--- _id: '32177' abstract: - lang: eng text: "We investigate the early time development of the anisotropic transverse flow\r\nand spatial eccentricities of a fireball with various particle-based transport\r\napproaches using a fixed initial condition. In numerical simulations ranging\r\nfrom the quasi-collisionless case to the hydrodynamic regime, we find that the\r\nonset of $v_n$ and of related measures of anisotropic flow can be described\r\nwith a simple power-law ansatz, with an exponent that depends on the amount of\r\nrescatterings in the system. In the few-rescatterings regime we perform\r\nsemi-analytical calculations, based on a systematic expansion in powers of time\r\nand the cross section, which can reproduce the numerical findings." author: - first_name: Nicolas full_name: Borghini, Nicolas last_name: Borghini - first_name: Marc full_name: Borrell, Marc last_name: Borrell - first_name: Hendrik full_name: Roch, Hendrik last_name: Roch citation: ama: Borghini N, Borrell M, Roch H. Early time behavior of spatial and momentum anisotropies in kinetic  theory across different Knudsen numbers. arXiv:220113294. Published online 2022. apa: Borghini, N., Borrell, M., & Roch, H. (2022). Early time behavior of spatial and momentum anisotropies in kinetic  theory across different Knudsen numbers. In arXiv:2201.13294. bibtex: '@article{Borghini_Borrell_Roch_2022, title={Early time behavior of spatial and momentum anisotropies in kinetic  theory across different Knudsen numbers}, journal={arXiv:2201.13294}, author={Borghini, Nicolas and Borrell, Marc and Roch, Hendrik}, year={2022} }' chicago: Borghini, Nicolas, Marc Borrell, and Hendrik Roch. “Early Time Behavior of Spatial and Momentum Anisotropies in Kinetic  Theory across Different Knudsen Numbers.” ArXiv:2201.13294, 2022. ieee: N. Borghini, M. Borrell, and H. Roch, “Early time behavior of spatial and momentum anisotropies in kinetic  theory across different Knudsen numbers,” arXiv:2201.13294. 2022. mla: Borghini, Nicolas, et al. “Early Time Behavior of Spatial and Momentum Anisotropies in Kinetic  Theory across Different Knudsen Numbers.” ArXiv:2201.13294, 2022. short: N. Borghini, M. Borrell, H. Roch, ArXiv:2201.13294 (2022). date_created: 2022-06-27T09:08:04Z date_updated: 2022-06-27T09:35:53Z department: - _id: '27' external_id: arxiv: - '2201.13294' language: - iso: eng project: - _id: '52' name: 'PC2: Computing Resources Provided by the Paderborn Center for Parallel Computing' publication: arXiv:2201.13294 status: public title: Early time behavior of spatial and momentum anisotropies in kinetic theory across different Knudsen numbers type: preprint user_id: '67287' year: '2022' ... --- _id: '32178' abstract: - lang: eng text: "We test the ability of the \"escape mechanism\" to create the anisotropic flow\r\nobserved in high-energy nuclear collisions. We compare the flow harmonics $v_n$\r\nin the few-rescatterings regime from two types of transport simulations, with\r\n$2\\to 2$ and $2\\to 0$ collision kernels respectively, and from analytical\r\ncalculations neglecting the gain term of the Boltzmann equation. We find that\r\nthe even flow harmonics are similar in the three approaches, while the odd\r\nharmonics differ significantly." author: - first_name: Benedikt full_name: Bachmann, Benedikt last_name: Bachmann - first_name: Nicolas full_name: Borghini, Nicolas last_name: Borghini - first_name: Nina full_name: Feld, Nina last_name: Feld - first_name: Hendrik full_name: Roch, Hendrik last_name: Roch citation: ama: Bachmann B, Borghini N, Feld N, Roch H. Even anisotropic-flow harmonics are from Venus, odd ones are from Mars. arXiv:220313306. Published online 2022. apa: Bachmann, B., Borghini, N., Feld, N., & Roch, H. (2022). Even anisotropic-flow harmonics are from Venus, odd ones are from Mars. In arXiv:2203.13306. bibtex: '@article{Bachmann_Borghini_Feld_Roch_2022, title={Even anisotropic-flow harmonics are from Venus, odd ones are from Mars}, journal={arXiv:2203.13306}, author={Bachmann, Benedikt and Borghini, Nicolas and Feld, Nina and Roch, Hendrik}, year={2022} }' chicago: Bachmann, Benedikt, Nicolas Borghini, Nina Feld, and Hendrik Roch. “Even Anisotropic-Flow Harmonics Are from Venus, Odd Ones Are from Mars.” ArXiv:2203.13306, 2022. ieee: B. Bachmann, N. Borghini, N. Feld, and H. Roch, “Even anisotropic-flow harmonics are from Venus, odd ones are from Mars,” arXiv:2203.13306. 