@article{52587, author = {{Bodden, Eric and Pottebaum, Jens and Fockel, Markus and Gräßler, Iris}}, issn = {{1540-7993}}, journal = {{IEEE Security & Privacy}}, keywords = {{Law, Electrical and Electronic Engineering, Computer Networks and Communications}}, number = {{1}}, pages = {{69--72}}, publisher = {{Institute of Electrical and Electronics Engineers (IEEE)}}, title = {{{Evaluating Security Through Isolation and Defense in Depth}}}, doi = {{10.1109/msec.2023.3336028}}, volume = {{22}}, year = {{2024}}, } @article{44382, abstract = {{The success of engineering complex technical systems is determined by meeting customer requirements and institutional regulations. One example relevant to the automobile industry is the United Nations Economic Commission of Europe (UN ECE), which specifies the homologation of automobile series and requires proof of traceability. The required traceability can be achieved by modeling system artifacts and their relations in a consistent, seamless model—an effect-chain model. Currently, no in-depth methodology exists to support engineers in developing certification-compliant effect-chain models. For this purpose, a new methodology for certification-compliant effect-chain modeling was developed, which includes extensions of an existing method, suitable models, and tools to support engineers in the modeling process. For evaluation purposes, applicability is proven based on the experience of more than 300 workshops at an automotive OEM and an automotive supplier. The following case example is chosen to demonstrate applicability: the development of a window lifter that has to meet the demands of UN ECE Regulations R156 and R21. Results indicate multiple benefits in supporting engineers with the certification-compliant modeling of effect chains. Three benefits are goal-oriented modeling to reduce the necessary modeling capacity, increasing model quality by applying information quality criteria, and the potential to reduce costs through automatable effect-chain analyses for technical changes. Further, companies in the automotive and other industries will benefit from increased modeling capabilities that can be used for architecture modeling and to comply with other regulations such as ASPICE or ISO 26262.}}, author = {{Gräßler, Iris and Wiechel, Dominik and Koch, Anna-Sophie and Sturm, Tim and Markfelder, Thomas}}, issn = {{2079-8954}}, journal = {{Systems}}, keywords = {{Information Systems and Management, Computer Networks and Communications, Modeling and Simulation, Control and Systems Engineering, Software}}, number = {{3}}, publisher = {{MDPI AG}}, title = {{{Methodology for Certification-Compliant Effect-Chain Modeling}}}, doi = {{10.3390/systems11030154}}, volume = {{11}}, year = {{2023}}, } @article{44687, abstract = {{Entwicklungsprojekte stehen in einem Spannungsfeld von Volatilität, Unsicherheit, Komplexität und Ambiguität (VUCA). Resilient Requirements Engineering (RRE) ist ein vielversprechender Ansatz, diesen Rahmenbedingungen gerecht zu werden und erfolgreich zu entwickeln. Es werden Methoden aus den drei Innovationsfeldern des RRE – Vorausschau, Effizienz und Nachhaltigkeit – angewendet, um Effizienzpotenziale in der Produktentwicklung zu nutzen und frühzeitig Nachhaltigkeitsdimensionen in der Ermittlung von Stakeholderbedürfnissen zu verankern.}}, author = {{Gräßler, Iris and Oleff, Christian and Preuß, Daniel and Koch, Anna-Sophie}}, issn = {{2511-0896}}, journal = {{Zeitschrift für wirtschaftlichen Fabrikbetrieb}}, keywords = {{Management Science and Operations Research, Strategy and Management, General Engineering}}, number = {{4}}, pages = {{222--225}}, publisher = {{Walter de Gruyter GmbH}}, title = {{{Resilient Requirements Engineering}}}, doi = {{10.1515/zwf-2023-1030}}, volume = {{118}}, year = {{2023}}, } @inproceedings{45661, abstract = {{Effect chain modelling is a method for creating information models for impact analyses of changes in system elements. For the estimation of change propagation, dependencies between requirements must be detected. The high number of require- ment dependencies in the engineering of complex technical systems results in the need for automation. In a study, it was shown that transformer models (BERT) are suitable for the automated dependency analysis of requirements. However, there are currently deficits in the applicability of the models for different projects without an extensive and heterogeneous training database. This paper investigates how active learning can be used to train BERT models (active-BERT) in order to increase the performance of the models for classifying requi- rement dependencies of projects with heterogeneous require- ments. The results show that the performance of the models increases significantly through active learning. Through active- BERT, engineers are enabled to model effect chains efficiently and to handle requirement changes effectively.