - _id: '5' name: SFB 901 - Subprojekt A1 - _id: '2' name: SFB 901 - Project Area A publication: Proceedings of the 19th International Conference on Principles of Distributed Systems (OPODIS) series_title: Leibniz International Proceedings in Informatics (LIPIcs) status: public title: Towards Establishing Monotonic Searchability in Self-Stabilizing Data Structures type: conference user_id: '477' year: '2015' ... --- _id: '242' abstract: - lang: eng text: 'A fundamental problem for overlay networks is to safely exclude leaving nodes, i.e., the nodes requesting to leave the overlay network are excluded from it without affecting its connectivity. There are a number of studies for safe node exclusion if the overlay is in a well-defined state, but almost no formal results are known for the case in which the overlay network is in an arbitrary initial state, i.e., when looking for a self-stabilizing solution for excluding leaving nodes. We study this problem in two variants: the Finite Departure Problem (FDP) and the Finite Sleep Problem (FSP). In the FDP the leaving nodes have to irrevocably decide when it is safe to leave the network, whereas in the FSP, this leaving decision does not have to be final: the nodes may resume computation when woken up by an incoming message. We are the first to present a self-stabilizing protocol for the FDP and the FSP that can be combined with a large class of overlay maintenance protocols so that these are then guaranteed to safely exclude leaving nodes from the system from any initial state while operating as specified for the staying nodes. In order to formally define the properties these overlay maintenance protocols have to satisfy, we identify four basic primitives for manipulating edges in an overlay network that might be of independent interest.' author: - first_name: Andreas full_name: Koutsopoulos, Andreas last_name: Koutsopoulos - first_name: Christian full_name: Scheideler, Christian id: '20792' last_name: Scheideler - first_name: Thim Frederik full_name: Strothmann, Thim Frederik id: '11319' last_name: Strothmann citation: ama: 'Koutsopoulos A, Scheideler C, Strothmann TF. Towards a Universal Approach for the Finite Departure Problem in Overlay Networks. In: Proceedings of the 17th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS). Lecture Notes in Computer Science. ; 2015:201-216. doi:10.1007/978-3-319-21741-3_14' apa: Koutsopoulos, A., Scheideler, C., & Strothmann, T. F. (2015). Towards a Universal Approach for the Finite Departure Problem in Overlay Networks. In Proceedings of the 17th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS) (pp. 201–216). https://doi.org/10.1007/978-3-319-21741-3_14 bibtex: '@inproceedings{Koutsopoulos_Scheideler_Strothmann_2015, series={Lecture Notes in Computer Science}, title={Towards a Universal Approach for the Finite Departure Problem in Overlay Networks}, DOI={10.1007/978-3-319-21741-3_14}, booktitle={Proceedings of the 17th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS)}, author={Koutsopoulos, Andreas and Scheideler, Christian and Strothmann, Thim Frederik}, year={2015}, pages={201–216}, collection={Lecture Notes in Computer Science} }' chicago: Koutsopoulos, Andreas, Christian Scheideler, and Thim Frederik Strothmann. “Towards a Universal Approach for the Finite Departure Problem in Overlay Networks.” In Proceedings of the 17th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS), 201–16. Lecture Notes in Computer Science, 2015. https://doi.org/10.1007/978-3-319-21741-3_14. ieee: A. Koutsopoulos, C. Scheideler, and T. F. Strothmann, “Towards a Universal Approach for the Finite Departure Problem in Overlay Networks,” in Proceedings of the 17th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS), 2015, pp. 201–216. mla: Koutsopoulos, Andreas, et al. “Towards a Universal Approach for the Finite Departure Problem in Overlay Networks.” Proceedings of the 17th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS), 2015, pp. 201–16, doi:10.1007/978-3-319-21741-3_14. short: 'A. Koutsopoulos, C. Scheideler, T.F. Strothmann, in: Proceedings of the 17th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS), 2015, pp. 201–216.' date_created: 2017-10-17T12:41:39Z date_updated: 2022-01-06T06:56:10Z ddc: - '040' department: - _id: '79' doi: 10.1007/978-3-319-21741-3_14 file: - access_level: closed content_type: application/pdf creator: florida date_created: 2018-03-21T09:59:32Z date_updated: 2018-03-21T09:59:32Z file_id: '1496' file_name: 242-KSS-SSS2015.pdf file_size: 532792 relation: main_file success: 1 file_date_updated: 2018-03-21T09:59:32Z has_accepted_license: '1' language: - iso: eng page: 201-216 project: - _id: '1' name: SFB 901 - _id: '5' name: SFB 901 - Subprojekt A1 - _id: '2' name: SFB 901 - Project Area A publication: Proceedings of the 17th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS) series_title: Lecture Notes in Computer Science status: public title: Towards a Universal Approach for the Finite Departure Problem in Overlay Networks type: conference user_id: '477' year: '2015' ... --- _id: '327' abstract: - lang: eng text: We consider the problem of resource discovery in distributed systems. In particular we give an algorithm, such that each node in a network discovers the address of any other node in the network. We model the knowledge of the nodes as a virtual overlay network given by a directed graph such that complete knowledge of all nodes corresponds to a complete graph in the overlay network. Although there are several solutions for resource discovery, our solution is the first that achieves worst-case optimal work for each node, i.e. the number of addresses (O(n)O(n)) or bits (O(nlog⁡n)O(nlog⁡n)) a node receives or sends coincides with the lower bound, while ensuring only a linear runtime (O(n)O(n)) on the number of rounds. author: - first_name: Sebastian full_name: Kniesburges, Sebastian last_name: Kniesburges - first_name: Andreas full_name: Koutsopoulos, Andreas last_name: Koutsopoulos - first_name: Christian full_name: Scheideler, Christian id: '20792' last_name: Scheideler citation: ama: Kniesburges S, Koutsopoulos A, Scheideler C. A deterministic worst-case message complexity optimal solution for resource discovery. Theoretical Computer Science. 2015:67-79. doi:10.1016/j.tcs.2014.11.027 apa: Kniesburges, S., Koutsopoulos, A., & Scheideler, C. (2015). A deterministic worst-case message complexity optimal solution for resource discovery. Theoretical Computer Science, 67–79. https://doi.org/10.1016/j.tcs.2014.11.027 bibtex: '@article{Kniesburges_Koutsopoulos_Scheideler_2015, title={A deterministic worst-case message complexity optimal solution for resource discovery}, DOI={10.1016/j.tcs.2014.11.027}, journal={Theoretical Computer Science}, publisher={Elsevier}, author={Kniesburges, Sebastian and Koutsopoulos, Andreas and Scheideler, Christian}, year={2015}, pages={67–79} }' chicago: Kniesburges, Sebastian, Andreas Koutsopoulos, and Christian Scheideler. “A Deterministic Worst-Case Message Complexity Optimal Solution for Resource Discovery.” Theoretical Computer Science, 2015, 67–79. https://doi.org/10.1016/j.tcs.2014.11.027. ieee: S. Kniesburges, A. Koutsopoulos, and C. Scheideler, “A deterministic worst-case message complexity optimal solution for resource discovery,” Theoretical Computer Science, pp. 67–79, 2015. mla: Kniesburges, Sebastian, et al. “A Deterministic Worst-Case Message Complexity Optimal Solution for Resource Discovery.” Theoretical Computer Science, Elsevier, 2015, pp. 67–79, doi:10.1016/j.tcs.2014.11.027. short: S. Kniesburges, A. Koutsopoulos, C. Scheideler, Theoretical Computer Science (2015) 67–79. date_created: 2017-10-17T12:41:55Z date_updated: 2022-01-06T06:59:08Z ddc: - '040' department: - _id: '79' doi: 10.1016/j.tcs.2014.11.027 file: - access_level: closed content_type: application/pdf creator: florida date_created: 2018-03-20T07:38:02Z date_updated: 2018-03-20T07:38:02Z file_id: '1427' file_name: 327-KKS15-TOCS_01.pdf file_size: 398044 relation: main_file success: 1 file_date_updated: 2018-03-20T07:38:02Z has_accepted_license: '1' page: 67-79 project: - _id: '1' name: SFB 901 - _id: '5' name: SFB 901 - Subprojekt A1 - _id: '2' name: SFB 901 - Project Area A publication: Theoretical Computer Science publisher: Elsevier status: public title: A deterministic worst-case message complexity optimal solution for resource discovery type: journal_article user_id: '477' year: '2015' ... --- _id: '1850' author: - first_name: Zahra full_name: Derakhshandeh, Zahra last_name: Derakhshandeh - first_name: Robert full_name: Gmyr, Robert last_name: Gmyr - first_name: Thim Frederik full_name: Strothmann, Thim