2022. mla: Bachmann, Benedikt, et al. “Even Anisotropic-Flow Harmonics Are from Venus, Odd Ones Are from Mars.” ArXiv:2203.13306, 2022. short: B. Bachmann, N. Borghini, N. Feld, H. Roch, ArXiv:2203.13306 (2022). date_created: 2022-06-27T09:12:26Z date_updated: 2022-06-27T09:35:34Z department: - _id: '27' external_id: arxiv: - '2203.13306' language: - iso: eng project: - _id: '52' name: 'PC2: Computing Resources Provided by the Paderborn Center for Parallel Computing' publication: arXiv:2203.13306 status: public title: Even anisotropic-flow harmonics are from Venus, odd ones are from Mars type: preprint user_id: '67287' year: '2022' ... --- _id: '33493' abstract: - lang: eng text: "Electronic structure calculations have been instrumental in providing many\r\nimportant insights into a range of physical and chemical properties of various\r\nmolecular and solid-state systems. Their importance to various fields,\r\nincluding materials science, chemical sciences, computational chemistry and\r\ndevice physics, is underscored by the large fraction of available public\r\nsupercomputing resources devoted to these calculations. As we enter the\r\nexascale era, exciting new opportunities to increase simulation numbers, sizes,\r\nand accuracies present themselves. In order to realize these promises, the\r\ncommunity of electronic structure software developers will however first have\r\nto tackle a number of challenges pertaining to the efficient use of new\r\narchitectures that will rely heavily on massive parallelism and hardware\r\naccelerators. This roadmap provides a broad overview of the state-of-the-art in\r\nelectronic structure calculations and of the various new directions being\r\npursued by the community. It covers 14 electronic structure codes, presenting\r\ntheir current status, their development priorities over the next five years,\r\nand their plans towards tackling the challenges and leveraging the\r\nopportunities presented by the advent of exascale computing." author: - first_name: Vikram full_name: Gavini, Vikram last_name: Gavini - first_name: Stefano full_name: Baroni, Stefano last_name: Baroni - first_name: Volker full_name: Blum, Volker last_name: Blum - first_name: David R. full_name: Bowler, David R. last_name: Bowler - first_name: Alexander full_name: Buccheri, Alexander last_name: Buccheri - first_name: James R. full_name: Chelikowsky, James R. last_name: Chelikowsky - first_name: Sambit full_name: Das, Sambit last_name: Das - first_name: William full_name: Dawson, William last_name: Dawson - first_name: Pietro full_name: Delugas, Pietro last_name: Delugas - first_name: Mehmet full_name: Dogan, Mehmet last_name: Dogan - first_name: Claudia full_name: Draxl, Claudia last_name: Draxl - first_name: Giulia full_name: Galli, Giulia last_name: Galli - first_name: Luigi full_name: Genovese, Luigi last_name: Genovese - first_name: Paolo full_name: Giannozzi, Paolo last_name: Giannozzi - first_name: Matteo full_name: Giantomassi, Matteo last_name: Giantomassi - first_name: Xavier full_name: Gonze, Xavier last_name: Gonze - first_name: Marco full_name: Govoni, Marco last_name: Govoni - first_name: Andris full_name: Gulans, Andris last_name: Gulans - first_name: François full_name: Gygi, François last_name: Gygi - first_name: John M. full_name: Herbert, John M. last_name: Herbert - first_name: Sebastian full_name: Kokott, Sebastian last_name: Kokott - first_name: Thomas full_name: Kühne, Thomas id: '49079' last_name: Kühne - first_name: Kai-Hsin full_name: Liou, Kai-Hsin last_name: Liou - first_name: Tsuyoshi full_name: Miyazaki, Tsuyoshi last_name: Miyazaki - first_name: Phani full_name: Motamarri, Phani last_name: Motamarri - first_name: Ayako full_name: Nakata, Ayako last_name: Nakata - first_name: John E. full_name: Pask, John E. last_name: Pask - first_name: Christian full_name: Plessl, Christian id: '16153' last_name: Plessl orcid: 0000-0001-5728-9982 - first_name: Laura E. full_name: Ratcliff, Laura E. last_name: Ratcliff - first_name: Ryan M. full_name: Richard, Ryan M. last_name: Richard - first_name: Mariana full_name: Rossi, Mariana last_name: Rossi - first_name: Robert full_name: Schade, Robert id: '75963' last_name: Schade orcid: 0000-0002-6268-539 - first_name: Matthias full_name: Scheffler, Matthias last_name: Scheffler - first_name: Ole full_name: Schütt, Ole last_name: Schütt - first_name: Phanish full_name: Suryanarayana, Phanish last_name: Suryanarayana - first_name: Marc full_name: Torrent, Marc last_name: Torrent - first_name: Lionel full_name: Truflandier, Lionel last_name: Truflandier - first_name: Theresa L. full_name: Windus, Theresa L. last_name: Windus - first_name: Qimen full_name: Xu, Qimen last_name: Xu - first_name: Victor W. -Z. full_name: Yu, Victor W. -Z. last_name: Yu - first_name: Danny full_name: Perez, Danny last_name: Perez citation: ama: Gavini V, Baroni S, Blum V, et al. Roadmap on Electronic Structure Codes in the Exascale Era. arXiv:220912747. Published online 2022. apa: Gavini, V., Baroni, S., Blum, V., Bowler, D. R., Buccheri, A., Chelikowsky, J. R., Das, S., Dawson, W., Delugas, P., Dogan, M., Draxl, C., Galli, G., Genovese, L., Giannozzi, P., Giantomassi, M., Gonze, X., Govoni, M., Gulans, A., Gygi, F., … Perez, D. (2022). Roadmap on Electronic Structure Codes in the Exascale Era. In arXiv:2209.12747. bibtex: '@article{Gavini_Baroni_Blum_Bowler_Buccheri_Chelikowsky_Das_Dawson_Delugas_Dogan_et al._2022, title={Roadmap on Electronic Structure Codes in the Exascale Era}, journal={arXiv:2209.12747}, author={Gavini, Vikram and Baroni, Stefano and Blum, Volker and Bowler, David R. and Buccheri, Alexander and Chelikowsky, James R. and Das, Sambit and Dawson, William and Delugas, Pietro and Dogan, Mehmet and et al.}, year={2022} }' chicago: Gavini, Vikram, Stefano Baroni, Volker Blum, David R. Bowler, Alexander Buccheri, James R. Chelikowsky, Sambit Das, et al. “Roadmap on Electronic Structure Codes in the Exascale Era.” ArXiv:2209.12747, 2022. ieee: V. Gavini et al., “Roadmap on Electronic Structure Codes in the Exascale Era,” arXiv:2209.12747. 2022. mla: Gavini, Vikram, et al. “Roadmap on Electronic Structure Codes in the Exascale Era.” ArXiv:2209.12747, 2022. short: V. Gavini, S. Baroni, V. Blum, D.R. Bowler, A. Buccheri, J.R. Chelikowsky, S. Das, W. Dawson, P. Delugas, M. Dogan, C. Draxl, G. Galli, L. Genovese, P. Giannozzi, M. Giantomassi, X. Gonze, M. Govoni, A. Gulans, F. Gygi, J.M. Herbert, S. Kokott, T. Kühne, K.-H. Liou, T. Miyazaki, P. Motamarri, A. Nakata, J.E. Pask, C. Plessl, L.E. Ratcliff, R.M. Richard, M. Rossi, R. Schade, M. Scheffler, O. Schütt, P. Suryanarayana, M. Torrent, L. Truflandier, T.L. Windus, Q. Xu, V.W.-Z. Yu, D. Perez, ArXiv:2209.12747 (2022). date_created: 2022-09-28T05:25:10Z date_updated: 2023-07-28T08:03:41Z department: - _id: '27' - _id: '518' external_id: arxiv: - '2209.12747' language: - iso: eng project: - _id: '52' name: 'PC2: Computing Resources Provided by the Paderborn Center for Parallel Computing' publication: arXiv:2209.12747 status: public title: Roadmap on Electronic Structure Codes in the Exascale Era type: preprint user_id: '24135' year: '2022' ... --- _id: '46275' abstract: - lang: eng text: "Electronic structure calculations have been instrumental in providing many\r\nimportant insights into a range of physical and chemical properties of various\r\nmolecular and solid-state systems. Their importance to various fields,\r\nincluding materials science, chemical sciences, computational chemistry and\r\ndevice physics, is underscored by the large fraction of available public\r\nsupercomputing resources devoted to these calculations. As we enter the\r\nexascale era, exciting new opportunities to increase simulation numbers, sizes,\r\nand accuracies present themselves. In order to realize these promises, the\r\ncommunity of electronic structure software developers will however first have\r\nto tackle a number of challenges pertaining to the efficient use of new\r\narchitectures that will rely heavily on massive parallelism and hardware\r\naccelerators. This roadmap provides a broad overview of the state-of-the-art in\r\nelectronic structure calculations and of the various new directions being\r\npursued by the community. It covers 14 electronic structure codes, presenting\r\ntheir current status, their development priorities over the next five years,\r\nand their plans towards tackling the challenges and leveraging the\r\nopportunities presented by the advent of exascale computing." author: - first_name: Vikram full_name: Gavini, Vikram last_name: Gavini - first_name: Stefano full_name: Baroni, Stefano last_name: Baroni - first_name: Volker full_name: Blum, Volker last_name: Blum - first_name: David R. full_name: Bowler, David R. last_name: Bowler - first_name: Alexander full_name: Buccheri, Alexander last_name: Buccheri - first_name: James R. full_name: Chelikowsky, James R. last_name: Chelikowsky - first_name: Sambit full_name: Das, Sambit last_name: Das - first_name: William full_name: Dawson, William last_name: Dawson - first_name: Pietro full_name: Delugas, Pietro last_name: Delugas - first_name: Mehmet full_name: Dogan, Mehmet last_name: Dogan - first_name: Claudia full_name: Draxl, Claudia last_name: Draxl - first_name: Giulia full_name: Galli, Giulia last_name: Galli - first_name: Luigi full_name: Genovese, Luigi last_name: Genovese - first_name: Paolo full_name: Giannozzi, Paolo last_name: Giannozzi - first_name: Matteo full_name: Giantomassi, Matteo last_name: Giantomassi - first_name: Xavier full_name: Gonze, Xavier last_name: Gonze - first_name: Marco full_name: Govoni, Marco last_name: Govoni - first_name: Andris full_name: Gulans, Andris last_name: Gulans - first_name: François full_name: Gygi, François last_name: Gygi - first_name: John M. full_name: Herbert, John M. last_name: Herbert - first_name: Sebastian full_name: Kokott, Sebastian last_name: Kokott - first_name: Thomas full_name: Kühne, Thomas id: '49079' last_name: Kühne - first_name: Kai-Hsin full_name: Liou, Kai-Hsin last_name: Liou - first_name: Tsuyoshi full_name: Miyazaki, Tsuyoshi last_name: Miyazaki - first_name: Phani full_name: Motamarri, Phani last_name: Motamarri - first_name: Ayako full_name: Nakata, Ayako last_name: Nakata - first_name: John E. full_name: Pask, John E. last_name: Pask - first_name: Christian full_name: Plessl, Christian id: '16153' last_name: Plessl orcid: 0000-0001-5728-9982 - first_name: Laura E. full_name: Ratcliff, Laura E. last_name: Ratcliff - first_name: Ryan M. full_name: Richard, Ryan M. last_name: Richard - first_name: Mariana full_name: Rossi, Mariana last_name: Rossi - first_name: Robert full_name: Schade, Robert id: '75963' last_name: Schade orcid: 0000-0002-6268-539 - first_name: Matthias full_name: Scheffler, Matthias last_name: Scheffler - first_name: Ole full_name: Schütt, Ole last_name: Schütt - first_name: Phanish full_name: Suryanarayana, Phanish last_name: Suryanarayana - first_name: Marc full_name: Torrent, Marc last_name: Torrent - first_name: Lionel full_name: Truflandier, Lionel last_name: Truflandier - first_name: Theresa L. full_name: Windus, Theresa L. last_name: Windus - first_name: Qimen full_name: Xu, Qimen last_name: Xu - first_name: Victor W. -Z. full_name: Yu, Victor W. -Z. last_name: Yu - first_name: Danny full_name: Perez, Danny last_name: Perez citation: ama: Gavini V, Baroni S, Blum V, et al. Roadmap on Electronic Structure Codes in the Exascale Era. arXiv:220912747. Published online 2022. apa: Gavini, V., Baroni, S., Blum, V., Bowler, D. R., Buccheri, A., Chelikowsky, J. R., Das, S., Dawson, W., Delugas, P., Dogan, M., Draxl, C., Galli, G., Genovese, L., Giannozzi, P., Giantomassi, M., Gonze, X., Govoni, M., Gulans, A., Gygi, F., … Perez, D. (2022). Roadmap on Electronic Structure Codes in the Exascale Era. In arXiv:2209.12747. bibtex: '@article{Gavini_Baroni_Blum_Bowler_Buccheri_Chelikowsky_Das_Dawson_Delugas_Dogan_et al._2022, title={Roadmap on Electronic Structure Codes in the Exascale Era}, journal={arXiv:2209.12747}, author={Gavini, Vikram and Baroni, Stefano and Blum, Volker and Bowler, David R. and Buccheri, Alexander and Chelikowsky, James R. and Das, Sambit and Dawson, William and Delugas, Pietro and Dogan, Mehmet and et al.}, year={2022} }' chicago: Gavini, Vikram, Stefano Baroni, Volker Blum, David R. Bowler, Alexander Buccheri, James R. Chelikowsky, Sambit Das, et al. “Roadmap on Electronic Structure Codes in the Exascale Era.” ArXiv:2209.12747, 2022. ieee: V. Gavini et al., “Roadmap on Electronic Structure Codes in the Exascale Era,” arXiv:2209.12747. 2022. mla: Gavini, Vikram, et al. “Roadmap on Electronic Structure Codes in the Exascale Era.” ArXiv:2209.12747, 2022. short: V. Gavini, S. Baroni, V. Blum, D.R. Bowler, A. Buccheri, J.R. Chelikowsky, S. Das, W. Dawson, P. Delugas, M. Dogan, C. Draxl, G. Galli, L. Genovese, P. Giannozzi, M. Giantomassi, X. Gonze, M. Govoni, A. Gulans, F. Gygi, J.M. Herbert, S. Kokott, T. Kühne, K.-H. Liou, T. Miyazaki, P. Motamarri, A. Nakata, J.E. Pask, C. Plessl, L.E. Ratcliff, R.M. Richard, M. Rossi, R. Schade, M. Scheffler, O. Schütt, P. Suryanarayana, M. Torrent, L. Truflandier, T.L. Windus, Q. Xu, V.W.-Z. Yu, D. Perez, ArXiv:2209.12747 (2022). date_created: 2023-08-02T14:59:18Z date_updated: 2023-08-02T15:00:47Z department: - _id: '27' external_id: arxiv: - '2209.12747' language: - iso: eng project: - _id: '52' name: 'PC2: Computing Resources Provided by the Paderborn Center for Parallel Computing' publication: arXiv:2209.12747 status: public title: Roadmap on Electronic Structure Codes in the Exascale Era type: preprint user_id: '75963' year: '2022' ... --- _id: '46194' author: - first_name: Tobias full_name: Kenter, Tobias id: '3145' last_name: Kenter - first_name: Adesh full_name: Shambhu, Adesh last_name: Shambhu - first_name: Sara full_name: Faghih-Naini, Sara last_name: Faghih-Naini - first_name: Vadym full_name: Aizinger, Vadym last_name: Aizinger citation: ama: 'Kenter