}}, author = {{Gräßler, Iris and Preuß, Daniel}}, booktitle = {{Stuttgarter Symposium für Produktentwicklung SSP 2023}}, editor = {{Hölzle, Katharina and Kreimeyer, Matthias and Roth, Daniel and Maier, Thomas and Riedel, Oliver}}, issn = {{2364-4885}}, location = {{Stuttgart}}, publisher = {{Fraunhofer IAO}}, title = {{{Automatisierte Abhängigkeitsanalyse von Anforderungen zur Wirkkettenmodellierung}}}, year = {{2023}}, } @inproceedings{46502, author = {{Gräßler, Iris and Wiechel, Dominik}}, booktitle = {{2023 18th Annual System of Systems Engineering Conference (SoSe)}}, location = {{Lille}}, publisher = {{IEEE}}, title = {{{Customized impact analyses for technical engineering changes}}}, doi = {{10.1109/sose59841.2023.10178484}}, year = {{2023}}, } @inproceedings{46451, abstract = {{New technologies and materials carry significant potential for sustainable production and use of products. As an example, Additive Manufacturing technologies and materials promise lightweight design and energy efficient use of parts. Exhausting the full potential requires: a) consideration of uncertainties with respect to future capabilities, and b) upgradeable design guidelines to cover advancements consistently. The proposed approach merges concepts of Design-for-X with foresight algorithms of Scenario-Technique to derive actionable knowledge. It is validated by an application in the field of Additive Manufacturing, namely Metal Fused Deposition Modelling. Engineers benefit from the intuitive access to heterogeneous types of sustainability related information.}}, author = {{Gräßler, Iris and Mozgova, Iryna and Pottebaum, Jens and Ott, Manuel and Jung, Philipp and Hesse, Philipp}}, booktitle = {{Procedia CIRP ICME}}, editor = {{Teti, Roberto}}, keywords = {{Design-for-X, Scenario-Technique, sustainability, uncertainty, Life-Cycle Engineering, Additive Manufacturing, Circular Economy}}, location = {{Gulf of Naples}}, publisher = {{Elsevier}}, title = {{{Handling of uncertainties in the design of sustainable Additive Manufacturing products by merging Design-for-X and Scenario-Technique}}}, year = {{2023}}, } @inproceedings{46490, author = {{Gräßler, Iris and Tusek, Alena Marie and Özcan, Deniz}}, booktitle = {{Automation 2023}}, isbn = {{9783181024195}}, location = {{Baden-Baden}}, pages = {{863 -- 874}}, publisher = {{VDI Verlag}}, title = {{{Entwicklung zukunftsfähiger Geschäftsmodelle in der Automatisierungstechnik anhand von Megatrends}}}, doi = {{10.51202/9783181024195-863}}, volume = {{2419}}, year = {{2023}}, } @inproceedings{46988, abstract = {{Extremwettersituationen sind durch die Kombination von globalen und lokalen Wirkzusammenhän-gen gekennzeichnet. In der Gefahrenanalyse und -reaktion ist deshalb der Umgang mit extremen Daten erforderlich, die von heterogenen Datenquellen bezogen und mittels unterschiedlicher Ver-fahren bis hin zum maschinellen Lernen ausgewertet werden. Die Visualisierung dieser zwangsläufig unsicherheitsbehafteten Daten stellt eine Herausforderung dar. Diese wirkt umso bedeutsamer, je weniger Fachexpertise in Bereichen wie Meteorologie, Geologie oder Sensortechnik in einer Füh-rungs- oder Leitstelle eingebunden werden kann. Das Management kritischer Situationen in Echtzeit bei extremen und komplexen Daten muss daher auf einer Bewertung der Informationsqualität von extremen Daten beruhen. Diese Bewertung ist abhängig vom Anwendungskontext in unterschiedli-chen Führungs- und Assistenzstellen sowie der verfügbaren Infrastruktur mit Geräten zur Visualisie-rung, Schnittstellen von Wetterdiensten, Sensorsysteme und Rettungsrobotik. Im Beitrag wird der Ansatz des EU-Projekts CREXDATA in Bezug auf mögliche pluviale Hochwassersituationen in Inns-bruck vorgestellt. Grundlage bildet die Kategorisierung von extremen Daten, die Schnittstellen zu Datenquellen mit globalem und lokalem Bezug sowie Anwendungsfälle für die Visualisierung von Informationen. Es werden somit Grundlagen präsentiert, die in allen Formen von geobasierten Lage- und Führungsinformationssystemen zum Einsatz kommen können.