Frederik id: '11319' last_name: Strothmann - first_name: Rida full_name: A. Bazzi, Rida last_name: A. Bazzi - first_name: Andrea full_name: W. Richa, Andrea last_name: W. Richa - first_name: Christian full_name: Scheideler, Christian id: '20792' last_name: Scheideler citation: ama: 'Derakhshandeh Z, Gmyr R, Strothmann TF, A. Bazzi R, W. Richa A, Scheideler C. Leader Election and Shape Formation with Self-organizing Programmable Matter. In: DNA Computing and Molecular Programming - 21st International Conference, DNA 21, Boston and Cambridge, MA, USA, August 17-21, 2015. Proceedings. Vol 9211. Lecture Notes in Computer Science. ; 2015:117--132. doi:10.1007/978-3-319-21999-8_8' apa: Derakhshandeh, Z., Gmyr, R., Strothmann, T. F., A. Bazzi, R., W. Richa, A., & Scheideler, C. (2015). Leader Election and Shape Formation with Self-organizing Programmable Matter. In DNA Computing and Molecular Programming - 21st International Conference, DNA 21, Boston and Cambridge, MA, USA, August 17-21, 2015. Proceedings (Vol. 9211, pp. 117--132). https://doi.org/10.1007/978-3-319-21999-8_8 bibtex: '@inproceedings{Derakhshandeh_Gmyr_Strothmann_A. Bazzi_W. Richa_Scheideler_2015, series={Lecture Notes in Computer Science}, title={Leader Election and Shape Formation with Self-organizing Programmable Matter}, volume={9211}, DOI={10.1007/978-3-319-21999-8_8}, booktitle={DNA Computing and Molecular Programming - 21st International Conference, DNA 21, Boston and Cambridge, MA, USA, August 17-21, 2015. Proceedings}, author={Derakhshandeh, Zahra and Gmyr, Robert and Strothmann, Thim Frederik and A. Bazzi, Rida and W. Richa, Andrea and Scheideler, Christian}, year={2015}, pages={117--132}, collection={Lecture Notes in Computer Science} }' chicago: Derakhshandeh, Zahra, Robert Gmyr, Thim Frederik Strothmann, Rida A. Bazzi, Andrea W. Richa, and Christian Scheideler. “Leader Election and Shape Formation with Self-Organizing Programmable Matter.” In DNA Computing and Molecular Programming - 21st International Conference, DNA 21, Boston and Cambridge, MA, USA, August 17-21, 2015. Proceedings, 9211:117--132. Lecture Notes in Computer Science, 2015. https://doi.org/10.1007/978-3-319-21999-8_8. ieee: Z. Derakhshandeh, R. Gmyr, T. F. Strothmann, R. A. Bazzi, A. W. Richa, and C. Scheideler, “Leader Election and Shape Formation with Self-organizing Programmable Matter,” in DNA Computing and Molecular Programming - 21st International Conference, DNA 21, Boston and Cambridge, MA, USA, August 17-21, 2015. Proceedings, 2015, vol. 9211, pp. 117--132. mla: Derakhshandeh, Zahra, et al. “Leader Election and Shape Formation with Self-Organizing Programmable Matter.” DNA Computing and Molecular Programming - 21st International Conference, DNA 21, Boston and Cambridge, MA, USA, August 17-21, 2015. Proceedings, vol. 9211, 2015, pp. 117--132, doi:10.1007/978-3-319-21999-8_8. short: 'Z. Derakhshandeh, R. Gmyr, T.F. Strothmann, R. A. Bazzi, A. W. Richa, C. Scheideler, in: DNA Computing and Molecular Programming - 21st International Conference, DNA 21, Boston and Cambridge, MA, USA, August 17-21, 2015. Proceedings, 2015, pp. 117--132.' date_created: 2018-03-28T05:49:12Z date_updated: 2022-01-06T06:53:36Z department: - _id: '79' doi: 10.1007/978-3-319-21999-8_8 intvolume: ' 9211' language: - iso: eng page: 117--132 publication: DNA Computing and Molecular Programming - 21st International Conference, DNA 21, Boston and Cambridge, MA, USA, August 17-21, 2015. Proceedings publication_identifier: isbn: - 978-3-319-21998-1 series_title: Lecture Notes in Computer Science status: public title: Leader Election and Shape Formation with Self-organizing Programmable Matter type: conference user_id: '15504' volume: 9211 year: '2015' ... --- _id: '1851' author: - first_name: Zahra full_name: Derakhshandeh, Zahra last_name: Derakhshandeh - first_name: Robert full_name: Gmyr, Robert last_name: Gmyr - first_name: Andrea full_name: W. Richa, Andrea last_name: W. Richa - first_name: Christian full_name: Scheideler, Christian id: '20792' last_name: Scheideler - first_name: Thim Frederik full_name: Strothmann, Thim Frederik id: '11319' last_name: Strothmann citation: ama: 'Derakhshandeh Z, Gmyr R, W. Richa A, Scheideler C, Strothmann TF. An Algorithmic Framework for Shape Formation Problems in Self-Organizing Particle Systems. In: Proceedings of the Second Annual International Conference on Nanoscale Computing and Communication, NANOCOM’ 15, Boston, MA, USA, September 21-22, 2015. ACM; 2015:21:1--21:2. doi:10.1145/2800795.2800829' apa: Derakhshandeh, Z., Gmyr, R., W. Richa, A., Scheideler, C., & Strothmann, T. F. (2015). An Algorithmic Framework for Shape Formation Problems in Self-Organizing Particle Systems. In Proceedings of the Second Annual International Conference on Nanoscale Computing and Communication, NANOCOM’ 15, Boston, MA, USA, September 21-22, 2015 (pp. 21:1--21:2). ACM. https://doi.org/10.1145/2800795.2800829 bibtex: '@inproceedings{Derakhshandeh_Gmyr_W. Richa_Scheideler_Strothmann_2015, title={An Algorithmic Framework for Shape Formation Problems in Self-Organizing Particle Systems}, DOI={10.1145/2800795.2800829}, booktitle={Proceedings of the Second Annual International Conference on Nanoscale Computing and Communication, NANOCOM’ 15, Boston, MA, USA, September 21-22, 2015}, publisher={ACM}, author={Derakhshandeh, Zahra and Gmyr, Robert and W. Richa, Andrea and Scheideler, Christian and Strothmann, Thim Frederik}, year={2015}, pages={21:1--21:2} }' chicago: Derakhshandeh, Zahra, Robert Gmyr, Andrea W. Richa, Christian Scheideler, and Thim Frederik Strothmann. “An Algorithmic Framework for Shape Formation Problems in Self-Organizing Particle Systems.” In Proceedings of the Second Annual International Conference on Nanoscale Computing and Communication, NANOCOM’ 15, Boston, MA, USA, September 21-22, 2015, 21:1--21:2. ACM, 2015. https://doi.org/10.1145/2800795.2800829. ieee: Z. Derakhshandeh, R. Gmyr, A. W. Richa, C. Scheideler, and T. F. Strothmann, “An Algorithmic Framework for Shape Formation Problems in Self-Organizing Particle Systems,” in Proceedings of the Second Annual International Conference on Nanoscale Computing and Communication, NANOCOM’ 15, Boston, MA, USA, September 21-22, 2015, 2015, pp. 21:1--21:2. mla: Derakhshandeh, Zahra, et al. “An Algorithmic Framework for Shape Formation Problems in Self-Organizing Particle Systems.” Proceedings of the Second Annual International Conference on Nanoscale Computing and Communication, NANOCOM’ 15, Boston, MA, USA, September 21-22, 2015, ACM, 2015, pp. 21:1--21:2, doi:10.1145/2800795.2800829. short: 'Z. Derakhshandeh, R. Gmyr, A. W. Richa, C. Scheideler, T.F. Strothmann, in: Proceedings of the Second Annual International Conference on Nanoscale Computing and Communication, NANOCOM’ 15, Boston, MA, USA, September 21-22, 2015, ACM, 2015, pp. 21:1--21:2.' date_created: 2018-03-28T05:50:25Z date_updated: 2022-01-06T06:53:36Z department: - _id: '79' doi: 10.1145/2800795.2800829 language: - iso: eng page: 21:1--21:2 publication: Proceedings of the Second Annual International Conference on Nanoscale Computing and Communication, NANOCOM' 15, Boston, MA, USA, September 21-22, 2015 publication_identifier: isbn: - 978-1-4503-3674-1 publisher: ACM status: public title: An Algorithmic Framework for Shape Formation Problems in Self-Organizing Particle Systems type: conference user_id: '15504' year: '2015' ... --- _id: '1852' author: - first_name: Zahra full_name: Derakhshandeh, Zahra last_name: Derakhshandeh - first_name: Robert full_name: Gmyr, Robert last_name: Gmyr - first_name: Thim Frederik full_name: Strothmann, Thim Frederik id: '11319' last_name: Strothmann - first_name: Rida full_name: A. Bazzi, Rida last_name: A. Bazzi - first_name: Andrea full_name: W. Richa, Andrea last_name: W. Richa - first_name: Christian full_name: Scheideler, Christian id: '20792' last_name: Scheideler citation: ama: 'Derakhshandeh Z, Gmyr R, Strothmann TF, A. Bazzi R, W. Richa A, Scheideler C. Brief Announcement: On the Feasibility of Leader Election and Shape Formation with Self-Organizing Programmable Matter. In: Proceedings of the 2015 ACM Symposium on Principles of Distributed Computing, PODC 2015, Donostia-San Sebasti{\’{a}}n, Spain, July 21 - 23, 2015. ACM; 2015:67--69. doi:10.1145/2767386.2767451' apa: 'Derakhshandeh, Z., Gmyr, R., Strothmann, T. F., A. Bazzi, R., W. Richa, A., & Scheideler, C. (2015). Brief Announcement: On the Feasibility of Leader Election and Shape Formation with Self-Organizing Programmable Matter. In Proceedings of the 2015 ACM Symposium on Principles of Distributed Computing, PODC 2015, Donostia-San Sebasti{\’{a}}n, Spain, July 21 - 23, 2015 (pp. 