TY - CONF AU - Riebler, Heinrich AU - Vaz, Gavin Francis AU - Plessl, Christian AU - Trainiti, Ettore M. G. AU - Durelli, Gianluca C. AU - Bolchini, Cristiana ID - 31 T2 - Proc. HiPEAC Workshop on Reonfigurable Computing (WRC) TI - Using Just-in-Time Code Generation for Transparent Resource Management in Heterogeneous Systems ER - TY - CONF AU - Kenter, Tobias AU - Plessl, Christian ID - 24 T2 - Proc. Workshop on Heterogeneous High-performance Reconfigurable Computing (H2RC) TI - Microdisk Cavity FDTD Simulation on FPGA using OpenCL ER - TY - CONF AU - Lass, Michael AU - Kühne, Thomas AU - Plessl, Christian ID - 25 T2 - Workshop on Approximate Computing (AC) TI - Using Approximate Computing in Scientific Codes ER - TY - CONF AB - Hardware accelerators are becoming popular in academia and industry. To move one step further from the state-of-the-art multicore plus accelerator approaches, we present in this paper our innovative SAVEHSA architecture. It comprises of a heterogeneous hardware platform with three different high-end accelerators attached over PCIe (GPGPU, FPGA and Intel MIC). Such systems can process parallel workloads very efficiently whilst being more energy efficient than regular CPU systems. To leverage the heterogeneity, the workload has to be distributed among the computing units in a way that each unit is well-suited for the assigned task and executable code must be available. To tackle this problem we present two software components; the first can perform resource allocation at runtime while respecting system and application goals (in terms of throughput, energy, latency, etc.) and the second is able to analyze an application and generate executable code for an accelerator at runtime. We demonstrate the first proof-of-concept implementation of our framework on the heterogeneous platform, discuss different runtime policies and measure the introduced overheads. AU - Riebler, Heinrich AU - Vaz, Gavin Francis AU - Plessl, Christian AU - Trainiti, Ettore M. G. AU - Durelli, Gianluca C. AU - Del Sozzo, Emanuele AU - Santambrogio, Marco D. AU - Bolchini, Christina ID - 138 T2 - Proceedings of International Forum on Research and Technologies for Society and Industry (RTSI) TI - Using Just-in-Time Code Generation for Transparent Resource Management in Heterogeneous Systems ER - TY - CHAP AB - Many modern compute nodes are heterogeneous multi-cores that integrate several CPU cores with fixed function or reconfigurable hardware cores. Such systems need to adapt task scheduling and mapping to optimise for performance and energy under varying workloads and, increasingly important, for thermal and fault management and are thus relevant targets for self-aware computing. In this chapter, we take up the generic reference architecture for designing self-aware and self-expressive computing systems and refine it for heterogeneous multi-cores. We present ReconOS, an architecture, programming model and execution environment for heterogeneous multi-cores, and show how the components of the reference architecture can be implemented on top of ReconOS. In particular, the unique feature of dynamic partial reconfiguration supports self-expression through starting and terminating reconfigurable hardware cores. We detail a case study that runs two applications on an architecture with one CPU and 12 reconfigurable hardware cores and present self-expression strategies for adapting under performance, temperature and even conflicting constraints. The case study demonstrates that the reference architecture as a model for self-aware computing is highly useful as it allows us to structure and simplify the design process, which will be essential for designing complex future compute nodes. Furthermore, ReconOS is used as a base technology for flexible protocol stacks in Chapter 10, an approach for self-aware computing at the networking level. AU - Agne, Andreas AU - Happe, Markus AU - Lösch, Achim AU - Plessl, Christian AU - Platzner, Marco ID - 156 T2 - Self-aware Computing Systems TI - Self-aware Compute Nodes ER - TY - JOUR AB - A broad spectrum of applications can be accelerated by offloading computation intensive parts to reconfigurable hardware. However, to achieve speedups, the number of loop