@article{50829, author = {{Heinisch, Nils and Köcher, Nikolas and Bauch, David and Schumacher, Stefan}}, issn = {{2643-1564}}, journal = {{Physical Review Research}}, number = {{1}}, publisher = {{American Physical Society (APS)}}, title = {{{Swing-up dynamics in quantum emitter cavity systems: Near ideal single photons and entangled photon pairs}}}, doi = {{10.1103/PhysRevResearch.6.L012017}}, volume = {{6}}, year = {{2024}}, } @article{51519, author = {{Cui, Tie Jun and Zhang, Shuang and Alu, Andrea and Wegener, Martin and Pendry, John and Luo, Jie and Lai, Yun and Wang, Zuojia and Lin, Xiao and Chen, Hongsheng and Chen, Ping and Wu, Rui-Xin and Yin, Yuhang and Zhao, Pengfei and Chen, Huanyang and Li, Yue and Zhou, Ziheng and Engheta, Nader and Asadchy, V. S. and Simovski, Constantin and Tretyakov, Sergei A and Yang, Biao and Campbell, Sawyer D. and Hao, Yang and Werner, Douglas H and Sun, Shulin and Zhou, Lei and Xu, Su and Sun, Hong-Bo and Zhou, Zhou and Li, Zile and Zheng, Guoxing and Chen, Xianzhong and Li, Tao and Zhu, Shi-Ning and Zhou, Junxiao and Zhao, Junxiang and Liu, Zhaowei and Zhang, Yuchao and Zhang, Qiming and Gu, Min and Xiao, Shumin and Liu, Yongmin and Zhang, Xiaoyu and Tang, Yutao and Li, Guixin and Zentgraf, Thomas and Koshelev, Kirill and Kivshar, Yuri S. and Li, Xin and Badloe, Trevon and Huang, Lingling and Rho, Junsuk and Wang, Shuming and Tsai, Din Ping and Bykov, A. Yu. and Krasavin, Alexey V and Zayats, Anatoly V and McDonnell, Cormac and Ellenbogen, Tal and Luo, Xiangang and Pu, Mingbo and Garcia-Vidal, Francisco J and Liu, Liangliang and Li, Zhuo and Tang, Wenxuan and Ma, Hui Feng and Zhang, Jingjing and Luo, Yu and Zhang, Xuanru and Zhang, Hao Chi and He, Pei Hang and Zhang, Le Peng and Wan, Xiang and Wu, Haotian and Liu, Shuo and Jiang, Wei Xiang and Zhang, Xin Ge and Qiu, Chengwei and Ma, Qian and Liu, Che and Li, Long and Han, Jiaqi and Li, Lianlin and Cotrufo, Michele and Caloz, Christophe and Deck-Léger, Z.-L. and Bahrami, A. and Céspedes, O. and Galiffi, Emanuele and Huidobro, P. A. and Cheng, Qiang and Dai, Jun Yan and Ke, Jun Cheng and Zhang, Lei and Galdi, Vincenzo and Di Renzo, Marco}}, issn = {{2515-7647}}, journal = {{Journal of Physics: Photonics}}, keywords = {{Electrical and Electronic Engineering, Atomic and Molecular Physics, and Optics, Electronic, Optical and Magnetic Materials}}, publisher = {{IOP Publishing}}, title = {{{Roadmap on electromagnetic metamaterials and metasurfaces}}}, doi = {{10.1088/2515-7647/ad1a3b}}, year = {{2024}}, } @article{52700, abstract = {{We explore the polarization hysteretic behaviour and field-dependent permittivity of ferroelectric-dielectric 2D materials formed by random dispersions of low permittivity inclusions in a ferroelectric matrix, using finite element simulations. We show how the degree of impenetrability of dielectric inclusions plays a substantial role in controlling the coercive field, remnant and saturation polarizations of the homogenized materials. The results highlight the significance of the degree of impenetrability of inclusion in tuning the effective polarization properties of such ferroelectric composites: coercive field drops significantly as percolation threshold is attained and remnant polarization decreases faster than a linear decay.}}, author = {{Myroshnychenko, Viktor and Mulavarickal Jose, Pious Mathews and Farheen, Henna and Ejaz, Shafaq and Brosseau, Christian and Förstner, Jens}}, issn = {{0031-8949}}, journal = {{Physica Scripta}}, keywords = {{tet_topic_ferro}}, number = {{4}}, pages = {{045952}}, publisher = {{IOP Publishing}}, title = {{{From Swiss-cheese to discrete ferroelectric composites: assessing the ferroelectric butterfly shape in polarization loops}}}, doi = {{10.1088/1402-4896/ad3172}}, volume = {{99}}, year = {{2024}}, } @article{52723, abstract = {{Miller's rule is an empirical relation between the nonlinear and linear optical coefficients that applies to a large class of materials but has only been rigorously derived for the classical Lorentz model with a weak anharmonic perturbation. In this work, we extend the proof and present a detailed derivation of Miller's rule for an equivalent quantum-mechanical anharmonic oscillator. For this purpose, the classical concept of velocity-dependent damping inherent to the Lorentz model is replaced by an adiabatic switch-on of the external electric field, which allows a unified treatment of the classical and quantum-mechanical systems using