67--69). ACM. https://doi.org/10.1145/2767386.2767451' bibtex: '@inproceedings{Derakhshandeh_Gmyr_Strothmann_A. Bazzi_W. Richa_Scheideler_2015, title={Brief Announcement: On the Feasibility of Leader Election and Shape Formation with Self-Organizing Programmable Matter}, DOI={10.1145/2767386.2767451}, booktitle={Proceedings of the 2015 ACM Symposium on Principles of Distributed Computing, PODC 2015, Donostia-San Sebasti{\’{a}}n, Spain, July 21 - 23, 2015}, publisher={ACM}, author={Derakhshandeh, Zahra and Gmyr, Robert and Strothmann, Thim Frederik and A. Bazzi, Rida and W. Richa, Andrea and Scheideler, Christian}, year={2015}, pages={67--69} }' chicago: 'Derakhshandeh, Zahra, Robert Gmyr, Thim Frederik Strothmann, Rida A. Bazzi, Andrea W. Richa, and Christian Scheideler. “Brief Announcement: On the Feasibility of Leader Election and Shape Formation with Self-Organizing Programmable Matter.” In Proceedings of the 2015 ACM Symposium on Principles of Distributed Computing, PODC 2015, Donostia-San Sebasti{\’{a}}n, Spain, July 21 - 23, 2015, 67--69. ACM, 2015. https://doi.org/10.1145/2767386.2767451.' ieee: 'Z. Derakhshandeh, R. Gmyr, T. F. Strothmann, R. A. Bazzi, A. W. Richa, and C. Scheideler, “Brief Announcement: On the Feasibility of Leader Election and Shape Formation with Self-Organizing Programmable Matter,” in Proceedings of the 2015 ACM Symposium on Principles of Distributed Computing, PODC 2015, Donostia-San Sebasti{\’{a}}n, Spain, July 21 - 23, 2015, 2015, pp. 67--69.' mla: 'Derakhshandeh, Zahra, et al. “Brief Announcement: On the Feasibility of Leader Election and Shape Formation with Self-Organizing Programmable Matter.” Proceedings of the 2015 ACM Symposium on Principles of Distributed Computing, PODC 2015, Donostia-San Sebasti{\’{a}}n, Spain, July 21 - 23, 2015, ACM, 2015, pp. 67--69, doi:10.1145/2767386.2767451.' short: 'Z. Derakhshandeh, R. Gmyr, T.F. Strothmann, R. A. Bazzi, A. W. Richa, C. Scheideler, in: Proceedings of the 2015 ACM Symposium on Principles of Distributed Computing, PODC 2015, Donostia-San Sebasti{\’{a}}n, Spain, July 21 - 23, 2015, ACM, 2015, pp. 67--69.' date_created: 2018-03-28T05:52:44Z date_updated: 2022-01-06T06:53:36Z department: - _id: '79' doi: 10.1145/2767386.2767451 language: - iso: eng page: 67--69 publication: Proceedings of the 2015 ACM Symposium on Principles of Distributed Computing, PODC 2015, Donostia-San Sebasti{\'{a}}n, Spain, July 21 - 23, 2015 publication_identifier: isbn: - 978-1-4503-3617-8 publisher: ACM status: public title: 'Brief Announcement: On the Feasibility of Leader Election and Shape Formation with Self-Organizing Programmable Matter' type: conference user_id: '15504' year: '2015' ... --- _id: '1853' author: - first_name: Andreas full_name: Koutsopoulos, Andreas last_name: Koutsopoulos - first_name: Christian full_name: Scheideler, Christian id: '20792' last_name: Scheideler - first_name: Thim Frederik full_name: Strothmann, Thim Frederik id: '11319' last_name: Strothmann citation: ama: 'Koutsopoulos A, Scheideler C, Strothmann TF. Brief Announcement: Towards a Universal Approach for the Finite Departure Problem in Overlay Networks. In: Proceedings of the 27th ACM on Symposium on Parallelism in Algorithms and Architectures, SPAA 2015, Portland, OR, USA, June 13-15, 2015. ACM; 2015:77--79. doi:10.1145/2755573.2755614' apa: 'Koutsopoulos, A., Scheideler, C., & Strothmann, T. F. (2015). Brief Announcement: Towards a Universal Approach for the Finite Departure Problem in Overlay Networks. In Proceedings of the 27th ACM on Symposium on Parallelism in Algorithms and Architectures, SPAA 2015, Portland, OR, USA, June 13-15, 2015 (pp. 77--79). ACM. https://doi.org/10.1145/2755573.2755614' bibtex: '@inproceedings{Koutsopoulos_Scheideler_Strothmann_2015, title={Brief Announcement: Towards a Universal Approach for the Finite Departure Problem in Overlay Networks}, DOI={10.1145/2755573.2755614}, booktitle={Proceedings of the 27th ACM on Symposium on Parallelism in Algorithms and Architectures, SPAA 2015, Portland, OR, USA, June 13-15, 2015}, publisher={ACM}, author={Koutsopoulos, Andreas and Scheideler, Christian and Strothmann, Thim Frederik}, year={2015}, pages={77--79} }' chicago: 'Koutsopoulos, Andreas, Christian Scheideler, and Thim Frederik Strothmann. “Brief Announcement: Towards a Universal Approach for the Finite Departure Problem in Overlay Networks.” In Proceedings of the 27th ACM on Symposium on Parallelism in Algorithms and Architectures, SPAA 2015, Portland, OR, USA, June 13-15, 2015, 77--79. ACM, 2015. https://doi.org/10.1145/2755573.2755614.' ieee: 'A. Koutsopoulos, C. Scheideler, and T. F. Strothmann, “Brief Announcement: Towards a Universal Approach for the Finite Departure Problem in Overlay Networks,” in Proceedings of the 27th ACM on Symposium on Parallelism in Algorithms and Architectures, SPAA 2015, Portland, OR, USA, June 13-15, 2015, 2015, pp. 77--79.' mla: 'Koutsopoulos, Andreas, et al. “Brief Announcement: Towards a Universal Approach for the Finite Departure Problem in Overlay Networks.” Proceedings of the 27th ACM on Symposium on Parallelism in Algorithms and Architectures, SPAA 2015, Portland, OR, USA, June 13-15, 2015, ACM, 2015, pp. 77--79, doi:10.1145/2755573.2755614.' short: 'A. Koutsopoulos, C. Scheideler, T.F. Strothmann, in: Proceedings of the 27th ACM on Symposium on Parallelism in Algorithms and Architectures, SPAA 2015, Portland, OR, USA, June 13-15, 2015, ACM, 2015, pp. 77--79.' date_created: 2018-03-28T05:57:20Z date_updated: 2022-01-06T06:53:36Z department: - _id: '79' doi: 10.1145/2755573.2755614 language: - iso: eng page: 77--79 publication: Proceedings of the 27th ACM on Symposium on Parallelism in Algorithms and Architectures, SPAA 2015, Portland, OR, USA, June 13-15, 2015 publication_identifier: isbn: - 978-1-4503-3588-1 publisher: ACM status: public title: 'Brief Announcement: Towards a Universal Approach for the Finite Departure Problem in Overlay Networks' type: conference user_id: '15504' year: '2015' ... --- _id: '371' abstract: - lang: eng text: In this work we present the first distributed storage system that is provably robust against crash failures issued by an adaptive adversary, i.e., for each batch of requests the adversary can decide based on the entire system state which servers will be unavailable for that batch of requests. Despite up to \gamma n^{1/\log\log n} crashed servers, with \gamma>0 constant and n denoting the number of servers, our system can correctly process any batch of lookup and write requests (with at most a polylogarithmic number of requests issued at each non-crashed server) in at most a polylogarithmic number of communication rounds, with at most polylogarithmic time and work at each server and only a logarithmic storage overhead. Our system is based on previous work by Eikel and Scheideler (SPAA 2013), who presented IRIS, a distributed information system that is provably robust against the same kind of crash failures. However, IRIS is only able to serve lookup requests. Handling both lookup and write requests has turned out to require major changes in the design of IRIS. author: - first_name: Christian full_name: Scheideler, Christian id: '20792' last_name: Scheideler - first_name: Alexander full_name: Setzer, Alexander id: '11108' last_name: Setzer - first_name: Martina full_name: Eikel, Martina last_name: Eikel citation: ama: 'Scheideler C, Setzer A, Eikel M. RoBuSt: A Crash-Failure-Resistant Distributed Storage System. In: Proceedings of the 18th International Conference on Principles of Distributed Systems (OPODIS). LNCS. ; 2014:107--122. doi:10.1007/978-3-319-14472-6_8' apa: 'Scheideler, C., Setzer, A., & Eikel, M. (2014). RoBuSt: A Crash-Failure-Resistant Distributed Storage System. In Proceedings of the 18th International Conference on Principles of Distributed Systems (OPODIS) (pp. 107--122). https://doi.org/10.1007/978-3-319-14472-6_8' bibtex: '@inproceedings{Scheideler_Setzer_Eikel_2014, series={LNCS}, title={RoBuSt: A Crash-Failure-Resistant Distributed Storage System}, DOI={10.1007/978-3-319-14472-6_8}, booktitle={Proceedings of the 18th International Conference on Principles of Distributed Systems (OPODIS)}, author={Scheideler, Christian and Setzer, Alexander and Eikel, Martina}, year={2014}, pages={107--122}, collection={LNCS} }' chicago: 'Scheideler, Christian, Alexander Setzer, and Martina Eikel. “RoBuSt: A Crash-Failure-Resistant Distributed Storage System.” In Proceedings of the 18th International Conference on Principles of Distributed Systems (OPODIS), 107--122. LNCS, 2014. https://doi.org/10.1007/978-3-319-14472-6_8.' ieee: 'C. Scheideler, A. Setzer, and M. Eikel, “RoBuSt: A Crash-Failure-Resistant Distributed