@article{18476,
abstract = {We investigate the band dispersion and relevant electronic properties of rubrene single crystals within the GW approximation. Due to the self-energy correction, the dispersion of the highest occupied molecular orbital (HOMO) band increases by 0.10 eV compared to the dispersion of the Kohn-Sham eigenvalues within the generalized gradient approximation, and the effective hole mass consequently decreases. The resulting value of 0.90 times the electron rest mass along the Γ-Y direction in the Brillouin zone is closer to experimental measurements than that obtained from density-functional theory. The enhanced bandwidth is explained in terms of the intermolecular hybridization of the HOMO(Y) wave function along the stacking direction of the molecules. Overall, our results support the bandlike interpretation of charge-carrier transport in rubrene.},
author = {Yanagisawa, Susumu and Morikawa, Yoshitada and Schindlmayr, Arno},
issn = {1550-235X},
journal = {Physical Review B},
number = {11},
publisher = {American Physical Society},
title = {{HOMO band dispersion of crystalline rubrene: Effects of self-energy corrections within the GW approximation}},
doi = {10.1103/PhysRevB.88.115438},
volume = {88},
year = {2013},
}
@article{18542,
abstract = {We present recent advances in numerical implementations of hybrid functionals and the GW approximation within the full-potential linearized augmented-plane-wave (FLAPW) method. The former is an approximation for the exchange–correlation contribution to the total energy functional in density-functional theory, and the latter is an approximation for the electronic self-energy in the framework of many-body perturbation theory. All implementations employ the mixed product basis, which has evolved into a versatile basis for the products of wave functions, describing the incoming and outgoing states of an electron that is scattered by interacting with another electron. It can thus be used for representing the nonlocal potential in hybrid functionals as well as the screened interaction and related quantities in GW calculations. In particular, the six-dimensional space integrals of the Hamiltonian exchange matrix elements (and exchange self-energy) decompose into sums over vector–matrix–vector products, which can be evaluated easily. The correlation part of the GW self-energy, which contains a time or frequency dependence, is calculated on the imaginary frequency axis with a subsequent analytic continuation to the real axis or, alternatively, by a direct frequency convolution of the Green function G and the dynamically screened Coulomb interaction W along a contour integration path that avoids the poles of the Green function. Hybrid-functional and GW calculations are notoriously computationally expensive. We present a number of tricks that reduce the computational cost considerably, including the use of spatial and time-reversal symmetries, modifications of the mixed product basis with the aim to optimize it for the correlation self-energy and another modification that makes the Coulomb matrix sparse, analytic expansions of the interaction potentials around the point of divergence at k=0, and a nested density and density-matrix convergence scheme for hybrid-functional calculations. We show CPU timings for prototype semiconductors and illustrative results for GdN and ZnO. },
author = {Friedrich, Christoph and Betzinger, Markus and Schlipf, Martin and Blügel, Stefan and Schindlmayr, Arno},
issn = {1361-648X},
journal = {Journal of Physics: Condensed Matter},
number = {29},
publisher = {IOP Publishing},
title = {{Hybrid functionals and GW approximation in the FLAPW method}},
doi = {10.1088/0953-8984/24/29/293201},
volume = {24},
year = {2012},
}
@article{4091,
abstract = {We present a nonequilibrium ab initio method for calculating nonlinear and nonlocal optical effects in metallic slabs with a thickness of several nanometers. The numerical analysis is based on the full solution of the time‐dependent Kohn–Sham equations for a jellium system and allows to study the optical response of metal electrons subject to arbitrarily shaped intense light pulses. We find a strong localization of the generated second‐harmonic current in the surface regions of the slabs. },
author = {Wand, Mathias and Schindlmayr, Arno and Meier, Torsten and Förstner, Jens},
issn = {1521-3951},
journal = {Physica Status Solidi B},
keyword = {tet_topic_shg},
number = {4},
pages = {887--891},
publisher = {Wiley-VCH},
title = {{Simulation of the ultrafast nonlinear optical response of metal slabs}},
doi = {10.1002/pssb.201001219},
volume = {248},
year = {2011},
}
@inproceedings{4048,
abstract = {We present an ab-initio method for calculating nonlinear and nonlocal optical effects in metallic slabs with sub-wavelength thickness. We find a strong localization of the second-harmonic current at the metal-vacuum interface.},
author = {Wand, Mathias and Schindlmayr, Arno and Meier, Torsten and Förstner, Jens},
booktitle = {CLEO:2011 - Laser Applications to Photonic Applications },
isbn = {978-1-4577-1223-4},