}}, author = {{Pottebaum, Jens and Rechberger, Christina and Hieb, Michael and Gräßler, Iris and Resch, Christian}}, booktitle = {{Tagungsband der Fachtagung Katastrophenforschung 2023}}, isbn = {{978-3-900397-11-1}}, location = {{Leoben}}, pages = {{26--29}}, title = {{{Extremwettersituationen in alpinen Gebieten: Management kritischer Situationen in Echtzeit bei extremen und komplexen Daten}}}, year = {{2023}}, } @inproceedings{47108, author = {{Gräßler, Iris and Özcan, Deniz and Preuß, Daniel}}, booktitle = {{Design fox X - Beiträge zum 34. DfX-Symposium}}, editor = {{Krause, Dieter and Paetzold-Byhain, Kristin and Wartzack, Sandro}}, location = {{Radebeul}}, pages = {{163 -- 172}}, title = {{{KI-basierte Extrahierung von Anforderungen aus Regularien für die Automobilentwicklung}}}, doi = {{10.35199/dfx2023.17}}, volume = {{34}}, year = {{2023}}, } @article{48946, abstract = {{inhalt Der verlässliche Betrieb von technischen Produkten wird zunehmend durch bewusste Angriffe bedroht. Vollständige Sicherheit ist dabei nicht möglich, durchschlagende Angriffe sind unvermeidbar (Assume Breach). Dies erfordert einen Paradigmenwechsel in der sicherheitsgerechten Entwicklung mechatronischer und cyber-physischer Systeme hin zu Defense-in-Depth. Systeme müssen so ausgelegt werden, dass sie auch bei gezielten Angriffen möglichst hohe Zuverlässigkeit und Sicherheit gewährleisten. Der hier beschriebene Lösungsansatz erweitert das Systemmodell um Angriffsszenarien und Verteidigungslinien. Diese werden am Beispiel eines industriellen Schließsystems zur Anlagensicherheit erläutert. Entwickler werden sensibilisiert, Angriffe systematisch zu berücksichtigen und interdisziplinär Verteidigungselemente gegenüber Bedrohungen und Angriffen zu spezifizieren.}}, author = {{Gräßler, Iris and Bodden, Eric and Wiechel, Dominik and Pottebaum, Jens}}, issn = {{0720-5953}}, journal = {{Konstruktion}}, keywords = {{Mechanical Engineering, Mechanics of Materials, General Materials Science, Theoretical Computer Science}}, number = {{11-12}}, pages = {{60--65}}, publisher = {{VDI Fachmedien GmbH and Co. KG}}, title = {{{Defense-in-Depth als neues Paradigma der sicherheitsgerechten Produktentwicklung: interdisziplinäre, bedrohungsbewusste und lösungsorientierte Security}}}, doi = {{10.37544/0720-5953-2023-11-12-60}}, volume = {{75}}, year = {{2023}}, } @inproceedings{46500, abstract = {{The security of Industrial Control Systems is relevant both for reliable production system operations and for high-quality throughput in terms of manufactured products. Security measures are designed, operated and maintained by different roles along product and production system lifecycles. Defense-in-Depth as a paradigm builds upon the assumption that breaches are unavoidable. The paper at hand provides an analysis of roles, corresponding Human Factors and their relevance for data theft and sabotage attacks. The resulting taxonomy is reflected by an example related to Additive Manufacturing. The results assist in both designing and redesigning Industrial Control System as part of an entire production system so that Defense-in-Depth with regard to Human Factors is built in by design.}}, author = {{Pottebaum, Jens and Rossel, Jost and Somorovsky, Juraj and Acar, Yasemin and Fahr, René and Arias Cabarcos, Patricia and Bodden, Eric and Gräßler, Iris}}, booktitle = {{2023 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW)}}, keywords = {{Defense-in-Depth, Human Factors, Production Engineering, Product Design, Systems Engineering}}, location = {{Delft, Netherlands}}, pages = {{379--385}}, publisher = {{IEEE}}, title = {{{Re-Envisioning Industrial Control Systems Security by Considering Human Factors as a Core Element of Defense-in-Depth}}}, doi = {{10.1109/eurospw59978.2023.00048}}, year = {{2023}}, } @inbook{45110, author = {{Gräßler, Iris and Steffen, Eckhard and Maier, Günter W. and Roesmann, Daniel}}, booktitle = {{The