Storage System,” in Proceedings of the 18th International Conference on Principles of Distributed Systems (OPODIS), 2014, pp. 107--122.' mla: 'Scheideler, Christian, et al. “RoBuSt: A Crash-Failure-Resistant Distributed Storage System.” Proceedings of the 18th International Conference on Principles of Distributed Systems (OPODIS), 2014, pp. 107--122, doi:10.1007/978-3-319-14472-6_8.' short: 'C. Scheideler, A. Setzer, M. Eikel, in: Proceedings of the 18th International Conference on Principles of Distributed Systems (OPODIS), 2014, pp. 107--122.' date_created: 2017-10-17T12:42:04Z date_updated: 2022-01-06T06:59:31Z ddc: - '040' department: - _id: '79' doi: 10.1007/978-3-319-14472-6_8 file: - access_level: closed content_type: application/pdf creator: florida date_created: 2018-03-20T07:16:32Z date_updated: 2018-03-20T07:16:32Z file_id: '1401' file_name: 371-RoBuSt-OPODIS.pdf file_size: 269941 relation: main_file success: 1 file_date_updated: 2018-03-20T07:16:32Z has_accepted_license: '1' page: 107--122 project: - _id: '1' name: SFB 901 - _id: '13' name: SFB 901 - Subprojekt C1 - _id: '4' name: SFB 901 - Project Area C publication: Proceedings of the 18th International Conference on Principles of Distributed Systems (OPODIS) series_title: LNCS status: public title: 'RoBuSt: A Crash-Failure-Resistant Distributed Storage System' type: conference user_id: '15504' year: '2014' ... --- _id: '378' abstract: - lang: eng text: The Chord peer-to-peer system is considered, together with CAN, Tapestry and Pastry, as one of the pioneering works on peer-to-peer distributed hash tables (DHT) that inspired a large volume of papers and projects on DHTs as well as peer-to-peer systems in general. Chord, in particular, has been studied thoroughly, and many variants of Chord have been presented that optimize various criteria. Also, several implementations of Chord are available on various platforms. Though Chord is known to be very efficient and scalable and it can handle churn quite well, no protocol is known yet that guarantees that Chord is self-stabilizing, i.e., the Chord network can be recovered from any initial state in which the network is still weakly connected. This is not too surprising since it is known that the Chord network is not locally checkable for its current topology. We present a slight extension of the Chord network, called Re-Chord (reactive Chord), that turns out to be locally checkable, and we present a self-stabilizing distributed protocol for it that can recover the Re-Chord network from any initial state, in which the n peers are weakly connected, in O(nlogn) communication rounds. We also show that our protocol allows a new peer to join or an old peer to leave an already stable Re-Chord network so that within O(logn)^2) communication rounds the Re-Chord network is stable again. author: - first_name: Sebastian full_name: Kniesburges, Sebastian last_name: Kniesburges - first_name: Andreas full_name: Koutsopoulos, Andreas last_name: Koutsopoulos - first_name: Christian full_name: Scheideler, Christian id: '20792' last_name: Scheideler citation: ama: 'Kniesburges S, Koutsopoulos A, Scheideler C. Re-Chord: A Self-stabilizing Chord Overlay Network. Theory of Computing Systems. 2014;(3):591-612. doi:10.1007/s00224-012-9431-2' apa: 'Kniesburges, S., Koutsopoulos, A., & Scheideler, C. (2014). Re-Chord: A Self-stabilizing Chord Overlay Network. Theory of Computing Systems, (3), 591–612. https://doi.org/10.1007/s00224-012-9431-2' bibtex: '@article{Kniesburges_Koutsopoulos_Scheideler_2014, title={Re-Chord: A Self-stabilizing Chord Overlay Network}, DOI={10.1007/s00224-012-9431-2}, number={3}, journal={Theory of Computing Systems}, publisher={Springer}, author={Kniesburges, Sebastian and Koutsopoulos, Andreas and Scheideler, Christian}, year={2014}, pages={591–612} }' chicago: 'Kniesburges, Sebastian, Andreas Koutsopoulos, and Christian Scheideler. “Re-Chord: A Self-Stabilizing Chord Overlay Network.” Theory of Computing Systems, no. 3 (2014): 591–612. https://doi.org/10.1007/s00224-012-9431-2.' ieee: 'S. Kniesburges, A. Koutsopoulos, and C. Scheideler, “Re-Chord: A Self-stabilizing Chord Overlay Network,” Theory of Computing Systems, no. 3, pp. 591–612, 2014.' mla: 'Kniesburges, Sebastian, et al. “Re-Chord: A Self-Stabilizing Chord Overlay Network.” Theory of Computing Systems, no. 3, Springer, 2014, pp. 591–612, doi:10.1007/s00224-012-9431-2.' short: S. Kniesburges, A. Koutsopoulos, C. Scheideler, Theory of Computing Systems (2014) 591–612. date_created: 2017-10-17T12:42:05Z date_updated: 2022-01-06T06:59:35Z ddc: - '040' department: - _id: '79' doi: 10.1007/s00224-012-9431-2 file: - access_level: closed content_type: application/pdf creator: florida date_created: 2018-03-20T07:13:36Z date_updated: 2018-03-20T07:13:36Z file_id: '1396' file_name: 378-re-chord_journal.pdf file_size: 310961 relation: main_file success: 1 file_date_updated: 2018-03-20T07:13:36Z has_accepted_license: '1' issue: '3' page: 591-612 project: - _id: '1' name: SFB 901 - _id: '5' name: SFB 901 - Subprojekt A1 - _id: '4' name: SFB 901 - Project Area C - _id: '13' name: SFB 901 - Subproject C1 - _id: '2' name: SFB 901 - Project Area A publication: Theory of Computing Systems publisher: Springer status: public title: 'Re-Chord: A Self-stabilizing Chord Overlay Network' type: journal_article user_id: '477' year: '2014' ... --- _id: '387' abstract: - lang: eng text: This article studies the design of medium access control (MAC) protocols for wireless networks that are provably robust against arbitrary and unpredictable disruptions (e.g., due to unintentional external interference from co-existing networks or due to jamming). We consider a wireless network consisting of a set of n honest and reliable nodes within transmission (and interference) range of each other, and we model the external disruptions with a powerful adaptive adversary. This adversary may know the protocol and its entire history and can use this knowledge to jam the wireless channel at will at any time. It is allowed to jam a (1 − )-fraction of the timesteps, for an arbitrary constant > 0 unknown to the nodes. The nodes cannot distinguish between the adversarial jamming or a collision of two or more messages that are sent at the same time. We demonstrate, for the first time, that there is a local-control MAC protocol requiring only very limited knowledge about the adversary and the network that achieves a constant (asymptotically optimal) throughput for the nonjammed time periods under any of the aforementioned adversarial strategies. The derived principles are also useful to build robust applications on top of the MAC layer, and we present an exemplary study for leader election, one of the most fundamental tasks in distributed computing. author: - first_name: Baruch full_name: Awerbuch, Baruch last_name: Awerbuch - first_name: Andrea W. full_name: Richa, Andrea W. last_name: Richa - first_name: Christian full_name: Scheideler, Christian id: '20792' last_name: Scheideler - first_name: Stefan full_name: Schmid, Stefan last_name: Schmid - first_name: Jin full_name: Zhang, Jin last_name: Zhang citation: ama: Awerbuch B, Richa AW, Scheideler C, Schmid S, Zhang J. Principles of Robust Medium Access and an Application to Leader Election. Transactions on Algorithms. 2014;(4). doi:10.1145/2635818 apa: Awerbuch, B., Richa, A. W., Scheideler, C., Schmid, S., & Zhang, J. (2014). Principles of Robust Medium Access and an Application to Leader Election. Transactions on Algorithms, (4). https://doi.org/10.1145/2635818 bibtex: '@article{Awerbuch_Richa_Scheideler_Schmid_Zhang_2014, title={Principles of Robust Medium Access and an Application to Leader Election}, DOI={10.1145/2635818}, number={4}, journal={Transactions on Algorithms}, publisher={ACM}, author={Awerbuch, Baruch and Richa, Andrea W. and Scheideler, Christian and Schmid, Stefan and Zhang, Jin}, year={2014} }' chicago: Awerbuch, Baruch, Andrea W. Richa, Christian Scheideler, Stefan Schmid, and Jin Zhang. “Principles of Robust Medium Access and an Application to Leader Election.” Transactions on Algorithms, no. 4 (2014). https://doi.org/10.1145/2635818. ieee: B. Awerbuch, A. W. Richa, C. Scheideler, S. Schmid, and J. Zhang, “Principles of Robust Medium Access and an Application to Leader Election,” Transactions on Algorithms, no. 4, 2014. mla: Awerbuch, Baruch, et al. “Principles of Robust Medium Access and an Application to Leader Election.” Transactions on Algorithms, no. 4, ACM, 2014, doi:10.1145/2635818. short: B. Awerbuch, A.W. Richa, C. Scheideler, S. Schmid, J. Zhang, Transactions on Algorithms (2014). date_created: 2017-10-17T12:42:07Z date_updated: 2022-01-06T06:59:47Z