issn = {2160-8989},
keyword = {tet_topic_shg},
location = {Baltimore, Maryland, United States},
publisher = {Optical Society of America},
title = {{Theoretical approach to the ultrafast nonlinear optical response of metal slabs}},
doi = {10.1364/CLEO_AT.2011.JTuI59},
year = {2011},
}
@inbook{18549,
abstract = {We describe the software package SPEX, which allows first-principles calculations of quasiparticle and collective electronic excitations in solids using techniques from many-body perturbation theory. The implementation is based on the full-potential linearized augmented-plane-wave (FLAPW) method, which treats core and valence electrons on an equal footing and can be applied to a wide range of materials, including transition metals and rare earths. After a discussion of essential features that contribute to the high numerical efficiency of the code, we present illustrative results for quasiparticle band structures calculated within the GW approximation for the electronic self-energy, electron-energy-loss spectra with inter- and intraband transitions as well as local-field effects, and spin-wave spectra of itinerant ferromagnets. In all cases the inclusion of many-body correlation terms leads to very good quantitative agreement with experimental spectroscopies.},
author = {Schindlmayr, Arno and Friedrich, Christoph and Şaşıoğlu, Ersoy and Blügel, Stefan},
booktitle = {Modern and Universal First-Principles Methods for Many-Electron Systems in Chemistry and Physics},
editor = {Dolg, Franz Michael},
isbn = {978-3-486-59827-8},
pages = {67--78},
publisher = {Oldenbourg},
title = {{First-principles calculation of electronic excitations in solids with SPEX}},
doi = {10.1524/9783486711639.67},
volume = {3},
year = {2010},
}
@article{18557,
abstract = {We describe the software package SPEX, which allows first-principles calculations of quasiparticle and collective electronic excitations in solids using techniques from many-body perturbation theory. The implementation is based on the full-potential linearized augmented-plane-wave (FLAPW) method, which treats core and valence electrons on an equal footing and can be applied to a wide range of materials, including transition metals and rare earths. After a discussion of essential features that contribute to the high numerical efficiency of the code, we present illustrative results for quasiparticle band structures calculated within the GW approximation for the electronic self-energy, electron-energy-loss spectra with inter- and intraband transitions as well as local-field effects, and spin-wave spectra of itinerant ferromagnets. In all cases the inclusion of many-body correlation terms leads to very good quantitative agreement with experimental spectroscopies.},
author = {Schindlmayr, Arno and Friedrich, Christoph and Şaşıoğlu, Ersoy and Blügel, Stefan},
issn = {2196-7156},
journal = {Zeitschrift für Physikalische Chemie},
number = {3-4},
pages = {357--368},
publisher = {Oldenbourg},
title = {{First-principles calculation of electronic excitations in solids with SPEX}},
doi = {10.1524/zpch.2010.6110},
volume = {224},
year = {2010},
}
@article{18560,
abstract = {We present a computational scheme to study spin excitations in magnetic materials from first principles. The central quantity is the transverse spin susceptibility, from which the complete excitation spectrum, including single-particle spin-flip Stoner excitations and collective spin-wave modes, can be obtained. The susceptibility is derived from many-body perturbation theory and includes dynamic correlation through a summation over ladder diagrams that describe the coupling of electrons and holes with opposite spins. In contrast to earlier studies, we do not use a model potential with adjustable parameters for the electron-hole interaction but employ the random-phase approximation. To reduce the numerical cost for the calculation of the four-point scattering matrix we perform a projection onto maximally localized Wannier functions, which allows us to truncate the matrix efficiently by exploiting the short spatial range of electronic correlation in the partially filled d or f orbitals. Our implementation is based on the full-potential linearized augmented-plane-wave method. Starting from a ground-state calculation within the local-spin-density approximation (LSDA), we first analyze the matrix elements of the screened Coulomb potential in the Wannier basis for the 3d transition-metal series. In particular, we discuss the differences between a constrained nonmagnetic and a proper spin-polarized treatment for the ferromagnets Fe, Co, and Ni. The spectrum of single-particle and collective spin excitations in fcc Ni is then studied in detail. The calculated spin-wave dispersion is in good overall agreement with experimental data and contains both an acoustic and an optical branch for intermediate wave vectors along the [100] direction. In addition, we find evidence for a similar double-peak structure in the spectral function along the [111] direction. To investigate the influence of static correlation we finally consider LSDA+U as an alternative starting point and show that, together with an improved description of the Fermi surface, it yields a more accurate quantitative value for the spin-wave stiffness constant, which is overestimated in the LSDA.},