T, Shambhu A, Faghih-Naini S, Aizinger V. Algorithm-hardware co-design of a discontinuous Galerkin shallow-water model for a dataflow architecture on FPGA. In: Proceedings of the Platform for Advanced Scientific Computing Conference. ACM; 2021. doi:10.1145/3468267.3470617' apa: Kenter, T., Shambhu, A., Faghih-Naini, S., & Aizinger, V. (2021). Algorithm-hardware co-design of a discontinuous Galerkin shallow-water model for a dataflow architecture on FPGA. Proceedings of the Platform for Advanced Scientific Computing Conference. https://doi.org/10.1145/3468267.3470617 bibtex: '@inproceedings{Kenter_Shambhu_Faghih-Naini_Aizinger_2021, title={Algorithm-hardware co-design of a discontinuous Galerkin shallow-water model for a dataflow architecture on FPGA}, DOI={10.1145/3468267.3470617}, booktitle={Proceedings of the Platform for Advanced Scientific Computing Conference}, publisher={ACM}, author={Kenter, Tobias and Shambhu, Adesh and Faghih-Naini, Sara and Aizinger, Vadym}, year={2021} }' chicago: Kenter, Tobias, Adesh Shambhu, Sara Faghih-Naini, and Vadym Aizinger. “Algorithm-Hardware Co-Design of a Discontinuous Galerkin Shallow-Water Model for a Dataflow Architecture on FPGA.” In Proceedings of the Platform for Advanced Scientific Computing Conference. ACM, 2021. https://doi.org/10.1145/3468267.3470617. ieee: 'T. Kenter, A. Shambhu, S. Faghih-Naini, and V. Aizinger, “Algorithm-hardware co-design of a discontinuous Galerkin shallow-water model for a dataflow architecture on FPGA,” 2021, doi: 10.1145/3468267.3470617.' mla: Kenter, Tobias, et al. “Algorithm-Hardware Co-Design of a Discontinuous Galerkin Shallow-Water Model for a Dataflow Architecture on FPGA.” Proceedings of the Platform for Advanced Scientific Computing Conference, ACM, 2021, doi:10.1145/3468267.3470617. short: 'T. Kenter, A. Shambhu, S. Faghih-Naini, V. Aizinger, in: Proceedings of the Platform for Advanced Scientific Computing Conference, ACM, 2021.' date_created: 2023-07-28T11:58:14Z date_updated: 2023-07-28T12:03:19Z department: - _id: '27' - _id: '518' doi: 10.1145/3468267.3470617 language: - iso: eng main_file_link: - open_access: '1' url: https://dl.acm.org/doi/pdf/10.1145/3468267.3470617 oa: '1' project: - _id: '52' name: 'PC2: Computing Resources Provided by the Paderborn Center for Parallel Computing' publication: Proceedings of the Platform for Advanced Scientific Computing Conference publication_status: published publisher: ACM quality_controlled: '1' status: public title: Algorithm-hardware co-design of a discontinuous Galerkin shallow-water model for a dataflow architecture on FPGA type: conference user_id: '3145' year: '2021' ... --- _id: '20886' author: - first_name: Tobias full_name: Nickchen, Tobias last_name: Nickchen - first_name: Stefan full_name: Heindorf, Stefan last_name: Heindorf - first_name: Gregor full_name: Engels, Gregor last_name: Engels citation: ama: 'Nickchen T, Heindorf S, Engels G. Generating Physically Sound Training Data for Image Recognition of Additively Manufactured Parts. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. ; 2021:1994-2002.' apa: Nickchen, T., Heindorf, S., & Engels, G. (2021). Generating Physically Sound Training Data for Image Recognition of Additively Manufactured Parts. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (pp. 1994–2002). Hawaii. bibtex: '@inproceedings{Nickchen_Heindorf_Engels_2021, title={Generating Physically Sound Training Data for Image Recognition of Additively Manufactured Parts}, booktitle={Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision}, author={Nickchen, Tobias and Heindorf, Stefan and Engels, Gregor}, year={2021}, pages={1994–2002} }' chicago: Nickchen, Tobias, Stefan Heindorf, and Gregor Engels. “Generating Physically Sound Training Data for Image Recognition of Additively Manufactured Parts.” In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 1994–2002, 2021. ieee: T. Nickchen, S. Heindorf, and G. Engels, “Generating Physically Sound Training Data for Image Recognition of Additively Manufactured Parts,” in Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Hawaii, 2021, pp. 1994–2002. mla: Nickchen, Tobias, et al. “Generating Physically Sound Training Data for Image Recognition of Additively Manufactured Parts.” Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2021, pp. 1994–2002. short: 'T. Nickchen, S. Heindorf, G. Engels, in: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2021, pp. 1994–2002.' conference: end_date: 2021-09-01 location: Hawaii name: IEEE/CVF Winter Conference on Applications of Computer Vision start_date: 2021-05-01 date_created: 2021-01-07T15:32:45Z date_updated: 2022-01-06T06:54:41Z department: - _id: '66' - _id: '534' - _id: '624' - _id: '219' - _id: '27' language: - iso: eng page: 1994-2002 publication: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision publication_status: published status: public title: Generating Physically Sound Training Data for Image Recognition of Additively Manufactured Parts type: conference user_id: '27340' year: '2021' ... --- _id: '46195' author: - first_name: Martin full_name: Karp, Martin last_name: Karp - first_name: Artur full_name: Podobas, Artur last_name: Podobas - first_name: Niclas full_name: Jansson, Niclas last_name: Jansson - first_name: Tobias full_name: Kenter, Tobias id: '3145' last_name: Kenter - first_name: Christian full_name: Plessl, Christian id: '16153' last_name: Plessl orcid: 0000-0001-5728-9982 - first_name: Philipp full_name: Schlatter, Philipp last_name: Schlatter - first_name: Stefano full_name: Markidis, Stefano last_name: Markidis citation: ama: 'Karp M, Podobas A, Jansson N, et al. High-Performance Spectral Element Methods on Field-Programmable Gate Arrays : Implementation, Evaluation, and Future Projection. In: 2021 IEEE International Parallel and Distributed Processing Symposium (IPDPS). IEEE; 2021. doi:10.1109/ipdps49936.2021.00116' apa: 'Karp, M., Podobas, A., Jansson, N., Kenter, T., Plessl, C., Schlatter, P., & Markidis, S. (2021). High-Performance Spectral Element Methods on Field-Programmable Gate Arrays : Implementation, Evaluation, and Future Projection. 2021 IEEE International Parallel and Distributed Processing Symposium (IPDPS). https://doi.org/10.1109/ipdps49936.2021.00116' bibtex: '@inproceedings{Karp_Podobas_Jansson_Kenter_Plessl_Schlatter_Markidis_2021, title={High-Performance Spectral Element Methods on Field-Programmable Gate Arrays : Implementation, Evaluation, and Future Projection}, DOI={10.1109/ipdps49936.2021.00116}, booktitle={2021 IEEE International Parallel and Distributed Processing Symposium (IPDPS)}, publisher={IEEE}, author={Karp, Martin and Podobas, Artur and Jansson, Niclas and Kenter, Tobias and Plessl, Christian and Schlatter, Philipp and Markidis, Stefano}, year={2021} }' chicago: 'Karp, Martin, Artur Podobas, Niclas Jansson, Tobias Kenter, Christian Plessl, Philipp Schlatter, and Stefano Markidis. “High-Performance Spectral Element Methods on Field-Programmable Gate Arrays : Implementation, Evaluation, and Future Projection.” In 2021 IEEE International Parallel and Distributed Processing Symposium (IPDPS). IEEE, 2021. https://doi.org/10.1109/ipdps49936.2021.00116.' ieee: 'M. Karp et al., “High-Performance Spectral Element Methods on Field-Programmable Gate Arrays : Implementation, Evaluation, and Future Projection,” 2021, doi: 10.1109/ipdps49936.2021.00116.' mla: 'Karp, Martin, et al. “High-Performance Spectral Element Methods on Field-Programmable Gate Arrays : Implementation, Evaluation, and Future Projection.” 2021 IEEE International Parallel and Distributed Processing Symposium (IPDPS), IEEE, 2021, doi:10.1109/ipdps49936.2021.00116.' short: 'M. Karp, A. Podobas, N. Jansson, T. Kenter, C. Plessl, P. Schlatter, S. Markidis, in: 2021 IEEE International Parallel and Distributed Processing Symposium (IPDPS), IEEE, 2021.' date_created: 2023-07-28T12:04:27Z date_updated: 2023-07-28T12:05:15Z department: - _id: '27' - _id: '518' doi: 10.1109/ipdps49936.2021.00116 language: - iso: eng publication: 2021 IEEE International Parallel and Distributed Processing Symposium (IPDPS) publication_status: published publisher: IEEE quality_controlled: '1' status: public title: 'High-Performance Spectral Element Methods on Field-Programmable Gate Arrays : Implementation, Evaluation, and Future Projection' type: conference user_id: '3145' year: '2021' ... --- _id: '29937' author: - first_name: Martin full_name: Karp, Martin last_name: Karp - first_name: Artur full_name: Podobas, Artur last_name: Podobas - first_name: Niclas full_name: Jansson, Niclas last_name: Jansson - first_name: Tobias full_name: Kenter, Tobias id: '3145' last_name: Kenter - first_name: Christian full_name: Plessl, Christian id: '16153' last_name: Plessl orcid: 0000-0001-5728-9982 - first_name: Philipp full_name: Schlatter, Philipp last_name: Schlatter - first_name: Stefano full_name: Markidis, Stefano last_name: Markidis citation: ama: 'Karp M, Podobas A, Jansson N, et al. High-Performance Spectral Element Methods on Field-Programmable Gate Arrays : Implementation, Evaluation, and Future Projection. In: 2021 IEEE International Parallel and Distributed Processing Symposium (IPDPS). IEEE; 2021. doi:10.1109/ipdps49936.2021.00116' apa: 'Karp, M., Podobas, A., Jansson, N., Kenter, T., Plessl, C., Schlatter, P., & Markidis, S. (2021). High-Performance Spectral Element Methods on Field-Programmable Gate Arrays : Implementation, Evaluation, and Future Projection. 