ddc: - '040' department: - _id: '79' doi: 10.1145/2635818 file: - access_level: closed content_type: application/pdf creator: florida date_created: 2018-03-20T07:02:33Z date_updated: 2018-03-20T07:02:33Z file_id: '1388' file_name: 387-a24-awerbuch_2_.pdf file_size: 521454 relation: main_file success: 1 file_date_updated: 2018-03-20T07:02:33Z has_accepted_license: '1' issue: '4' project: - _id: '1' name: SFB 901 - _id: '13' name: SFB 901 - Subprojekt C1 - _id: '4' name: SFB 901 - Project Area C publication: Transactions on Algorithms publisher: ACM status: public title: Principles of Robust Medium Access and an Application to Leader Election type: journal_article user_id: '477' year: '2014' ... --- _id: '1858' author: - first_name: Riko full_name: Jacob, Riko last_name: Jacob - first_name: Andrea full_name: W. Richa, Andrea last_name: W. Richa - first_name: Christian full_name: Scheideler, Christian id: '20792' last_name: Scheideler - first_name: Stefan full_name: Schmid, Stefan last_name: Schmid - first_name: Hanjo full_name: Täubig, Hanjo last_name: Täubig citation: ama: 'Jacob R, W. Richa A, Scheideler C, Schmid S, Täubig H. SKIP*: A Self-Stabilizing Skip Graph. J ACM. 2014;(6):36:1--36:26. doi:10.1145/2629695' apa: 'Jacob, R., W. Richa, A., Scheideler, C., Schmid, S., & Täubig, H. (2014). SKIP*: A Self-Stabilizing Skip Graph. J. ACM, (6), 36:1--36:26. https://doi.org/10.1145/2629695' bibtex: '@article{Jacob_W. Richa_Scheideler_Schmid_Täubig_2014, title={SKIP*: A Self-Stabilizing Skip Graph}, DOI={10.1145/2629695}, number={6}, journal={J. ACM}, author={Jacob, Riko and W. Richa, Andrea and Scheideler, Christian and Schmid, Stefan and Täubig, Hanjo}, year={2014}, pages={36:1--36:26} }' chicago: 'Jacob, Riko, Andrea W. Richa, Christian Scheideler, Stefan Schmid, and Hanjo Täubig. “SKIP*: A Self-Stabilizing Skip Graph.” J. ACM, no. 6 (2014): 36:1--36:26. https://doi.org/10.1145/2629695.' ieee: 'R. Jacob, A. W. Richa, C. Scheideler, S. Schmid, and H. Täubig, “SKIP*: A Self-Stabilizing Skip Graph,” J. ACM, no. 6, pp. 36:1--36:26, 2014.' mla: 'Jacob, Riko, et al. “SKIP*: A Self-Stabilizing Skip Graph.” J. ACM, no. 6, 2014, pp. 36:1--36:26, doi:10.1145/2629695.' short: R. Jacob, A. W. Richa, C. Scheideler, S. Schmid, H. Täubig, J. ACM (2014) 36:1--36:26. date_created: 2018-03-28T06:17:25Z date_updated: 2022-01-06T06:53:40Z department: - _id: '79' doi: 10.1145/2629695 issue: '6' page: 36:1--36:26 publication: J. ACM status: public title: 'SKIP*: A Self-Stabilizing Skip Graph' type: journal_article user_id: '15504' year: '2014' ... --- _id: '1863' author: - first_name: Zahra full_name: Derakhshandeh, Zahra last_name: Derakhshandeh - first_name: Shlomi full_name: Dolev, Shlomi last_name: Dolev - first_name: Robert full_name: Gmyr, Robert last_name: Gmyr - first_name: Andrea full_name: W. Richa, Andrea last_name: W. Richa - first_name: Christian full_name: Scheideler, Christian id: '20792' last_name: Scheideler - first_name: Thim Frederik full_name: Strothmann, Thim Frederik id: '11319' last_name: Strothmann citation: ama: 'Derakhshandeh Z, Dolev S, Gmyr R, W. Richa A, Scheideler C, Strothmann TF. Brief announcement: amoebot - a new model for programmable matter. In: 26th ACM Symposium on Parallelism in Algorithms and Architectures, SPAA’14, Prague, Czech Republic - June 23 - 25, 2014. ACM; 2014:220--222. doi:10.1145/2612669.2612712' apa: 'Derakhshandeh, Z., Dolev, S., Gmyr, R., W. Richa, A., Scheideler, C., & Strothmann, T. F. (2014). Brief announcement: amoebot - a new model for programmable matter. In 26th ACM Symposium on Parallelism in Algorithms and Architectures, SPAA’14, Prague, Czech Republic - June 23 - 25, 2014 (pp. 220--222). ACM. https://doi.org/10.1145/2612669.2612712' bibtex: '@inproceedings{Derakhshandeh_Dolev_Gmyr_W. Richa_Scheideler_Strothmann_2014, title={Brief announcement: amoebot - a new model for programmable matter}, DOI={10.1145/2612669.2612712}, booktitle={26th ACM Symposium on Parallelism in Algorithms and Architectures, SPAA’14, Prague, Czech Republic - June 23 - 25, 2014}, publisher={ACM}, author={Derakhshandeh, Zahra and Dolev, Shlomi and Gmyr, Robert and W. Richa, Andrea and Scheideler, Christian and Strothmann, Thim Frederik}, year={2014}, pages={220--222} }' chicago: 'Derakhshandeh, Zahra, Shlomi Dolev, Robert Gmyr, Andrea W. Richa, Christian Scheideler, and Thim Frederik Strothmann. “Brief Announcement: Amoebot - a New Model for Programmable Matter.” In 26th ACM Symposium on Parallelism in Algorithms and Architectures, SPAA’14, Prague, Czech Republic - June 23 - 25, 2014, 220--222. ACM, 2014. https://doi.org/10.1145/2612669.2612712.' ieee: 'Z. Derakhshandeh, S. Dolev, R. Gmyr, A. W. Richa, C. Scheideler, and T. F. Strothmann, “Brief announcement: amoebot - a new model for programmable matter,” in 26th ACM Symposium on Parallelism in Algorithms and Architectures, SPAA’14, Prague, Czech Republic - June 23 - 25, 2014, 2014, pp. 220--222.' mla: 'Derakhshandeh, Zahra, et al. “Brief Announcement: Amoebot - a New Model for Programmable Matter.” 26th ACM Symposium on Parallelism in Algorithms and Architectures, SPAA’14, Prague, Czech Republic - June 23 - 25, 2014, ACM, 2014, pp. 220--222, doi:10.1145/2612669.2612712.' short: 'Z. Derakhshandeh, S. Dolev, R. Gmyr, A. W. Richa, C. Scheideler, T.F. Strothmann, in: 26th ACM Symposium on Parallelism in Algorithms and Architectures, SPAA’14, Prague, Czech Republic - June 23 - 25, 2014, ACM, 2014, pp. 220--222.' date_created: 2018-03-28T06:24:00Z date_updated: 2022-01-06T06:53:47Z department: - _id: '79' doi: 10.1145/2612669.2612712 language: - iso: eng page: 220--222 publication: 26th ACM Symposium on Parallelism in Algorithms and Architectures, SPAA'14, Prague, Czech Republic - June 23 - 25, 2014 publication_identifier: isbn: - 978-1-4503-2821-0 publisher: ACM status: public title: 'Brief announcement: amoebot - a new model for programmable matter' type: conference user_id: '15504' year: '2014' ... --- _id: '446' abstract: - lang: eng text: 'This paper considers the problem of how to efficiently share a wireless medium which is subject to harsh external interference or even jamming. While this problem has already been studied intensively for simplistic single-hop or unit disk graph models, we make a leap forward and study MAC protocols for the SINR interference model (a.k.a. the physical model). We make two contributions. First, we introduce a new adversarial SINR model which captures a wide range of interference phenomena. Concretely, we consider a powerful, adaptive adversary which can jam nodes at arbitrary times and which is only limited by some energy budget. The second contribution of this paper is a distributed MAC protocol which provably achieves a constant competitive throughput in this environment: we show that, with high probability, the protocol ensures that a constant fraction of the non-blocked time periods is used for successful transmissions.' author: - first_name: Adrian full_name: Ogierman, Adrian last_name: Ogierman - first_name: Andrea W. full_name: Richa, Andrea W. last_name: Richa - first_name: Christian full_name: Scheideler, Christian id: '20792' last_name: Scheideler - first_name: Stefan full_name: Schmid, Stefan last_name: Schmid - first_name: Jin full_name: Zhang, Jin last_name: Zhang citation: ama: 'Ogierman A, Richa AW, Scheideler C, Schmid S, Zhang J. Competitive MAC under adversarial SINR. In: Proceedings of the 33rd Annual IEEE International Conference on Computer Communications (INFOCOM). ; 2014:2751--2759. doi:10.1109/INFOCOM.2014.6848224' apa: Ogierman, A., Richa, A. W., Scheideler, C., Schmid, S., & Zhang, J. (2014). Competitive MAC under adversarial SINR. In Proceedings of the 33rd Annual IEEE International Conference on Computer Communications (INFOCOM) (pp. 2751--2759). https://doi.org/10.1109/INFOCOM.2014.6848224 bibtex: '@inproceedings{Ogierman_Richa_Scheideler_Schmid_Zhang_2014, title={Competitive MAC under adversarial SINR}, DOI={10.1109/INFOCOM.2014.6848224}, booktitle={Proceedings of the 33rd Annual IEEE International Conference on Computer Communications (INFOCOM)}, author={Ogierman, Adrian and Richa, Andrea W. and Scheideler, Christian and Schmid, Stefan and Zhang, Jin}, year={2014}, pages={2751--2759} }' chicago: Ogierman, Adrian, Andrea W. Richa, Christian Scheideler, Stefan Schmid, and Jin Zhang. “Competitive MAC under Adversarial SINR.” In Proceedings of the 33rd Annual IEEE International Conference on Computer Communications (INFOCOM), 2751--2759, 2014. https://doi.org/10.1109/INFOCOM.2014.6848224. ieee: A. Ogierman, A. W. Richa, C. Scheideler, S. Schmid, and J. Zhang, “Competitive MAC under adversarial SINR,” in Proceedings of the 33rd