it- erations (trip count) needs to be sufficiently large to amortize offloading overheads. Trip counts are frequently not known at compile time, but only at runtime just before entering a loop. Therefore, we propose to generate code for both the CPU and the coprocessor, and defer the offloading decision to the application runtime. We demonstrate how a toolflow, based on the LLVM compiler framework, can automatically embed dynamic offloading de- cisions into the application code. We perform in-depth static and dynamic analysis of pop- ular benchmarks, which confirm the general potential of such an approach. We also pro- pose to optimize the offloading process by decoupling the runtime decision from the loop execution (decision slack). The feasibility of our approach is demonstrated by a toolflow that automatically identifies suitable data-parallel loops and generates code for the FPGA coprocessor of a Convey HC-1. We evaluate the integrated toolflow with representative loops executed for different input data sizes. AU - Vaz, Gavin Francis AU - Riebler, Heinrich AU - Kenter, Tobias AU - Plessl, Christian ID - 165 JF - Computers and Electrical Engineering SN - 0045-7906 TI - Potential and Methods for Embedding Dynamic Offloading Decisions into Application Code VL - 55 ER - TY - CONF AB - The use of heterogeneous computing resources, such as Graphic Processing Units or other specialized coprocessors, has become widespread in recent years because of their per- formance and energy efficiency advantages. Approaches for managing and scheduling tasks to heterogeneous resources are still subject to research. Although queuing systems have recently been extended to support accelerator resources, a general solution that manages heterogeneous resources at the operating system- level to exploit a global view of the system state is still missing.In this paper we present a user space scheduler that enables task scheduling and migration on heterogeneous processing resources in Linux. Using run queues for available resources we perform scheduling decisions based on the system state and on task characterization from earlier measurements. With a pro- gramming pattern that supports the integration of checkpoints into applications, we preempt tasks and migrate them between three very different compute resources. Considering static and dynamic workload scenarios, we show that this approach can gain up to 17% performance, on average 7%, by effectively avoiding idle resources. We demonstrate that a work-conserving strategy without migration is no suitable alternative. AU - Lösch, Achim AU - Beisel, Tobias AU - Kenter, Tobias AU - Plessl, Christian AU - Platzner, Marco ID - 168 T2 - Proceedings of the 2016 Design, Automation & Test in Europe Conference & Exhibition (DATE) TI - Performance-centric scheduling with task migration for a heterogeneous compute node in the data center ER - TY - CONF AU - Kenter, Tobias AU - Vaz, Gavin Francis AU - Riebler, Heinrich AU - Plessl, Christian ID - 171 T2 - Workshop on Reconfigurable Computing (WRC) TI - Opportunities for deferring application partitioning and accelerator synthesis to runtime (extended abstract) ER - TY - JOUR AB - Große zylindrische Stahlprüflinge werden mittels der Methode der finiten Differenzen im Zeitbereich (engl. finite differences in time domain, FDTD) simulativ untersucht. Dabei werden Pitch-Catch-Messanordnungen verwendet. Es werden zwei Bildgebungsansätze vorgestellt: ersterer basiert auf dem Imaging Principle nach Claerbout, letzterer basiert auf gradientenbasierter Optimierung eines Zielfunktionals. AU - Hegler, Sebastian AU - Statz, Christoph AU - Mütze, Marco AU - Mooshofer, Hubert AU - Goldammer, Matthias AU - Fendt, Karl AU - Schwarzer, Stefan AU - Feldhoff, Kim AU - Flehmig, Martin AU - Markwardt, Ulf AU - E. Nagel, Wolfgang AU - Schütte, Maria AU - Walther, Andrea AU - Meinel, Michael AU - Basermann, Achim AU - Plettemeier, Dirk ID - 1769 IS - 9 JF - tm - Technisches Messen TI - Simulative Ultraschall-Untersuchung von Pitch-Catch-Messanordnungen für große zylindrische Stahl-Prüflinge und gradientenbasierte Bildgebung VL - 82 ER - TY - JOUR AU - Torresen, Jim AU - Plessl, Christian AU - Yao, Xin ID - 1772 IS - 7 JF - IEEE Computer