2021 IEEE International Parallel and Distributed Processing Symposium (IPDPS). https://doi.org/10.1109/ipdps49936.2021.00116' bibtex: '@inproceedings{Karp_Podobas_Jansson_Kenter_Plessl_Schlatter_Markidis_2021, title={High-Performance Spectral Element Methods on Field-Programmable Gate Arrays : Implementation, Evaluation, and Future Projection}, DOI={10.1109/ipdps49936.2021.00116}, booktitle={2021 IEEE International Parallel and Distributed Processing Symposium (IPDPS)}, publisher={IEEE}, author={Karp, Martin and Podobas, Artur and Jansson, Niclas and Kenter, Tobias and Plessl, Christian and Schlatter, Philipp and Markidis, Stefano}, year={2021} }' chicago: 'Karp, Martin, Artur Podobas, Niclas Jansson, Tobias Kenter, Christian Plessl, Philipp Schlatter, and Stefano Markidis. “High-Performance Spectral Element Methods on Field-Programmable Gate Arrays : Implementation, Evaluation, and Future Projection.” In 2021 IEEE International Parallel and Distributed Processing Symposium (IPDPS). IEEE, 2021. https://doi.org/10.1109/ipdps49936.2021.00116.' ieee: 'M. Karp et al., “High-Performance Spectral Element Methods on Field-Programmable Gate Arrays : Implementation, Evaluation, and Future Projection,” 2021, doi: 10.1109/ipdps49936.2021.00116.' mla: 'Karp, Martin, et al. “High-Performance Spectral Element Methods on Field-Programmable Gate Arrays : Implementation, Evaluation, and Future Projection.” 2021 IEEE International Parallel and Distributed Processing Symposium (IPDPS), IEEE, 2021, doi:10.1109/ipdps49936.2021.00116.' short: 'M. Karp, A. Podobas, N. Jansson, T. Kenter, C. Plessl, P. Schlatter, S. Markidis, in: 2021 IEEE International Parallel and Distributed Processing Symposium (IPDPS), IEEE, 2021.' date_created: 2022-02-21T14:26:37Z date_updated: 2024-01-22T09:59:13Z department: - _id: '27' - _id: '518' doi: 10.1109/ipdps49936.2021.00116 language: - iso: eng project: - _id: '52' name: 'PC2: Computing Resources Provided by the Paderborn Center for Parallel Computing' publication: 2021 IEEE International Parallel and Distributed Processing Symposium (IPDPS) publication_status: published publisher: IEEE quality_controlled: '1' status: public title: 'High-Performance Spectral Element Methods on Field-Programmable Gate Arrays : Implementation, Evaluation, and Future Projection' type: conference user_id: '3145' year: '2021' ... --- _id: '32245' abstract: - lang: eng text: "Optical travelling wave antennas offer unique opportunities to control and\r\nselectively guide light into a specific direction which renders them as\r\nexcellent candidates for optical communication and sensing. These applications\r\nrequire state of the art engineering to reach optimized functionalities such as\r\nhigh directivity and radiation efficiency, low side lobe level, broadband and\r\ntunable capabilities, and compact design. In this work we report on the\r\nnumerical optimization of the directivity of optical travelling wave antennas\r\nmade from low-loss dielectric materials using full-wave numerical simulations\r\nin conjunction with a particle swarm optimization algorithm. The antennas are\r\ncomposed of a reflector and a director deposited on a glass substrate and an\r\nemitter placed in the feed gap between them serves as an internal source of\r\nexcitation. In particular, we analysed antennas with rectangular- and\r\nhorn-shaped directors made of either Hafnium dioxide or Silicon. The optimized\r\nantennas produce highly directional emission due to the presence of two\r\ndominant guided TE modes in the director in addition to leaky modes. These\r\nguided modes dominate the far-field emission pattern and govern the direction\r\nof the main lobe emission which predominately originates from the end facet of\r\nthe director. Our work also provides a comprehensive analysis of the modes,\r\nradiation patterns, parametric influences, and bandwidths of the antennas that\r\nhighlights their robust nature." author: - first_name: Henna full_name: Farheen, Henna last_name: Farheen - first_name: Till full_name: Leuteritz, Till last_name: Leuteritz - first_name: Stefan full_name: Linden, Stefan last_name: Linden - first_name: Viktor full_name: Myroshnychenko, Viktor last_name: Myroshnychenko - first_name: Jens full_name: Förstner, Jens last_name: Förstner citation: ama: Farheen H, Leuteritz T, Linden