identical potentials and fields. Although the dynamics of the resulting charge oscillations, and hence the induced polarizations, deviate due to the finite zero-point motion in the quantum-mechanical framework, we find that Miller's rule is nevertheless identical in both cases up to terms of first order in the anharmonicity. With a view to practical applications, especially in the context of ab initio calculations for the optical response where adiabatically switched-on fields are widely assumed, we demonstrate that a correct treatment of finite broadening parameters is essential to avoid spurious errors that may falsely suggest a violation of Miller's rule, and we illustrate this point by means of a numerical example.}}, author = {{Meyer, Maximilian Tim and Schindlmayr, Arno}}, issn = {{1361-6455}}, journal = {{Journal of Physics B: Atomic, Molecular and Optical Physics}}, publisher = {{IOP Publishing}}, title = {{{Derivation of Miller's rule for the nonlinear optical susceptibility of a quantum anharmonic oscillator}}}, doi = {{10.1088/1361-6455/ad369c}}, year = {{2024}}, } @article{36471, abstract = {{Superconducting nanowire single-photon detectors (SNSPDs) show near unity efficiency, low dark count rate, and short recovery time. Combining these characteristics with temporal control of SNSPDs broadens their applications as in active de-latching for higher dynamic range counting or temporal filtering for pump-probe spectroscopy or LiDAR. To that end, we demonstrate active gating of an SNSPD with a minimum off-to-on rise time of 2.4 ns and a total gate length of 5.0 ns. We show how the rise time depends on the inductance of the detector in combination with the control electronics. The gate window is demonstrated to be fully and freely, electrically tunable up to 500 ns at a repetition rate of 1.0 MHz, as well as ungated, free-running operation. Control electronics to generate the gating are mounted on the 2.3 K stage of a closed-cycle sorption cryostat, while the detector is operated on the cold stage at 0.8 K. We show that the efficiency and timing jitter of the detector is not altered during the on-time of the gating window. We exploit gated operation to demonstrate a method to increase in the photon counting dynamic range by a factor 11.2, as well as temporal filtering of a strong pump in an emulated pump-probe experiment.}}, author = {{Hummel, Thomas and Widhalm, Alex and Höpker, Jan Philipp and Jöns, Klaus and Chang, Jin and Fognini, Andreas and Steinhauer, Stephan and Zwiller, Val and Zrenner, Artur and Bartley, Tim}}, issn = {{1094-4087}}, journal = {{Optics Express}}, keywords = {{Atomic and Molecular Physics, and Optics}}, number = {{1}}, publisher = {{Optica Publishing Group}}, title = {{{Nanosecond gating of superconducting nanowire single-photon detectors using cryogenic bias circuitry}}}, doi = {{10.1364/oe.472058}}, volume = {{31}}, year = {{2023}}, } @article{41035, author = {{Sharapova, Polina R. and Kruk, Sergey S. and Solntsev, Alexander S.}}, issn = {{1863-8880}}, journal = {{Laser & Photonics Reviews}}, keywords = {{Condensed Matter Physics, Atomic and Molecular Physics, and Optics, Electronic, Optical and Magnetic Materials}}, publisher = {{Wiley}}, title = {{{Nonlinear Dielectric Nanoresonators and Metasurfaces: Toward Efficient Generation of Entangled Photons}}}, doi = {{10.1002/lpor.202200408}}, year = {{2023}}, } @inproceedings{42804, abstract = {{This paper presents a method to model monolithically integrated photonic radar transceiver (TRX) with optical local oscillator (LO) distribution in silicon germanium (SiGe) electronic photonic integrated circuits (EPICs). The model proposed approximates the behavior of the nonlinear scattering (S)-parameters and noise figure of each building block of the TRX chipset by Laplace polynomials and hyperbolic tangent functions. The modular approach of the model allows to optimize hardware components with respect to the entire TRX system, and fault identification with reduced computational effort. The proposed method is validated using the first monolithically integrated photonic radar transceiver chipset and shows excellent agreement with the post layout simulation results and, including the photodiode (PD) bandwidth (BW) degradation, also with the measurements. }}, author = {{Kruse, Stephan and Schwabe, Tobias and Kneuper, Pascal and Meinecke, Marc-Michael and Kurz, Heiko G. and Scheytt, J. Christoph}}, location = {{Fraunhofer-Forum Berlin, Germany}}, title = {{{Nonlinear S-Parameter Behavioral Model of a Photonic Radar Transceiver Chipset for Automotive Applications}}}, year = {{2023}}, } @article{43421, abstract = {{The achievement of a flat metasurface has realized extraordinary control over light–matter interaction at the nanoscale, enabling widespread use in imaging, holography, and biophotonics. However, three-dimensional metasurfaces with the potential to provide additional light–matter manipulation flexibility attract only little interest. Here, we demonstrate a three-dimensional metasurface scheme capable of providing dual phase control through out-of-plane plasmonic resonance of L-shape antennas. Under circularly polarized excitation at a specific wavelength, the L-shape antennas with rotating orientation angle act as spatially variant three-dimensional tilted dipoles and are able to generate desire phase delay for different polarization components. Generalized Snell's law is achieved for both in-plane and out-of-plane dipole components through arranging such L-shape antennas into arrays. These three-dimensional metasurfaces suggest a route for wavefront modulation and a variety of nanophotonic applications.}}, author = {{Li, Tianyou and Chen, Yanjie and Wang, Yongtian and Zentgraf, Thomas and Huang, Lingling}}, issn = {{0003-6951}}, journal = {{Applied Physics Letters}}, keywords = {{Physics and Astronomy (miscellaneous)}}, number = {{14}}, publisher = {{AIP Publishing}}, title = {{{Three-dimensional dipole momentum analog based on L-shape metasurface}}}, doi = {{10.1063/5.0142389}}, volume = {{122}}, year = {{2023}}, } @article{36416, author = {{De, Jianbo and Ma, Xuekai and Yin, Fan and Ren, Jiahuan and Yao, Jiannian and Schumacher, Stefan and Liao, Qing and Fu, Hongbing and Malpuech, Guillaume and Solnyshkov, Dmitry}}, issn = {{0002-7863}}, journal = {{Journal of the American Chemical Society (JACS)}}, keywords = {{Colloid and Surface Chemistry, Biochemistry, General Chemistry, Catalysis}}, number = {{3}}, pages = {{1557--1563}}, publisher = {{American Chemical Society (ACS)}}, title = {{{Room-Temperature Electrical Field-Enhanced Ultrafast Switch in Organic Microcavity Polariton Condensates}}}, doi = {{10.1021/jacs.2c07557}}, volume = {{145}}, year = {{2023}}, } @article{35160, author = {{Jia, Jichao and Cao, Xue and Ma, Xuekai and De, Jianbo and Yao, Jiannian and Schumacher, Stefan and Liao, Qing and Fu, Hongbing}}, issn = {{2041-1723}}, journal = {{Nature Communications}}, keywords = {{General Physics and Astronomy, General Biochemistry, Genetics and Molecular Biology, General Chemistry, Multidisciplinary}}, number = {{1}}, publisher = {{Springer Science and Business Media LLC}}, title = {{{Circularly polarized electroluminescence from a single-crystal organic microcavity light-emitting diode based on photonic spin-orbit interactions}}}, doi = {{10.1038/s41467-022-35745-w}}, volume = {{14}}, year = {{2023}}, } @article{37280, author = {{Rose, Hendrik and Vasil'ev, A. N. and Tikhonova, O. V. and Meier, Torsten and Sharapova, Polina}}, issn = {{2469-9926}}, journal = {{Physical Review A}}, number = {{1}}, publisher = {{American Physical Society (APS)}}, title = {{{Quantum-optical excitations of semiconductor nanostructures in a microcavity using a two-band model and a single-mode quantum field}}}, doi = {{10.1103/physreva.107.013703}}, volume = {{107}}, year = {{2023}}, } @inproceedings{43051, abstract = {{We demonstrate the numerical and experimental realization of optimized optical traveling-wave antennas made of low-loss dielectric materials. These antennas exhibit highly directive radiation patterns and our studies reveal that this nature comes from two dominant guided TE modes excited in the waveguide-like director of the antenna, in addition to the leaky modes. The optimized antennas possess a broadband nature and have a nearunity radiation efficiency at an operational wavelength of 780 nm. Compared to the previously studied plasmonic antennas for photon emission, our all-dielectric approach demonstrates a new class of highly directional, low-loss, and broadband optical antennas.