Annual IEEE International Conference on Computer Communications (INFOCOM), 2014, pp. 2751--2759. mla: Ogierman, Adrian, et al. “Competitive MAC under Adversarial SINR.” Proceedings of the 33rd Annual IEEE International Conference on Computer Communications (INFOCOM), 2014, pp. 2751--2759, doi:10.1109/INFOCOM.2014.6848224. short: 'A. Ogierman, A.W. Richa, C. Scheideler, S. Schmid, J. Zhang, in: Proceedings of the 33rd Annual IEEE International Conference on Computer Communications (INFOCOM), 2014, pp. 2751--2759.' date_created: 2017-10-17T12:42:18Z date_updated: 2022-01-06T07:01:05Z ddc: - '040' department: - _id: '79' doi: 10.1109/INFOCOM.2014.6848224 file: - access_level: closed content_type: application/pdf creator: florida date_created: 2018-03-16T11:27:04Z date_updated: 2018-03-16T11:27:04Z file_id: '1348' file_name: 446-infocom14_01.pdf file_size: 378095 relation: main_file success: 1 file_date_updated: 2018-03-16T11:27:04Z has_accepted_license: '1' page: 2751--2759 project: - _id: '1' name: SFB 901 - _id: '13' name: SFB 901 - Subprojekt C1 - _id: '4' name: SFB 901 - Project Area C publication: Proceedings of the 33rd Annual IEEE International Conference on Computer Communications (INFOCOM) status: public title: Competitive MAC under adversarial SINR type: conference user_id: '15504' year: '2014' ... --- _id: '459' abstract: - lang: eng text: In this survey article, we discuss two algorithmic research areas that emerge from problems that arise when resources are offered in the cloud. The first area, online leasing, captures problems arising from the fact that resources in the cloud are not bought, but leased by cloud vendors. The second area, Distributed Storage Systems, deals with problems arising from so-called cloud federations, i.e., when several cloud providers are needed to fulfill a given task. author: - first_name: Sebastian full_name: Kniesburges, Sebastian last_name: Kniesburges - first_name: Christine full_name: Markarian, Christine id: '37612' last_name: Markarian - first_name: Friedhelm full_name: Meyer auf der Heide, Friedhelm id: '15523' last_name: Meyer auf der Heide - first_name: Christian full_name: Scheideler, Christian id: '20792' last_name: Scheideler citation: ama: 'Kniesburges S, Markarian C, Meyer auf der Heide F, Scheideler C. Algorithmic Aspects of Resource Management in the Cloud. In: Proceedings of the 21st International Colloquium on Structural Information and Communication Complexity (SIROCCO). LNCS. ; 2014:1-13. doi:10.1007/978-3-319-09620-9_1' apa: Kniesburges, S., Markarian, C., Meyer auf der Heide, F., & Scheideler, C. (2014). Algorithmic Aspects of Resource Management in the Cloud. In Proceedings of the 21st International Colloquium on Structural Information and Communication Complexity (SIROCCO) (pp. 1–13). https://doi.org/10.1007/978-3-319-09620-9_1 bibtex: '@inproceedings{Kniesburges_Markarian_Meyer auf der Heide_Scheideler_2014, series={LNCS}, title={Algorithmic Aspects of Resource Management in the Cloud}, DOI={10.1007/978-3-319-09620-9_1}, booktitle={Proceedings of the 21st International Colloquium on Structural Information and Communication Complexity (SIROCCO)}, author={Kniesburges, Sebastian and Markarian, Christine and Meyer auf der Heide, Friedhelm and Scheideler, Christian}, year={2014}, pages={1–13}, collection={LNCS} }' chicago: Kniesburges, Sebastian, Christine Markarian, Friedhelm Meyer auf der Heide, and Christian Scheideler. “Algorithmic Aspects of Resource Management in the Cloud.” In Proceedings of the 21st International Colloquium on Structural Information and Communication Complexity (SIROCCO), 1–13. LNCS, 2014. https://doi.org/10.1007/978-3-319-09620-9_1. ieee: S. Kniesburges, C. Markarian, F. Meyer auf der Heide, and C. Scheideler, “Algorithmic Aspects of Resource Management in the Cloud,” in Proceedings of the 21st International Colloquium on Structural Information and Communication Complexity (SIROCCO), 2014, pp. 1–13. mla: Kniesburges, Sebastian, et al. “Algorithmic Aspects of Resource Management in the Cloud.” Proceedings of the 21st International Colloquium on Structural Information and Communication Complexity (SIROCCO), 2014, pp. 1–13, doi:10.1007/978-3-319-09620-9_1. short: 'S. Kniesburges, C. Markarian, F. Meyer auf der Heide, C. Scheideler, in: Proceedings of the 21st International Colloquium on Structural Information and Communication Complexity (SIROCCO), 2014, pp. 1–13.' date_created: 2017-10-17T12:42:21Z date_updated: 2022-01-06T07:01:14Z ddc: - '040' department: - _id: '79' - _id: '63' doi: 10.1007/978-3-319-09620-9_1 file: - access_level: closed content_type: application/pdf creator: florida date_created: 2018-03-16T11:21:54Z date_updated: 2018-03-16T11:21:54Z file_id: '1338' file_name: 459-SIROCCO2014.pdf file_size: 274496 relation: main_file success: 1 file_date_updated: 2018-03-16T11:21:54Z has_accepted_license: '1' page: 1-13 project: - _id: '1' name: SFB 901 - _id: '5' name: SFB 901 - Subprojekt A1 - _id: '2' name: SFB 901 - Project Area A publication: Proceedings of the 21st International Colloquium on Structural Information and Communication Complexity (SIROCCO) series_title: LNCS status: public title: Algorithmic Aspects of Resource Management in the Cloud type: conference user_id: '477' year: '2014' ... --- _id: '464' abstract: - lang: eng text: Topological self-stabilization is an important concept to build robust open distributed systems (such as peer-to-peer systems) where nodes can organize themselves into meaningful network topologies. The goal is to devise distributed algorithms where nodes forward, insert, and delete links to neighboring nodes, and that converge quickly to such a desirable topology, independently of the initial network configuration. This article proposes a new model to study the parallel convergence time. Our model sheds light on the achievable parallelism by avoiding bottlenecks of existing models that can yield a distorted picture. As a case study, we consider local graph linearization—i.e., how to build a sorted list of the nodes of a connected graph in a distributed and self-stabilizing manner. In order to study the main structure and properties of our model, we propose two variants of a most simple local linearization algorithm. For each of these variants, we present analyses of the worst-case and bestcase parallel time complexities, as well as the performance under a greedy selection of the actions to be executed. It turns out that the analysis is non-trivial despite the simple setting, and to complement our formal insights we report on our experiments which indicate that the runtimes may be better in the average case. author: - first_name: Dominik full_name: Gall, Dominik last_name: Gall - first_name: Riko full_name: Jacob, Riko last_name: Jacob - first_name: Andrea W. full_name: Richa, Andrea W. last_name: Richa - first_name: Christian full_name: Scheideler, Christian id: '20792' last_name: Scheideler - first_name: Stefan full_name: Schmid, Stefan last_name: Schmid - first_name: 'Hanjo ' full_name: 'Täubig, Hanjo ' last_name: Täubig citation: ama: Gall D, Jacob R, Richa AW, Scheideler C, Schmid S, Täubig H. A Note on the Parallel Runtime of Self-Stabilizing Graph Linearization. Theory of Computing Systems. 2014;(1):110-135. doi:10.1007/s00224-013-9504-x apa: Gall, D., Jacob, R., Richa, A. W., Scheideler, C., Schmid, S., & Täubig, H. (2014). A Note on the Parallel Runtime of Self-Stabilizing Graph Linearization. Theory of Computing Systems, (1), 110–135. https://doi.org/10.1007/s00224-013-9504-x bibtex: '@article{Gall_Jacob_Richa_Scheideler_Schmid_Täubig_2014, title={A Note on the Parallel Runtime of Self-Stabilizing Graph Linearization}, DOI={10.1007/s00224-013-9504-x}, number={1}, journal={Theory of Computing Systems}, publisher={Springer}, author={Gall, Dominik and Jacob, Riko and Richa, Andrea W. and Scheideler, Christian and Schmid, Stefan and Täubig, Hanjo }, year={2014}, pages={110–135} }' chicago: 'Gall, Dominik, Riko Jacob, Andrea W. Richa, Christian Scheideler, Stefan Schmid, and Hanjo Täubig. “A Note on the Parallel Runtime of Self-Stabilizing Graph Linearization.” Theory of Computing Systems, no. 1 (2014): 110–35. https://doi.org/10.1007/s00224-013-9504-x.' ieee: D. Gall, R. Jacob, A. W. Richa, C. Scheideler, S. Schmid, and H. Täubig, “A Note on the Parallel Runtime of Self-Stabilizing Graph Linearization,” Theory of Computing Systems, no. 1, pp. 110–135, 2014. mla: Gall, Dominik, et al. “A Note on the Parallel Runtime of Self-Stabilizing Graph Linearization.” Theory of Computing Systems, no. 1, Springer, 2014, pp. 110–35, doi:10.1007/s00224-013-9504-x. short: D. Gall, R. Jacob, A.W. Richa, C. Scheideler, S. Schmid, H. Täubig, Theory