TY - JOUR AB - CP2K is an open source electronic structure and molecular dynamics software package to perform atomistic simulations of solid-state, liquid, molecular, and biological systems. It is especially aimed at massively parallel and linear-scaling electronic structure methods and state-of-theart ab initio molecular dynamics simulations. Excellent performance for electronic structure calculations is achieved using novel algorithms implemented for modern high-performance computing systems. This review revisits the main capabilities of CP2K to perform efficient and accurate electronic structure simulations. The emphasis is put on density functional theory and multiple post–Hartree–Fock methods using the Gaussian and plane wave approach and its augmented all-electron extension. AU - Kühne, Thomas AU - Iannuzzi, Marcella AU - Ben, Mauro Del AU - Rybkin, Vladimir V. AU - Seewald, Patrick AU - Stein, Frederick AU - Laino, Teodoro AU - Khaliullin, Rustam Z. AU - Schütt, Ole AU - Schiffmann, Florian AU - Golze, Dorothea AU - Wilhelm, Jan AU - Chulkov, Sergey AU - Mohammad Hossein Bani-Hashemian, Mohammad Hossein Bani-Hashemian AU - Weber, Valéry AU - Borstnik, Urban AU - Taillefumier, Mathieu AU - Jakobovits, Alice Shoshana AU - Lazzaro, Alfio AU - Pabst, Hans AU - Müller, Tiziano AU - Schade, Robert AU - Guidon, Manuel AU - Andermatt, Samuel AU - Holmberg, Nico AU - Schenter, Gregory K. AU - Hehn, Anna AU - Bussy, Augustin AU - Belleflamme, Fabian AU - Tabacchi, Gloria AU - Glöß, Andreas AU - Lass, Michael AU - Bethune, Iain AU - Mundy, Christopher J. AU - Plessl, Christian AU - Watkins, Matt AU - VandeVondele, Joost AU - Krack, Matthias AU - Hutter, Jürg ID - 16277 IS - 19 JF - The Journal of Chemical Physics TI - CP2K: An electronic structure and molecular dynamics software package - Quickstep: Efficient and accurate electronic structure calculations VL - 152 ER - TY - CONF AB - Electronic structure calculations based on density-functional theory (DFT) represent a significant part of today's HPC workloads and pose high demands on high-performance computing resources. To perform these quantum-mechanical DFT calculations on complex large-scale systems, so-called linear scaling methods instead of conventional cubic scaling methods are required. In this work, we take up the idea of the submatrix method and apply it to the DFT computations in the software package CP2K. For that purpose, we transform the underlying numeric operations on distributed, large, sparse matrices into computations on local, much smaller and nearly dense matrices. This allows us to exploit the full floating-point performance of modern CPUs and to make use of dedicated accelerator hardware, where performance has been limited by memory bandwidth before. We demonstrate both functionality and performance of our implementation and show how it can be accelerated with GPUs and FPGAs. AU - Lass, Michael AU - Schade, Robert AU - Kühne, Thomas AU - Plessl, Christian ID - 16898 T2 - Proc. International Conference for High Performance Computing, Networking, Storage and Analysis (SC) TI - A Submatrix-Based Method for Approximate Matrix Function Evaluation in the Quantum Chemistry Code CP2K ER - TY - JOUR AB - In scientific computing, the acceleration of atomistic computer simulations by means of custom hardware is finding ever-growing application. A major limitation, however, is that the high efficiency in terms of performance and low power consumption entails the massive usage of low precision computing units. Here, based on the approximate computing paradigm, we present an