Digital Twin of Humans}}, editor = {{Gräßler, Iris and Maier, Günter W. and Steffen, Eckhard and Roesmann, Daniel}}, isbn = {{9783031261039}}, pages = {{3--10}}, publisher = {{Springer International Publishing}}, title = {{{Introduction—The Digital Twin of Humans}}}, doi = {{10.1007/978-3-031-26104-6_1}}, year = {{2023}}, } @book{45191, editor = {{Gräßler, Iris and Maier, Günter W. and Steffen, Eckhard and Roesmann, Daniel}}, isbn = {{9783031261039}}, publisher = {{Springer International Publishing}}, title = {{{The Digital Twin of Humans}}}, doi = {{10.1007/978-3-031-26104-6}}, year = {{2023}}, } @inbook{45187, author = {{Pöhler, Alexander and Gräßler, Iris}}, booktitle = {{The Digital Twin of Humans}}, isbn = {{9783031261039}}, pages = {{171--185}}, publisher = {{Springer International Publishing}}, title = {{{Individual Assembly Guidance}}}, doi = {{10.1007/978-3-031-26104-6_8}}, year = {{2023}}, } @inbook{45111, author = {{Roesmann, Daniel and Gräßler, Iris}}, booktitle = {{The Digital Twin of Humans}}, isbn = {{9783031261039}}, pages = {{187–203}}, publisher = {{Springer International Publishing}}, title = {{{Integration of Human Factors for Assembly Systems of the Future}}}, doi = {{10.1007/978-3-031-26104-6_9}}, year = {{2023}}, } @inproceedings{46488, abstract = {{AbstractNew trends and technologies in product creation increase complexity, but at the same time create new potentials such as efficiency rise in task processing by Artificial Intelligence. Established models in the early phase of product creation such as the W-model or the Aachener Innovation Management model, do not fully exploit these new potentials in the field of strategic product planning and innovation management (SPPIM). For this reason, existing models are analysed in SPPIM in order to derive a requirements profile consisting of potentials and goals for a new model. A new model in SPPIM lays the foundation to support companies in enabling a more efficient task fulfilment by taking advantage of new technologies and trends. To guide the development of advanced SPPIM models, the derived potentials and goals are applied to the guideline VDI 2220:1980.}}, author = {{Gräßler, Iris and Koch, Anna-Sophie and Tusek, Alena Marie}}, booktitle = {{Proceedings of the Design Society}}, issn = {{2732-527X}}, pages = {{2915--2924}}, publisher = {{Cambridge University Press (CUP)}}, title = {{{POTENTIALS AND GOALS OF MODELS IN STRATEGIC PRODUCT PLANNING AND INNOVATION MANAGEMENT}}}, doi = {{10.1017/pds.2023.292}}, volume = {{3}}, year = {{2023}}, } @inbook{46796, author = {{Hesse, Philipp and Gräßler, Iris}}, booktitle = {{Climate Protection, Resource Efficiency, and Sustainable Engineering: Transdisciplinary Approaches to Design and Manufacturing technology.}}, editor = {{Horwath, Ilona and Schweizer, Swetlana}}, pages = {{128--138}}, publisher = {{transcript}}, title = {{{Interdependency study of design guidelines}}}, year = {{2023}}, } @inbook{46792, author = {{Hesse, Philipp and Gräßler, Iris}}, booktitle = {{Climate Protection, Resource Efficiency, and Sustainable Engineering: Transdisciplinary Approaches to Design and Manufacturing technology.}}, editor = {{Horwath, Ilona and Schweizer, Swetlana}}, pages = {{89--98}}, publisher = {{transcript}}, title = {{{Sustainable product life cycle}}}, year = {{2023}}, } @techreport{46501, author = {{Gräßler, Iris and Ovtcharova, Jivka and Dattner, Michael and Dietert, Tilko and Dietz, Patrick and Elstermann, Matthes and Fayet, Celestin and Hauck, Andreas and Häuser, Frank and Fischer, Holger and Herzog, Michael and Köhler, Christian and Lachenmaier, Jens and Lachmayer, Roland and Meussen, Bernhard and Mozgova, Iryna and Möser, Sebastian and Pottebaum, Jens and Schluse, Michael and Schneider, Jannik and Stetter, Ralf and Thurnes, Christian and Tusek, Alena Marie and Wurst, Johanna }}, title = {{{Begriffe der strategischen Produktplanung und -entwicklung. Produkt und hybride Leistung}}}, year = {{2023}}, } @inproceedings{34395, author = {{Gräßler, Iris and Hieb, Michael and Roesmann, Daniel and Unverzagt, Marc}}, editor = {{Lohweg, Volker}}, pages = {{95--106}}, publisher = {{Springer Vieweg}}, title = {{{Creating Synthetic Training Data for Machine Vision Quality Gates}}}, doi = {{10.1007/978-3-662-66769-9_7 }}, year = {{2023}}, }