author = {Şaşıoğlu, Ersoy and Schindlmayr, Arno and Friedrich, Christoph and Freimuth, Frank and Blügel, Stefan},
issn = {1550-235X},
journal = {Physical Review B},
number = {5},
publisher = {American Physical Society},
title = {{Wannier-function approach to spin excitations in solids}},
doi = {10.1103/PhysRevB.81.054434},
volume = {81},
year = {2010},
}
@article{18558,
abstract = {We present an implementation of the GW approximation for the electronic self-energy within the full-potential linearized augmented-plane-wave (FLAPW) method. The algorithm uses an all-electron mixed product basis for the representation of response matrices and related quantities. This basis is derived from the FLAPW basis and is exact for wave-function products. The correlation part of the self-energy is calculated on the imaginary-frequency axis with a subsequent analytic continuation to the real axis. As an alternative we can perform the frequency convolution of the Green function G and the dynamically screened Coulomb interaction W explicitly by a contour integration. The singularity of the bare and screened interaction potentials gives rise to a numerically important self-energy contribution, which we treat analytically to achieve good convergence with respect to the k-point sampling. As numerical realizations of the GW approximation typically suffer from the high computational expense required for the evaluation of the nonlocal and frequency-dependent self-energy, we demonstrate how the algorithm can be made very efficient by exploiting spatial and time-reversal symmetry as well as by applying an optimization of the mixed product basis that retains only the numerically important contributions of the electron-electron interaction. This optimization step reduces the basis size without compromising the accuracy and accelerates the code considerably. Furthermore, we demonstrate that one can employ an extrapolar approximation for high-lying states to reduce the number of empty states that must be taken into account explicitly in the construction of the polarization function and the self-energy. We show convergence tests, CPU timings, and results for prototype semiconductors and insulators as well as ferromagnetic nickel.},
author = {Friedrich, Christoph and Blügel, Stefan and Schindlmayr, Arno},
issn = {1550-235X},
journal = {Physical Review B},
number = {12},
publisher = {American Physical Society},
title = {{Efficient implementation of the GW approximation within the all-electron FLAPW method}},
doi = {10.1103/PhysRevB.81.125102},
volume = {81},
year = {2010},
}
@article{13573,
abstract = {Given the vast range of lithium niobate (LiNbO3) applications, the knowledge about its electronic and optical properties is surprisingly limited. The direct band gap of 3.7 eV for the ferroelectric phase – frequently cited in the literature – is concluded from optical experiments. Recent theoretical investigations show that the electronic band‐structure and optical properties are very sensitive to quasiparticle and electron‐hole attraction effects, which were included using the GW approximation for the electron self‐energy and the Bethe‐Salpeter equation respectively, both based on a model screening function. The calculated fundamental gap was found to be at least 1 eV larger than the experimental value. To resolve this discrepancy we performed first‐principles GW calculations for lithium niobate using the full‐potential linearized augmented plane‐wave (FLAPW) method. Thereby we use the parameter‐free random phase approximation for a realistic description of the nonlocal and energydependent screening. This leads to a band gap of about 4.7 (4.2) eV for ferro(para)‐electric lithium niobate.},
author = {Thierfelder, Christian and Sanna, Simone and Schindlmayr, Arno and Schmidt, Wolf Gero},
issn = {1610-1642},
journal = {Physica Status Solidi C},
location = {Weimar},
number = {2},
pages = {362--365},
publisher = {Wiley-VCH},
title = {{Do we know the band gap of lithium niobate?}},
doi = {10.1002/pssc.200982473},
volume = {7},
year = {2010},
}
@article{18562,
abstract = {The structural and electronic properties of strained silicon are investigated quantitatively with ab initio computational methods. For this purpose we combine densityfunctional theory within the local‐density approximation and the GW approximation for the electronic self‐energy. From the variation of the total energy as a function of applied strain we obtain the elastic constants, Poisson ratios and related structural parameters, taking a possible internal relaxation fully into account. For biaxial tensile strain in the (001) and (111) planes we then investigate the effects on the electronic band structure. These strain configurations occur in epitaxial silicon films grown on SiGe templates along different crystallographic directions.