KW - self-awareness KW - self-expression TI - Self-Aware and Self-Expressive Systems – Guest Editor's Introduction VL - 48 ER - TY - JOUR AB - In this article an efficient numerical method to solve multiobjective optimization problems for fluid flow governed by the Navier Stokes equations is presented. In order to decrease the computational effort, a reduced order model is introduced using Proper Orthogonal Decomposition and a corresponding Galerkin Projection. A global, derivative free multiobjective optimization algorithm is applied to compute the Pareto set (i.e. the set of optimal compromises) for the concurrent objectives minimization of flow field fluctuations and control cost. The method is illustrated for a 2D flow around a cylinder at Re = 100. AU - Peitz, Sebastian AU - Dellnitz, Michael ID - 1774 IS - 1 JF - PAMM SN - 1617-7061 TI - Multiobjective Optimization of the Flow Around a Cylinder Using Model Order Reduction VL - 15 ER - TY - GEN AB - Demands for computational power and energy efficiency of computing devices are steadily increasing. At the same time, following classic methods to increase speed and reduce energy consumption of these devices becomes increasingly difficult, bringing alternative methods into focus. One of these methods is approximate computing which utilizes the fact that small errors in computations are acceptable in many applications in order to allow acceleration of these computations or to increase energy efficiency. This thesis develops elements of a workflow that can be followed to apply approximate computing to existing applications. It proposes a novel heuristic approach to the localization of code paths that are suitable to approximate computing based on findings in recent research. Additionally, an approach to identification of approximable instructions within these code paths is proposed and used to implement simulation of approximation. The parts of the workflow are implemented with the goal to lay the foundation for a partly automated toolflow. Evaluation of the developed techniques shows that the proposed methods can help providing a convenient workflow, facilitating the first steps into the application of approximate computing. AU - Lass, Michael ID - 1794 TI - Localization and Analysis of Code Paths Suitable for Acceleration using Approximate Computing ER - TY - GEN AU - Funke, Lukas ID - 5413 TI - An LLVM Based Toolchain for Transparent Acceleration of Digital Image Processing Applications using FPGA Overlay Architectures ER - TY - GEN AU - Löcke, Thomas ID - 5416 TI - Instance-Specific Computing in Hard- and Software for Faster Solving of Complex Problems ER - TY - GEN AU - Wallaschek, Felix ID - 5419 TI - Accelerating Programmable Logic Controllers with the use of FPGAs ER - TY - THES AB - The use of heterogeneous computing resources, such as graphics processing units or other specialized co-processors, has become widespread in recent years because of their performance and energy efficiency advantages. Operating system approaches that are limited to optimizing CPU usage are no longer sufficient for the efficient utilization of systems that comprise diverse resource types. Enabling task preemption on these architectures and migration of tasks between different resource types at run-time is not only key to improving the performance and energy consumption but also to enabling automatic scheduling methods for heterogeneous compute nodes. This thesis proposes novel techniques for run-time management of heterogeneous resources and enabling tasks to migrate between diverse hardware. It provides fundamental work towards future operating systems by discussing implications, limitations, and chances of the heterogeneity and introducing solutions for energy- and performance-efficient run-time systems. Scheduling methods to utilize heterogeneous systems by the use of a centralized scheduler are presented that show benefits over existing approaches in varying case studies. AU - Beisel, Tobias ID - 10624 SN - 978-3-8325-4155-2 TI - Management and Scheduling of Accelerators for Heterogeneous High-Performance Computing ER - TY - JOUR AB - FPGAs are known to permit huge gains in performance and efficiency for suitable applications but still