}}, author = {{Farheen, Henna and Yan, Lok-Yee and Leuteritz, Till and Qiao, Siqi and Spreyer, Florian and Schlickriede, Christian and Quiring, Viktor and Eigner, Christof and Silberhorn, Christine and Zentgraf, Thomas and Linden, Stefan and Myroshnychenko, Viktor and Förstner, Jens}}, booktitle = {{Integrated Optics: Devices, Materials, and Technologies XXVII}}, editor = {{García-Blanco, Sonia M. and Cheben, Pavel}}, keywords = {{tet_topic_opticalantenna}}, pages = {{124241E}}, publisher = {{SPIE}}, title = {{{Tailoring the directive nature of optical waveguide antennas}}}, doi = {{10.1117/12.2658921}}, year = {{2023}}, } @inproceedings{43052, abstract = {{We demonstrate a large-scale two dimensional silicon-based optical phased array (OPA) composed of nanoantennas with circular gratings that are balanced in power and aligned in phase, required for producing desired radiation patterns in the far-field. The OPAs are numerically optimized to have an upward efficiency of up to 90%, targeting radiation concentration mainly in the field of view. We envision that our OPAs have the ability of generating complex holographic images, rendering them an attractive candidate for a wide range of applications like LiDAR sensors, optical trapping, optogenetic stimulation and augmented-reality displays.}}, author = {{Farheen, Henna and Strauch, Andreas and Scheytt, J. Christoph and Myroshnychenko, Viktor and Förstner, Jens}}, booktitle = {{Integrated Optics: Devices, Materials, and Technologies XXVII}}, editor = {{García-Blanco, Sonia M. and Cheben, Pavel}}, keywords = {{tet_topic_opticalantenna}}, pages = {{124241D }}, publisher = {{SPIE}}, title = {{{Optimized silicon antennas for optical phased arrays}}}, doi = {{10.1117/12.2658716}}, year = {{2023}}, } @article{43245, abstract = {{High-contrast slab waveguide Bragg gratings with 1D periodicity are investigated. For specific oblique excitation by semi-guided waves at sufficiently high angles of incidence, the idealized structures do not exhibit any radiative losses, such that reflectance and transmittance for the single port mode add strictly up to one. We consider a series of symmetric, fully and partly etched finite gratings, for parameters found in integrated silicon photonics. These can act as spectral filters with a reasonably flattop response. Apodization can lead to more box shaped reflectance and transmittance spectra. Together with a narrowband Fabry–Perot filter, these configurations are characterized by reflection bands, or transmittance peaks, with widths that span three orders of magnitude.}}, author = {{Hammer, Manfred and Farheen, Henna and Förstner, Jens}}, issn = {{0740-3224}}, journal = {{Journal of the Optical Society of America B}}, keywords = {{tet_topic_waveguide}}, number = {{4}}, pages = {{862}}, publisher = {{Optica Publishing Group}}, title = {{{How to suppress radiative losses in high-contrast integrated Bragg gratings}}}, doi = {{10.1364/josab.485725}}, volume = {{40}}, year = {{2023}}, } @inproceedings{43189, abstract = {{The nonlinear optical response of quantum well excitons is investigated experimentally using polarization resolved four wave mixing, optical-pump optical-probe, and optical-pump Terahertz-probe spectroscopy. The four-wave mixing data reveal clear signatures of coherent biexcitons which concur with straight-forward polarization selection rules at the Γ point. The type-I samples show the well-established time-domain beating signatures in the transients as well as the corresponding spectral signatures clearly. The latter are also present in type-II samples; however, the smaller exciton and biexciton binding energies in these structures infer longer beating times which, in turn, are accompanied by faster dephasing of the type-II exciton coherences. Furthermore, the THz absorption following spectrally narrow, picosecond excitation at energies in the vicinity of the 1s exciton resonance are discussed. Here, the optical signatures yield the well-established redshifts and blueshifts for the appropriate polarization geometries in type-I quantum well samples also termed “AC Stark Effect”. The THz probe reveals intriguing spectral features which can be ascribed to coherent negative absorption following an excitation into a virtual state for an excitation below the 1s exciton resonance. Furthermore, the scattering and ionization of excitons is discussed for several excitation geometries yielding control rules for elastic and inelastic quasiparticle collisions.}}, author = {{Meier, Torsten and Stein, M. and Schäfer, F. and Anders, D. and Littmann, J. H. and Fey, M. and Trautmann, Alexander and Ngo, C. and Steiner, J. T. and Reichelt, Matthias and Fuchs, C. and Volz, K. and Chatterjee, S.