@article{27364, author = {{Meyer, Marius and Kenter, Tobias and Plessl, Christian}}, issn = {{0743-7315}}, journal = {{Journal of Parallel and Distributed Computing}}, title = {{{In-depth FPGA Accelerator Performance Evaluation with Single Node Benchmarks from the HPC Challenge Benchmark Suite for Intel and Xilinx FPGAs using OpenCL}}}, doi = {{10.1016/j.jpdc.2021.10.007}}, year = {{2022}}, } @article{50146, abstract = {{Recent advances in numerical methods significantly pushed forward the understanding of electrons coupled to quantized lattice vibrations. At this stage, it becomes increasingly important to also account for the effects of physically inevitable environments. In particular, we study the transport properties of the Hubbard-Holstein Hamiltonian that models a large class of materials characterized by strong electron-phonon coupling, in contact with a dissipative environment. Even in the one-dimensional and isolated case, simulating the quantum dynamics of such a system with high accuracy is very challenging due to the infinite dimensionality of the phononic Hilbert spaces. For this reason, the effects of dissipation on the conductance properties of such systems have not been investigated systematically so far. We combine the non-Markovian hierarchy of pure states method and the Markovian quantum jumps method with the newly introduced projected purified density-matrix renormalization group, creating powerful tensor-network methods for dissipative quantum many-body systems. Investigating their numerical properties, we find a significant speedup up to a factor $\sim 30$ compared to conventional tensor-network techniques. We apply these methods to study dissipative quenches, aiming for an in-depth understanding of the formation, stability, and quasi-particle properties of bipolarons. Surprisingly, our results show that in the metallic phase dissipation localizes the bipolarons, which is reminiscent of an indirect quantum Zeno effect. However, the bipolaronic binding energy remains mainly unaffected, even in the presence of strong dissipation, exhibiting remarkable bipolaron stability. These findings shed light on the problem of designing real materials exhibiting phonon-mediated high-$T_\mathrm{C}$ superconductivity.}}, author = {{Moroder, Mattia and Grundner, Martin and Damanet, François and Schollwöck, Ulrich and Mardazad, Sam and Flannigan, Stuart and Köhler, Thomas and Paeckel, Sebastian}}, journal = {{Physical Review B 107, 214310 (2023)}}, title = {{{Stable bipolarons in open quantum systems}}}, doi = {{10.1103/PhysRevB.107.214310}}, year = {{2022}}, } @article{50148, abstract = {{We develop a general decomposition of an ensemble of initial density profiles in terms of an average state and a basis of modes that represent the event-by-event fluctuations of the initial state. The basis is determined such that the probability distributions of the amplitudes of different modes are uncorrelated. Based on this decomposition, we quantify the different types and probabilities of event-by-event fluctuations in Glauber and Saturation models and investigate how the various modes affect different characteristics of the initial state. We perform simulations of the dynamical evolution with KoMPoST and MUSIC to investigate the impact of the modes on final-state observables and their correlations.}}, author = {{Borghini, Nicolas and Borrell, Marc and Feld, Nina and Roch, Hendrik and Schlichting, Sören and Werthmann, Clemens}}, journal = {{Phys. Rev. C 107 (2023) 034905}}, title = {{{Statistical analysis of initial state and final state response in heavy-ion collisions}}}, doi = {{10.1103/PhysRevC.107.034905}}, year = {{2022}}, } @article{50149, abstract = {{Abstract RNA editing processes are strikingly different in animals and plants. Up to thousands of specific cytidines are converted into uridines in plant chloroplasts and mitochondria whereas up to millions of adenosines are converted into inosines in animal nucleo-cytosolic RNAs. It is unknown whether these two different RNA editing machineries are mutually incompatible. RNA-binding pentatricopeptide repeat (PPR) proteins are the key factors of plant organelle cytidine-to-uridine RNA editing. The complete absence of PPR mediated editing of cytosolic RNAs might be due to a yet unknown barrier that prevents its activity in the cytosol. Here, we transferred two plant mitochondrial PPR-type editing factors into human cell lines to explore whether they could operate in the nucleo-cytosolic environment. PPR56 and PPR65 not only faithfully edited their native, co-transcribed targets but also different sets of off-targets in the human background transcriptome. More than 900 of such off-targets with editing efficiencies up to 91%, largely explained by known PPR-RNA binding properties, were identified for PPR56. Engineering two crucial amino acid positions in its PPR array led to predictable shifts in target recognition. We conclude that plant PPR editing factors can operate in the entirely different genetic environment of the human nucleo-cytosol and can be intentionally re-engineered towards new targets.