require reduced design efforts and shorter development cycles for wider adoption. In this work, we compare the resulting performance of two design concepts that in different ways promise such increased productivity. As common starting point, we employ a kernel-centric design approach, where computational hotspots in an application are identified and individually accelerated on FPGA. By means of a complex stereo matching application, we evaluate two fundamentally different design philosophies and approaches for implementing the required kernels on FPGAs. In the first implementation approach, we designed individually specialized data flow kernels in a spatial programming language for a Maxeler FPGA platform; in the alternative design approach, we target a vector coprocessor with large vector lengths, which is implemented as a form of programmable overlay on the application FPGAs of a Convey HC-1. We assess both approaches in terms of overall system performance, raw kernel performance, and performance relative to invested resources. After compensating for the effects of the underlying hardware platforms, the specialized dataflow kernels on the Maxeler platform are around 3x faster than kernels executing on the Convey vector coprocessor. In our concrete scenario, due to trade-offs between reconfiguration overheads and exposed parallelism, the advantage of specialized dataflow kernels is reduced to around 2.5x. AU - Kenter, Tobias AU - Schmitz, Henning AU - Plessl, Christian ID - 296 JF - International Journal of Reconfigurable Computing (IJRC) TI - Exploring Tradeoffs between Specialized Kernels and a Reusable Overlay in a Stereo-Matching Case Study VL - 2015 ER - TY - CONF AB - This paper introduces Binary Acceleration At Runtime(BAAR), an easy-to-use on-the-fly binary acceleration mechanismwhich aims to tackle the problem of enabling existentsoftware to automatically utilize accelerators at runtime. BAARis based on the LLVM Compiler Infrastructure and has aclient-server architecture. The client runs the program to beaccelerated in an environment which allows program analysisand profiling. Program parts which are identified as suitable forthe available accelerator are exported and sent to the server.The server optimizes these program parts for the acceleratorand provides RPC execution for the client. The client transformsits program to utilize accelerated execution on the server foroffloaded program parts. We evaluate our work with a proofof-concept implementation of BAAR that uses an Intel XeonPhi 5110P as the acceleration target and performs automaticoffloading, parallelization and vectorization of suitable programparts. The practicality of BAAR for real-world examples is shownbased on a study of stencil codes. Our results show a speedup ofup to 4 without any developer-provided hints and 5.77 withhints over the same code compiled with the Intel Compiler atoptimization level O2 and running on an Intel Xeon E5-2670machine. Based on our insights gained during implementationand evaluation we outline future directions of research, e.g.,offloading more fine-granular program parts than functions, amore sophisticated communication mechanism or introducing onstack-replacement. AU - Damschen, Marvin AU - Plessl, Christian ID - 303 T2 - Proceedings of the 5th International Workshop on Adaptive Self-tuning Computing Systems (ADAPT) TI - Easy-to-Use On-The-Fly Binary Program Acceleration on Many-Cores ER - TY - CONF AU - Schumacher, Jörn AU - T. Anderson, J. AU - Borga, A. AU - Boterenbrood, H. AU - Chen, H. AU - Chen, K. AU - Drake, G. AU - Francis, D. AU - Gorini, B. AU - Lanni, F. AU - Lehmann-Miotto, Giovanna AU - Levinson, L. AU - Narevicius, J. AU - Plessl, Christian AU - Roich, A. AU - Ryu, S. AU - P. Schreuder, F. AU - Vandelli, Wainer AU - Vermeulen, J. AU - Zhang, J. ID - 1773 T2 - Proc. Int. Conf. on Distributed Event-Based Systems (DEBS) TI - Improving Packet Processing Performance in the ATLAS FELIX Project – Analysis and Optimization of a Memory-Bounded Algorithm ER - TY - JOUR AU - Plessl, Christian AU - Platzner, Marco AU - Schreier, Peter J. ID - 1768 IS - 5 JF - Informatik Spektrum KW - approximate computing KW - survey TI - Aktuelles Schlagwort: Approximate Computing ER -