of Computing Systems (2014) 110–135. date_created: 2017-10-17T12:42:22Z date_updated: 2022-01-06T07:01:16Z ddc: - '040' department: - _id: '79' doi: 10.1007/s00224-013-9504-x file: - access_level: closed content_type: application/pdf creator: florida date_created: 2018-03-16T11:19:45Z date_updated: 2018-03-16T11:19:45Z file_id: '1334' file_name: 464-GJRSST2014.pdf file_size: 947484 relation: main_file success: 1 file_date_updated: 2018-03-16T11:19:45Z has_accepted_license: '1' issue: '1' page: 110-135 project: - _id: '1' name: SFB 901 - _id: '5' name: SFB 901 - Subprojekt A1 - _id: '2' name: SFB 901 - Project Area A publication: Theory of Computing Systems publisher: Springer status: public title: A Note on the Parallel Runtime of Self-Stabilizing Graph Linearization type: journal_article user_id: '477' year: '2014' ... --- _id: '393' abstract: - lang: eng text: 'A fundamental problem for peer-to-peer systems is to maintain connectivity while nodes are leaving, i.e., the nodes requesting to leave the peer-to-peer system are excluded from the overlay network without affecting its connectivity. There are a number of studies for safe node exclusion if the overlay is in a well-defined state initially. Surprisingly, the problem is not formally studied yet for the case in which the overlay network is in an arbitrary initial state, i.e., when looking for a self-stabilizing solution for excluding leaving nodes. We study this problem in two variants: the Finite Departure Problem (FDP) ) and the Finite Sleep Problem (FSP). In the FDP the leaving nodes have to irrevocably decide when it is safe to leave the network, whereas in the FSP, this leaving decision does not have to be final: the nodes may resume computation if necessary. We show that there is no self-stabilizing distributed algorithm for the FDP, even in a synchronous message passing model. To allow a solution, we introduce an oracle called NIDEC and show that it is sufficient even for the asynchronous message passing model by proposing an algorithm that can solve the FDP using NIDEC. We also show that a solution to the FSP does not require an oracle.' author: - first_name: Dianne full_name: Foreback, Dianne last_name: Foreback - first_name: Andreas full_name: Koutsopoulos, Andreas last_name: Koutsopoulos - first_name: Mikhail full_name: Nesterenko, Mikhail last_name: Nesterenko - first_name: Christian full_name: Scheideler, Christian id: '20792' last_name: Scheideler - first_name: Thim Frederik full_name: Strothmann, Thim Frederik id: '11319' last_name: Strothmann citation: ama: 'Foreback D, Koutsopoulos A, Nesterenko M, Scheideler C, Strothmann TF. On Stabilizing Departures in Overlay Networks. In: Proceedings of the 16th International Symposium on Stabilization, Safety, and Security of Distributed Systems. LNCS. ; 2014:48--62. doi:10.1007/978-3-319-11764-5_4' apa: Foreback, D., Koutsopoulos, A., Nesterenko, M., Scheideler, C., & Strothmann, T. F. (2014). On Stabilizing Departures in Overlay Networks. In Proceedings of the 16th International Symposium on Stabilization, Safety, and Security of Distributed Systems (pp. 48--62). https://doi.org/10.1007/978-3-319-11764-5_4 bibtex: '@inproceedings{Foreback_Koutsopoulos_Nesterenko_Scheideler_Strothmann_2014, series={LNCS}, title={On Stabilizing Departures in Overlay Networks}, DOI={10.1007/978-3-319-11764-5_4}, booktitle={Proceedings of the 16th International Symposium on Stabilization, Safety, and Security of Distributed Systems}, author={Foreback, Dianne and Koutsopoulos, Andreas and Nesterenko, Mikhail and Scheideler, Christian and Strothmann, Thim Frederik}, year={2014}, pages={48--62}, collection={LNCS} }' chicago: Foreback, Dianne, Andreas Koutsopoulos, Mikhail Nesterenko, Christian Scheideler, and Thim Frederik Strothmann. “On Stabilizing Departures in Overlay Networks.” In Proceedings of the 16th International Symposium on Stabilization, Safety, and Security of Distributed Systems, 48--62. LNCS, 2014. https://doi.org/10.1007/978-3-319-11764-5_4. ieee: D. Foreback, A. Koutsopoulos, M. Nesterenko, C. Scheideler, and T. F. Strothmann, “On Stabilizing Departures in Overlay Networks,” in Proceedings of the 16th International Symposium on Stabilization, Safety, and Security of Distributed Systems, 2014, pp. 48--62. mla: Foreback, Dianne, et al. “On Stabilizing Departures in Overlay Networks.” Proceedings of the 16th International Symposium on Stabilization, Safety, and Security of Distributed Systems, 2014, pp. 48--62, doi:10.1007/978-3-319-11764-5_4. short: 'D. Foreback, A. Koutsopoulos, M. Nesterenko, C. Scheideler, T.F. Strothmann, in: Proceedings of the 16th International Symposium on Stabilization, Safety, and Security of Distributed Systems, 2014, pp. 48--62.' date_created: 2017-10-17T12:42:08Z date_updated: 2022-01-06T06:59:56Z ddc: - '040' department: - _id: '79' doi: 10.1007/978-3-319-11764-5_4 file: - access_level: closed content_type: application/pdf creator: florida date_created: 2018-03-20T07:00:28Z date_updated: 2018-03-20T07:00:28Z file_id: '1384' file_name: 393-departures.pdf file_size: 287539 relation: main_file success: 1 file_date_updated: 2018-03-20T07:00:28Z has_accepted_license: '1' language: - iso: eng page: 48--62 project: - _id: '1' name: SFB 901 - _id: '5' name: SFB 901 - Subprojekt A1 - _id: '2' name: SFB 901 - Project Area A publication: Proceedings of the 16th International Symposium on Stabilization, Safety, and Security of Distributed Systems series_title: LNCS status: public title: On Stabilizing Departures in Overlay Networks type: conference user_id: '477' year: '2014' ... --- _id: '397' abstract: - lang: eng text: We present a factor $14D^2$ approximation algorithm for the minimum linear arrangement problem on series-parallel graphs, where $D$ is the maximum degree in the graph. Given a suitable decomposition of the graph, our algorithm runs in time $O(|E|)$ and is very easy to implement. Its divide-and-conquer approach allows for an effective parallelization. Note that a suitable decomposition can also be computed in time $O(|E|\log{|E|})$ (or even $O(\log{|E|}\log^*{|E|})$ on an EREW PRAM using $O(|E|)$ processors). For the proof of the approximation ratio, we use a sophisticated charging method that uses techniques similar to amortized analysis in advanced data structures. On general graphs, the minimum linear arrangement problem is known to be NP-hard. To the best of our knowledge, the minimum linear arrangement problem on series-parallel graphs has not been studied before. author: - first_name: Christian full_name: Scheideler, Christian id: '20792' last_name: Scheideler - first_name: Martina full_name: Eikel, Martina last_name: Eikel - first_name: Alexander full_name: Setzer, Alexander id: '11108' last_name: Setzer citation: ama: 'Scheideler C, Eikel M, Setzer A. Minimum Linear Arrangement of Series-Parallel Graphs. In: Proceedings of the 12th Workshop on Approximation and Online Algorithms (WAOA). LNCS. ; 2014:168--180.' apa: Scheideler, C., Eikel, M., & Setzer, A. (2014). Minimum Linear Arrangement of Series-Parallel Graphs. In Proceedings of the 12th Workshop on Approximation and Online Algorithms (WAOA) (pp. 168--180). bibtex: '@inproceedings{Scheideler_Eikel_Setzer_2014, series={LNCS}, title={Minimum Linear Arrangement of Series-Parallel Graphs}, booktitle={Proceedings of the 12th Workshop on Approximation and Online Algorithms (WAOA)}, author={Scheideler, Christian and Eikel, Martina and Setzer, Alexander}, year={2014}, pages={168--180}, collection={LNCS} }' chicago: Scheideler, Christian, Martina Eikel, and Alexander Setzer. “Minimum Linear Arrangement of Series-Parallel Graphs.” In Proceedings of the 12th Workshop on Approximation and Online Algorithms (WAOA), 168--180. LNCS, 2014. ieee: C. Scheideler, M. Eikel, and A. Setzer, “Minimum Linear Arrangement of Series-Parallel Graphs,” in Proceedings of the 12th Workshop on Approximation and Online Algorithms (WAOA), 2014, pp. 168--180. mla: Scheideler, Christian, et al. “Minimum Linear Arrangement of Series-Parallel Graphs.” Proceedings of the 12th Workshop on Approximation and Online Algorithms (WAOA), 2014, pp. 168--180. short: 'C. Scheideler, M. Eikel, A. Setzer, in: Proceedings of the 12th Workshop on Approximation and Online Algorithms (WAOA), 2014, pp. 168--180.' date_created: 2017-10-17T12:42:09Z date_updated: 2022-01-06T07:00:02Z ddc: - '040' department: - _id: '79' file: - access_level: closed content_type: application/pdf creator: florida date_created: 2018-03-20T06:58:44Z date_updated: 2018-03-20T06:58:44Z file_id: '1381' file_name: 397-WAOA14_01.pdf file_size: 365818 relation: main_file success: 1 file_date_updated: 2018-03-20T06:58:44Z