S, Myroshnychenko V, Förstner J. Optimization of optical waveguide antennas for directive emission of  light. arXiv:210602468. Published online 2021. apa: Farheen, H., Leuteritz, T., Linden, S., Myroshnychenko, V., & Förstner, J. (2021). Optimization of optical waveguide antennas for directive emission of  light. In arXiv:2106.02468. bibtex: '@article{Farheen_Leuteritz_Linden_Myroshnychenko_Förstner_2021, title={Optimization of optical waveguide antennas for directive emission of  light}, journal={arXiv:2106.02468}, author={Farheen, Henna and Leuteritz, Till and Linden, Stefan and Myroshnychenko, Viktor and Förstner, Jens}, year={2021} }' chicago: Farheen, Henna, Till Leuteritz, Stefan Linden, Viktor Myroshnychenko, and Jens Förstner. “Optimization of Optical Waveguide Antennas for Directive Emission of  Light.” ArXiv:2106.02468, 2021. ieee: H. Farheen, T. Leuteritz, S. Linden, V. Myroshnychenko, and J. Förstner, “Optimization of optical waveguide antennas for directive emission of  light,” arXiv:2106.02468. 2021. mla: Farheen, Henna, et al. “Optimization of Optical Waveguide Antennas for Directive Emission of  Light.” ArXiv:2106.02468, 2021. short: H. Farheen, T. Leuteritz, S. Linden, V. Myroshnychenko, J. Förstner, ArXiv:2106.02468 (2021). date_created: 2022-06-28T08:01:09Z date_updated: 2022-06-28T08:01:39Z department: - _id: '27' external_id: arxiv: - '2106.02468' language: - iso: eng project: - _id: '52' name: 'PC2: Computing Resources Provided by the Paderborn Center for Parallel Computing' publication: arXiv:2106.02468 status: public title: Optimization of optical waveguide antennas for directive emission of light type: preprint user_id: '15278' year: '2021' ... --- _id: '32236' abstract: - lang: eng text: "The interaction between quantum light and matter is being intensively studied\r\nfor systems that are enclosed in high-$Q$ cavities which strongly enhance the\r\nlight-matter coupling. However, for many applications, cavities with lower\r\n$Q$-factors are preferred due to the increased spectral width of the cavity\r\nmode. Here, we investigate the interaction between quantum light and matter\r\nrepresented by a $\\Lambda$-type three-level system in lossy cavities, assuming\r\nthat cavity losses are the dominant loss mechanism. We demonstrate that cavity\r\nlosses lead to non-trivial steady states of the electronic occupations that can\r\nbe controlled by the loss rate and the initial statistics of the quantum\r\nfields. The mechanism of formation of such steady states can be understood on\r\nthe basis of the equations of motion. Analytical expressions for steady states\r\nand their numerical simulations are presented and discussed." author: - first_name: H. full_name: Rose, H. last_name: Rose - first_name: O. V. full_name: Tikhonova, O. V. last_name: Tikhonova - first_name: T. full_name: Meier, T. last_name: Meier - first_name: 'P. ' full_name: 'Sharapova, P. ' last_name: Sharapova citation: ama: Rose H, Tikhonova OV, Meier T, Sharapova P. Steady states of $Λ$-type three-level systems excited by quantum  light in lossy cavities. arXiv:210900842. Published online 2021. apa: Rose, H., Tikhonova, O. V., Meier, T., & Sharapova, P. (2021). Steady states of $Λ$-type three-level systems excited by quantum  light in lossy cavities. In arXiv:2109.00842. bibtex: '@article{Rose_Tikhonova_Meier_Sharapova_2021, title={Steady states of $Λ$-type three-level systems excited by quantum  light in lossy cavities}, journal={arXiv:2109.00842}, author={Rose, H. and Tikhonova, O. V. and Meier, T. and Sharapova, P. }, year={2021} }' chicago: Rose, H., O. V. Tikhonova, T. Meier, and P. Sharapova. “Steady States of $Λ$-Type Three-Level Systems Excited by Quantum  Light in Lossy Cavities.” ArXiv:2109.00842, 2021. ieee: H. Rose, O. V. Tikhonova, T. Meier, and P. Sharapova, “Steady states of $Λ$-type three-level systems excited by quantum  light in lossy cavities,” arXiv:2109.00842. 2021. mla: Rose, H., et al. “Steady States of $Λ$-Type Three-Level Systems Excited by Quantum  Light in Lossy Cavities.” ArXiv:2109.00842, 2021. short: H. Rose, O.V. Tikhonova, T. Meier, P. Sharapova, ArXiv:2109.00842 (2021). date_created: 2022-06-28T07:03:29Z date_updated: 2023-02-10T16:00:12Z department: - _id: '27' external_id: arxiv: - '2109.00842' language: - iso: eng project: - _id: '52' name: 'PC2: Computing Resources Provided by the Paderborn Center for Parallel Computing' publication: arXiv:2109.00842 status: public title: Steady states of $Λ$-type three-level systems excited by quantum light in lossy cavities type: preprint user_id: '14931' year: '2021' ...