}}, booktitle = {{Ultrafast Phenomena and Nanophotonics XXVII}}, publisher = {{SPIE }}, title = {{{Experimental studies of the excitonic nonlinear response of GaAs-based type-I and type-II quantum well structures interacting with optical and terahertz fields}}}, doi = {{10.1117/12.2650291}}, volume = {{12419}}, year = {{2023}}, } @inproceedings{43191, abstract = {{Anomalous currents refer to electronic currents that flow perpendicularly to the direction of the accelerating electric field. Such anomalous currents can be generated when Terahertz fields are applied after an optical interband excitation of GaAs quantum wells. The underlying processes are investigated by numerical solutions of the semiconductor Bloch equations in the length gauge. Excitonic effects are included by treating the manybody Coulomb interaction in time-dependent Hartree-Fock approximation and additionally also carrier-phonon scattering processes are considered. The band structure and matrix elements are obtained from a 14-band k · p model within the envelope function approximation. The random phase factors of the matrix elements that appear due to the separate numerical diagonalization at each k-point are treated by applying a smooth gauge transformation. We present the macroscopic Berry curvature and anomalous current transients with and without excitonic effects. It is demonstrated that the resonant optical excitation of excitonic resonances can significantly enhance the Berry curvature and the anomalous currents.}}, author = {{Meier, Torsten and Ngo, C. and Priyadarshi, S. and Duc, H. T. and Bieler, M.}}, booktitle = {{Ultrafast Phenomena and Nanophotonics XXVII}}, publisher = {{SPIE}}, title = {{{Terahertz-induced anomalous currents following the optical excitation of excitons in semiconductor quantum wells}}}, doi = {{10.1117/12.2646022}}, volume = {{12419}}, year = {{2023}}, } @inproceedings{43190, abstract = {{The nonlinear optical response of quantum well excitons excited by optical fields is analyzed by numerical solutions of the semiconductor Bloch equations. Differential absorption spectra are computed for resonant pumping at the exciton resonance and the dependence of the absorption changes on the polarization directions of the pump and probe pulses is investigated. Coherent biexcitonic many-body correlations are included in our approach up to third-order in the optical fields. Results are presented for spatially-direct type-I and spatiallyindirect type-II quantum well systems. Due to the spatial inhomogeneity, in type-II structures a finite coupling between excitons of opposite spins exists already on the Hartree-Fock level and contributes to the absorption changes for the case of opposite circularly polarized pump and probe pulses.}}, author = {{Meier, Torsten and Trautmann, Alexander and Stein, M. and Schäfer, F. and Anders, D. and Ngo, C. and Steiner, J. T. and Reichelt, Matthias and Chatterjee, S.}}, booktitle = {{Ultrafast Phenomena and Nanophotonics XXVII}}, publisher = {{SPIE}}, title = {{{Analysis of the nonlinear optical response of excitons in type-I and type-II quantum wells including many-body correlations}}}, doi = {{10.1117/12.2650169}}, volume = {{12419}}, year = {{2023}}, } @article{43139, author = {{Meier, Torsten and Schäfer, F. and Stein, M. and Lorenz, J. and Dobener, F. and Ngo, C. and Steiner, J. T. and Fuchs, C. and Stolz, W. and Volz, K. and Hader, J. and Moloney, J.V. and Koch, S.W. and Chatterjee, S.}}, journal = {{Applied Physics Letters}}, number = {{8}}, title = {{{Gain recovery dynamics in active type-II semiconductor heterostructures}}}, doi = {{10.1063/5.0128777}}, volume = {{122}}, year = {{2023}}, } @unpublished{43132, author = {{Meier, Torsten and Grisard, S. and Trifonov, A.V. and Rose, Hendrik and Reichhardt, R. and Reichelt, Matthias and Schneider, C. and Kamp, M. and Höfling, S. and Bayer, M. and Akimov, I.A}}, booktitle = {{arxiv:2302.02480}}, title = {{{Temporal sorting of optical multi-wave-mixing processes in semiconductor quantum dots}}}, year = {{2023}}, } @article{42973, author = {{Lüders, Carolin and Pukrop, Matthias and Barkhausen, Franziska and Rozas, Elena and Schneider, Christian and Höfling, Sven and Sperling, Jan and Schumacher, Stefan and Aßmann, Marc}}, issn = {{0031-9007}}, journal = {{Physical Review Letters}}, keywords = {{General Physics and Astronomy}}, number = {{11}}, publisher = {{American Physical Society (APS)}}, title = {{{Tracking Quantum Coherence in Polariton Condensates with Time-Resolved Tomography}}}, doi = {{10.1103/physrevlett.130.113601}}, volume = {{130}}, year = {{2023}}, }