}}, author = {{Lesch, Elena and Schilling, Maximilian T and Brenner, Sarah and Yang, Yingying and Gruss, Oliver J and Knoop, Volker and Schallenberg-Rüdinger, Mareike}}, issn = {{0305-1048}}, journal = {{Nucleic Acids Research}}, keywords = {{Genetics}}, number = {{17}}, pages = {{9966--9983}}, publisher = {{Oxford University Press (OUP)}}, title = {{{Plant mitochondrial RNA editing factors can perform targeted C-to-U editing of nuclear transcripts in human cells}}}, doi = {{10.1093/nar/gkac752}}, volume = {{50}}, year = {{2022}}, } @article{28099, abstract = {{N-body methods are one of the essential algorithmic building blocks of high-performance and parallel computing. Previous research has shown promising performance for implementing n-body simulations with pairwise force calculations on FPGAs. However, to avoid challenges with accumulation and memory access patterns, the presented designs calculate each pair of forces twice, along with both force sums of the involved particles. Also, they require large problem instances with hundreds of thousands of particles to reach their respective peak performance, limiting the applicability for strong scaling scenarios. This work addresses both issues by presenting a novel FPGA design that uses each calculated force twice and overlaps data transfers and computations in a way that allows to reach peak performance even for small problem instances, outperforming previous single precision results even in double precision, and scaling linearly over multiple interconnected FPGAs. For a comparison across architectures, we provide an equally optimized CPU reference, which for large problems actually achieves higher peak performance per device, however, given the strong scaling advantages of the FPGA design, in parallel setups with few thousand particles per device, the FPGA platform achieves highest performance and power efficiency.}}, author = {{Menzel, Johannes and Plessl, Christian and Kenter, Tobias}}, issn = {{1936-7406}}, journal = {{ACM Transactions on Reconfigurable Technology and Systems}}, number = {{1}}, pages = {{1--30}}, title = {{{The Strong Scaling Advantage of FPGAs in HPC for N-body Simulations}}}, doi = {{10.1145/3491235}}, volume = {{15}}, year = {{2021}}, } @article{32243, abstract = {{Abstract The defining feature of active particles is that they constantly propel themselves by locally converting chemical energy into directed motion. This active self-propulsion prevents them from equilibrating with their thermal environment (e.g. an aqueous solution), thus keeping them permanently out of equilibrium. Nevertheless, the spatial dynamics of active particles might share certain equilibrium features, in particular in the steady state. We here focus on the time-reversal symmetry of individual spatial trajectories as a distinct equilibrium characteristic. We investigate to what extent the steady-state trajectories of a trapped active particle obey or break this time-reversal symmetry. Within the framework of active Ornstein–Uhlenbeck particles we find that the steady-state trajectories in a harmonic potential fulfill path-wise time-reversal symmetry exactly, while this symmetry is typically broken in anharmonic potentials.}}, author = {{Dabelow, Lennart and Bo, Stefano and Eichhorn, Ralf}}, issn = {{1742-5468}}, journal = {{Journal of Statistical Mechanics: Theory and Experiment}}, keywords = {{Statistics, Probability and Uncertainty, Statistics and Probability, Statistical and Nonlinear Physics}}, number = {{3}}, publisher = {{IOP Publishing}}, title = {{{How irreversible are steady-state trajectories of a trapped active particle?}}}, doi = {{10.1088/1742-5468/abe6fd}}, volume = {{2021}}, year = {{2021}}, } @article{46122, author = {{Kaczmarek, Olaf and Mazur, Lukas and Sharma, Sayantan}}, issn = {{2470-0010}}, journal = {{Physical Review D}}, number = {{9}}, publisher = {{American Physical Society (APS)}}, title = {{{Eigenvalue spectra of QCD and the fate of UA(1) breaking towards the chiral limit}}}, doi = {{10.1103/physrevd.104.094518}}, volume = {{104}}, year = {{2021}}, } @article{46124, author = {{Altenkort, Luis and Eller, Alexander M. and Kaczmarek, O. and Mazur, Lukas and Moore, Guy D. and Shu, H.-T.}}, issn = {{2470-0010}}, journal = {{Physical Review D}}, number = {{1}}, publisher = {{American Physical Society (APS)}}, title = {{{Heavy quark momentum diffusion from the lattice using gradient flow}}}, doi = {{10.1103/physrevd.103.014511}}, volume = {{103}}, year = {{2021}}, } @article{46123, author = {{Altenkort, Luis and Eller, Alexander M. and Kaczmarek, O. and Mazur, Lukas and Moore, Guy D. and Shu, H.-T.}}, issn = {{2470-0010}}, journal = {{Physical Review D}}, number = {{11}}, publisher = {{American Physical Society (APS)}}, title = {{{Sphaleron rate from Euclidean lattice correlators: An exploration}}}, doi = {{10.1103/physrevd.103.114513}}, volume = {{103}}, year = {{2021}}, } @article{24788, author = {{Alhaddad, Samer and Förstner, Jens and Groth, Stefan and Grünewald, Daniel and Grynko, Yevgen and Hannig, Frank and Kenter, Tobias and Pfreundt, Franz‐Josef and Plessl, Christian and Schotte, Merlind and Steinke, Thomas and Teich, Jürgen and Weiser, Martin and Wende, Florian}}, issn = {{1532-0626}}, journal = {{Concurrency and Computation: Practice and Experience}}, keywords = {{tet_topic_hpc}}, pages = {{e6616}}, title = {{{The HighPerMeshes framework for numerical algorithms on unstructured grids}}}, doi = {{10.1002/cpe.6616}}, year = {{2021}}, }