The tetragonal deformation resulting from (001) strain induces a valley splitting that removes the sixfold degeneracy of the conduction‐band minimum. Furthermore, strain in any direction causes the band structure to warp. We present quantitative results for the electron effective mass, derived from the curvature of the conduction band, as a function of strain and discuss the implications for the mobility of the charge carriers. The inclusion of proper self‐energy corrections within the GW approximation in our work not only yields band gaps in much better agreement with experimental measurements than the localdensity approximation, but also predicts slightly larger electron effective masses.},
author = {Bouhassoune, Mohammed and Schindlmayr, Arno},
issn = {1610-1642},
journal = {Physica Status Solidi C},
location = {Weimar},
number = {2},
pages = {460--463},
publisher = {Wiley-VCH},
title = {{Electronic structure and effective masses in strained silicon}},
doi = {10.1002/pssc.200982470},
volume = {7},
year = {2010},
}
@inproceedings{18634,
abstract = {A computational method to obtain optical conductivities from first principles is presented. It exploits a relation between the conductivity and the complex dielectric function, which is constructed from the full electronic band structure within the random-phase approximation. In contrast to the Drude model, no empirical parameters are used. As interband transitions as well as local-field effects are properly included, the calculated spectra are valid over a wide frequency range. As an illustration I present quantitative results for selected simple metals, noble metals, and ferromagnetic transition metals. The implementation is based on the full-potential linearized augmented-plane-wave method.},
author = {Schindlmayr, Arno},
booktitle = {Theoretical and Computational Nanophotonics: Proceedings of the 2nd International Workshop},
editor = {Chigrin, Dmitry N.},
isbn = {978-0-7354-0715-2},
issn = {1551-7616},
location = {Bad Honnef},
number = {1},
pages = {157--159},
publisher = {American Institute of Physics},
title = {{Optical conductivity of metals from first principles}},
doi = {10.1063/1.3253897},
volume = {1176},
year = {2009},
}
@article{18636,
abstract = {We derive formulas for the Coulomb matrix within the full-potential linearized augmented-plane-wave (FLAPW) method. The Coulomb matrix is a central ingredient in implementations of many-body perturbation theory, such as the Hartree–Fock and GW approximations for the electronic self-energy or the random-phase approximation for the dielectric function. It is represented in the mixed product basis, which combines numerical muffin-tin functions and interstitial plane waves constructed from products of FLAPW basis functions. The interstitial plane waves are here expanded with the Rayleigh formula. The resulting algorithm is very efficient in terms of both computational cost and accuracy and is superior to an implementation with the Fourier transform of the step function. In order to allow an analytic treatment of the divergence at k=0 in reciprocal space, we expand the Coulomb matrix analytically around this point without resorting to a projection onto plane waves. Without additional approximations, we then apply a basis transformation that diagonalizes the Coulomb matrix and confines the divergence to a single eigenvalue. At the same time, response matrices like the dielectric function separate into head, wings, and body with the same mathematical properties as in a plane-wave basis. As an illustration we apply the formulas to electron-energy-loss spectra (EELS) for nickel at different k vectors including k=0. The convergence of the spectra towards the result at k=0 is clearly seen. Our all-electron treatment also allows to include transitions from 3s and 3p core states in the EELS spectrum that give rise to a shallow peak at high energies and lead to good agreement with experiment.},
author = {Friedrich, Christoph and Schindlmayr, Arno and Blügel, Stefan},
issn = {0010-4655},
journal = {Computer Physics Communications},
number = {3},
pages = {347--359},
publisher = {Elsevier},
title = {{Efficient calculation of the Coulomb matrix and its expansion around k=0 within the FLAPW method}},
doi = {10.1016/j.cpc.2008.10.009},
volume = {180},
year = {2009},
}
@article{18632,
abstract = {We present measurements of the effective electron mass in biaxial tensile strained silicon on insulator (SSOI) material with 1.2 GPa stress and in unstrained SOI. Hall-bar metal oxide semiconductor field effect transistors on 60 nm SSOI and SOI were fabricated and Shubnikov–de Haas oscillations in the temperature range of T=0.4–4 K for magnetic fields of B=0–10 T were measured. The effective electron mass in SSOI and SOI samples was determined as mt=(0.20±0.01)m0. This result is in excellent agreement with first-principles calculations of the
effective electron mass in the presence of strain.},
author = {Feste, Sebastian F. and Schäpers, Thomas and Buca, Dan and Zhao, Qing Tai and Knoch, Joachim and Bouhassoune, Mohammed and Schindlmayr, Arno and Mantl, Siegfried},
issn = {1077-3118},
journal = {Applied Physics Letters},
number = {18},
publisher = {American Institute of Physics},
title = {{Measurement of effective electron mass in biaxial tensile strained silicon on insulator}},
doi = {10.1063/1.3254330},
volume = {95},
year = {2009},
}
@article{18564,
abstract = {In the context of photoelectron spectroscopy, the GW approach has developed into the method of choice for computing excitation spectra of weakly correlated bulk systems and their surfaces. To employ the established computational schemes that have been developed for three-dimensional crystals, two-dimensional systems are typically treated in the repeated-slab approach. In this work we critically examine this approach and identify three important aspects for which the treatment of long-range screening in two dimensions differs from the bulk: (1) anisotropy of the macroscopic screening, (2) k-point sampling parallel to the surface, (3) periodic repetition and slab-slab interaction. For prototypical semiconductor (silicon) and ionic (NaCl) thin films we quantify the individual contributions of points (1) to (3) and develop robust and efficient correction schemes derived from the classic theory of dielectric screening.},
author = {Freysoldt, Christoph and Eggert, Philipp and Rinke, Patrick and Schindlmayr, Arno and Scheffler, Matthias},
issn = {1550-235X},
journal = {Physical Review B},
number = {23},
publisher = {American Physical Society},
title = {{Screening in two dimensions: GW calculations for surfaces and thin films using the repeated-slab approach}},
doi = {10.1103/PhysRevB.77.235428},
volume = {77},
year = {2008},
}