algorithmic method to compensate for numerical inaccuracies due to low accuracy arithmetic operations rigorously, yet still obtaining exact expectation values using a properly modified Langevin-type equation. AU - Rengaraj, Varadarajan AU - Lass, Michael AU - Plessl, Christian AU - Kühne, Thomas ID - 12878 IS - 2 JF - Computation TI - Accurate Sampling with Noisy Forces from Approximate Computing VL - 8 ER - TY - JOUR AU - Ohto, Tatsuhiko AU - Dodia, Mayank AU - Xu, Jianhang AU - Imoto, Sho AU - Tang, Fujie AU - Zysk, Frederik AU - Kühne, Thomas D. AU - Shigeta, Yasuteru AU - Bonn, Mischa AU - Wu, Xifan AU - Nagata, Yuki ID - 15738 JF - The Journal of Physical Chemistry Letters SN - 1948-7185 TI - Accessing the Accuracy of Density Functional Theory through Structure and Dynamics of the Water–Air Interface VL - 10 ER - TY - JOUR AU - Azadi, Sam AU - Kühne, Thomas D. ID - 15739 JF - Physical Review B SN - 2469-9950 TI - Unconventional phase III of high-pressure solid hydrogen VL - 100 ER - TY - JOUR AU - Guc, Maxim AU - Kodalle, Tim AU - Kormath Madam Raghupathy, Ramya AU - Mirhosseini, Hossein AU - Kühne, Thomas D. AU - Becerril-Romero, Ignacio AU - Pérez-Rodríguez, Alejandro AU - Kaufmann, Christian A. AU - Izquierdo-Roca, Victor ID - 15740 JF - The Journal of Physical Chemistry C SN - 1932-7447 TI - Vibrational Properties of RbInSe2: Raman Scattering Spectroscopy and First-Principle Calculations VL - 124 ER - TY - JOUR AU - Müller, Patrick AU - Neuba, Adam AU - Flörke, Ulrich AU - Henkel, Gerald AU - Kühne, Thomas D. AU - Bauer, Matthias ID - 16320 JF - The Journal of Physical Chemistry A SN - 1089-5639 TI - Experimental and Theoretical High Energy Resolution Hard X-ray Absorption and Emission Spectroscopy on Biomimetic Cu2S2 Complexes ER - TY - THES AU - Müller, Patrick ID - 16327 TI - Experimental and theoretical (high energy resolution) X-ray absorption and emission spectroscopy / vorgelegt von Patrick Müller ; [Promotionskommission: Prof. Dr.-Ing. Hans-Joachim Warnecke, Vorsitz; Prof. Dr. Matthias Bauer, Erstgutachter; Prof. Dr. Thomas D. Kühne, Zweitgutachter; Prof. Dr. Wolf Gero Schmidt] ER - TY - JOUR AU - Kodalle, Tim AU - Kormath Madam Raghupathy, Ramya AU - Bertram, Tobias AU - Maticiuc, Natalia AU - Yetkin, Hasan A AU - Gunder, René AU - Schlatmann, Rutger AU - Kühne, Thomas D AU - Kaufmann, Christian A AU - Mirhosseini, Hossein ID - 13211 IS - 3 JF - physica status solidi (RRL)--Rapid Research Letters TI - Properties of Co-Evaporated RbInSe2 Thin Films VL - 13 ER - TY - JOUR AB - Abstract The effect of extending the O−H bond length(s) in water on the hydrogen-bonding strength has been investigated using static ab initio molecular orbital calculations. The “polar flattening” effect that causes a slight σ-hole to form on hydrogen atoms is strengthened when the bond is stretched, so that the σ-hole becomes more positive and hydrogen bonding stronger. In opposition to this electronic effect, path-integral ab initio molecular-dynamics simulations show that the nuclear quantum effect weakens the hydrogen bond in the water dimer. Thus, static electronic effects strengthen the hydrogen bond in H2O relative to D2O, whereas nuclear quantum effects weaken it. These quantum fluctuations are stronger for the water dimer than in bulk water. AU - Clark, Timothy AU - Heske, Julian Joachim AU - Kühne, Thomas ID - 13225 JF - ChemPhysChem KW - ab initio calculations KW - bond theory KW - hydrogen bonds KW - isotope effects KW - solvent effects TI - Opposing Electronic and Nuclear Quantum Effects on Hydrogen Bonds in H2O and D2O VL - 20 ER -