has_accepted_license: '1' page: 168--180 project: - _id: '1' name: SFB 901 - _id: '5' name: SFB 901 - Subprojekt A1 - _id: '2' name: SFB 901 - Project Area A publication: Proceedings of the 12th Workshop on Approximation and Online Algorithms (WAOA) series_title: LNCS status: public title: Minimum Linear Arrangement of Series-Parallel Graphs type: conference user_id: '15504' year: '2014' ... --- _id: '412' abstract: - lang: eng text: In this paper we present and analyze HSkip+, a self-stabilizing overlay network for nodes with arbitrary heterogeneous bandwidths. HSkip+ has the same topology as the Skip+ graph proposed by Jacob et al. [PODC 2009] but its self-stabilization mechanism significantly outperforms the self-stabilization mechanism proposed for Skip+. Also, the nodes are now ordered according to their bandwidths and not according to their identifiers. Various other solutions have already been proposed for overlay networks with heterogeneous bandwidths, but they are not self-stabilizing. In addition to HSkip+ being self-stabilizing, its performance is on par with the best previous bounds on the time and work for joining or leaving a network of peers of logarithmic diameter and degree and arbitrary bandwidths. Also, the dilation and congestion for routing messages is on par with the best previous bounds for such networks, so that HSkip+ combines the advantages of both worlds. Our theoretical investigations are backed by simulations demonstrating that HSkip+ is indeed performing much better than Skip+ and working correctly under high churn rates. author: - first_name: Matthias full_name: Feldotto, Matthias id: '14052' last_name: Feldotto orcid: 0000-0003-1348-6516 - first_name: Christian full_name: Scheideler, Christian id: '20792' last_name: Scheideler - first_name: Kalman full_name: Graffi, Kalman last_name: Graffi citation: ama: 'Feldotto M, Scheideler C, Graffi K. HSkip+: A Self-Stabilizing Overlay Network for Nodes with Heterogeneous Bandwidths. In: Proceedings of the 14th IEEE International Conference on Peer-to-Peer Computing (P2P). ; 2014:1-10. doi:10.1109/P2P.2014.6934300' apa: 'Feldotto, M., Scheideler, C., & Graffi, K. (2014). HSkip+: A Self-Stabilizing Overlay Network for Nodes with Heterogeneous Bandwidths. In Proceedings of the 14th IEEE International Conference on Peer-to-Peer Computing (P2P) (pp. 1–10). https://doi.org/10.1109/P2P.2014.6934300' bibtex: '@inproceedings{Feldotto_Scheideler_Graffi_2014, title={HSkip+: A Self-Stabilizing Overlay Network for Nodes with Heterogeneous Bandwidths}, DOI={10.1109/P2P.2014.6934300}, booktitle={Proceedings of the 14th IEEE International Conference on Peer-to-Peer Computing (P2P)}, author={Feldotto, Matthias and Scheideler, Christian and Graffi, Kalman}, year={2014}, pages={1–10} }' chicago: 'Feldotto, Matthias, Christian Scheideler, and Kalman Graffi. “HSkip+: A Self-Stabilizing Overlay Network for Nodes with Heterogeneous Bandwidths.” In Proceedings of the 14th IEEE International Conference on Peer-to-Peer Computing (P2P), 1–10, 2014. https://doi.org/10.1109/P2P.2014.6934300.' ieee: 'M. Feldotto, C. Scheideler, and K. Graffi, “HSkip+: A Self-Stabilizing Overlay Network for Nodes with Heterogeneous Bandwidths,” in Proceedings of the 14th IEEE International Conference on Peer-to-Peer Computing (P2P), 2014, pp. 1–10.' mla: 'Feldotto, Matthias, et al. “HSkip+: A Self-Stabilizing Overlay Network for Nodes with Heterogeneous Bandwidths.” Proceedings of the 14th IEEE International Conference on Peer-to-Peer Computing (P2P), 2014, pp. 1–10, doi:10.1109/P2P.2014.6934300.' short: 'M. Feldotto, C. Scheideler, K. Graffi, in: Proceedings of the 14th IEEE International Conference on Peer-to-Peer Computing (P2P), 2014, pp. 1–10.' date_created: 2017-10-17T12:42:12Z date_updated: 2022-01-06T07:00:20Z ddc: - '040' department: - _id: '79' - _id: '63' - _id: '541' doi: 10.1109/P2P.2014.6934300 external_id: arxiv: - '1408.0395' file: - access_level: closed content_type: application/pdf creator: florida date_created: 2018-03-16T11:34:00Z date_updated: 2018-03-16T11:34:00Z file_id: '1361' file_name: 412-FSG2014P2P.pdf file_size: 472321 relation: main_file success: 1 file_date_updated: 2018-03-16T11:34:00Z has_accepted_license: '1' page: 1-10 project: - _id: '1' name: SFB 901 - _id: '2' name: SFB 901 - Project Area A - _id: '5' name: SFB 901 - Subproject A1 publication: Proceedings of the 14th IEEE International Conference on Peer-to-Peer Computing (P2P) status: public title: 'HSkip+: A Self-Stabilizing Overlay Network for Nodes with Heterogeneous Bandwidths' type: conference user_id: '14052' year: '2014' ... --- _id: '1868' author: - first_name: Andr{\'{e}}a full_name: W. Richa, Andr{\'{e}}a last_name: W. Richa - first_name: Christian full_name: Scheideler, Christian id: '20792' last_name: Scheideler - first_name: Stefan full_name: Schmid, Stefan last_name: Schmid - first_name: Jin full_name: Zhang, Jin last_name: Zhang citation: ama: W. Richa A, Scheideler C, Schmid S, Zhang J. Competitive throughput in multi-hop wireless networks despite adaptive jamming. Distributed Computing. 2013;(3):159--171. doi:10.1007/s00446-012-0180-x apa: W. Richa, A., Scheideler, C., Schmid, S., & Zhang, J. (2013). Competitive throughput in multi-hop wireless networks despite adaptive jamming. Distributed Computing, (3), 159--171. https://doi.org/10.1007/s00446-012-0180-x bibtex: '@article{W. Richa_Scheideler_Schmid_Zhang_2013, title={Competitive throughput in multi-hop wireless networks despite adaptive jamming}, DOI={10.1007/s00446-012-0180-x}, number={3}, journal={Distributed Computing}, author={W. Richa, Andr{\’{e}}a and Scheideler, Christian and Schmid, Stefan and Zhang, Jin}, year={2013}, pages={159--171} }' chicago: 'W. Richa, Andr{\’{e}}a, Christian Scheideler, Stefan Schmid, and Jin Zhang. “Competitive Throughput in Multi-Hop Wireless Networks despite Adaptive Jamming.” Distributed Computing, no. 3 (2013): 159--171. https://doi.org/10.1007/s00446-012-0180-x.' ieee: A. W. Richa, C. Scheideler, S. Schmid, and J. Zhang, “Competitive throughput in multi-hop wireless networks despite adaptive jamming,” Distributed Computing, no. 3, pp. 159--171, 2013. mla: W. Richa, Andr{\’{e}}a, et al. “Competitive Throughput in Multi-Hop Wireless Networks despite Adaptive Jamming.” Distributed Computing, no. 3, 2013, pp. 159--171, doi:10.1007/s00446-012-0180-x. short: A. W. Richa, C. Scheideler, S. Schmid, J. Zhang, Distributed Computing (2013) 159--171. date_created: 2018-03-28T06:31:02Z date_updated: 2022-01-06T06:53:50Z department: - _id: '79' doi: 10.1007/s00446-012-0180-x issue: '3' page: 159--171 publication: Distributed Computing status: public title: Competitive throughput in multi-hop wireless networks despite adaptive jamming type: journal_article user_id: '15504' year: '2013' ... --- _id: '1870' author: - first_name: Rizal full_name: Mohd Nor, Rizal last_name: Mohd Nor - first_name: Mikhail full_name: Nesterenko, Mikhail last_name: Nesterenko - first_name: Christian full_name: Scheideler, Christian id: '20792' last_name: Scheideler citation: ama: Mohd Nor R, Nesterenko M, Scheideler C. Corona:  A stabilizing deterministic message-passing skip list. Theor Comput Sci. 2013:119--129. doi:10.1016/j.tcs.2012.08.029 apa: Mohd Nor, R., Nesterenko, M., & Scheideler, C. (2013). Corona:  A stabilizing deterministic message-passing skip list. Theor. Comput. Sci., 119--129. https://doi.org/10.1016/j.tcs.2012.08.029 bibtex: '@article{Mohd Nor_Nesterenko_Scheideler_2013, title={Corona:  A stabilizing deterministic message-passing skip list}, DOI={10.1016/j.tcs.2012.08.029}, journal={Theor. Comput. Sci.}, author={Mohd Nor, Rizal and Nesterenko, Mikhail and Scheideler, Christian}, year={2013}, pages={119--129} }' chicago: Mohd Nor, Rizal, Mikhail Nesterenko, and Christian Scheideler. “Corona:  A Stabilizing Deterministic Message-Passing Skip List.” Theor. Comput. Sci., 2013, 119--129. https://doi.org/10.1016/j.tcs.2012.08.029. ieee: R. Mohd Nor, M. Nesterenko, and C. Scheideler, “Corona:  A stabilizing deterministic message-passing skip list,” Theor. Comput. Sci., pp. 119--129, 2013. mla: Mohd Nor, Rizal, et al. “Corona:  A Stabilizing Deterministic Message-Passing Skip List.” Theor. Comput. Sci., 2013, pp. 119--129, doi:10.1016/j.tcs.2012.08.029. short: R. Mohd Nor, M. Nesterenko, C. Scheideler, Theor. Comput. Sci. (2013) 119--129. date_created: 2018-03-28T06:32:26Z date_updated: 2022-01-06T06:53:51Z department: - _id: '79' doi: 10.1016/j.tcs.2012.08.029 page: 119--129 publication: Theor. Comput. Sci. status: public title: 'Corona: A stabilizing deterministic message-passing skip list' type: journal_article user_id: '15504' year: '2013' ...