--- _id: '21239' abstract: - lang: eng text: The electrochemical nitrogen reduction reaction (NRR) to ammonia (NH3) is a promising alternative route for an NH3 synthesis at ambient conditions to the conventional high temperature and pressure Haber--Bosch process without the need for hydrogen gas. Single metal ions or atoms are attractive candidates for the catalytic activation of non-reactive nitrogen (N2), and for future targeted improvement of NRR catalysts, it is of utmost importance to get detailed insights into structure-performance relationships and mechanisms of N2 activation in such structures. Here, we report density functional theory studies on the NRR catalyzed by single Au and Fe atoms supported in graphitic C2N materials. Our results show that the metal atoms present in the structure of C2N are the reactive sites, which catalyze the aforesaid reaction by strong adsorption and activation of N2. We further demonstrate that a lower onset electrode potential is required for Fe--C2N than for Au--C2N. Thus, Fe--C2N is theoretically predicted to be a potentially better NRR catalyst at ambient conditions than Au--C2N owing to the larger adsorption energy of N2 molecules. Furthermore, we have experimentally shown that single sites of Au and Fe supported on nitrogen-doped porous carbon are indeed active NRR catalysts. However, in contrast to our theoretical results, the Au-based catalyst performed slightly better with a Faradaic efficiency (FE) of 10.1{\%} than the Fe-based catalyst with an FE of 8.4{\%} at −0.2 V vs. RHE. The DFT calculations suggest that this difference is due to the competitive hydrogen evolution reaction and higher desorption energy of ammonia. author: - first_name: Sudhir K. full_name: Sahoo, Sudhir K. last_name: Sahoo - first_name: Julian Joachim full_name: Heske, Julian Joachim id: '53238' last_name: Heske - first_name: Markus full_name: Antonietti, Markus last_name: Antonietti - first_name: Qing full_name: Qin, Qing last_name: Qin - first_name: Martin full_name: Oschatz, Martin last_name: Oschatz - first_name: Thomas full_name: Kühne, Thomas id: '49079' last_name: Kühne citation: ama: Sahoo SK, Heske JJ, Antonietti M, Qin Q, Oschatz M, Kühne T. Electrochemical N2 Reduction to Ammonia Using Single Au/Fe Atoms Supported on Nitrogen-Doped Porous Carbon. ACS Applied Energy Materials. 2020;3(10):10061-10069. doi:10.1021/acsaem.0c01740 apa: Sahoo, S. K., Heske, J. J., Antonietti, M., Qin, Q., Oschatz, M., & Kühne, T. (2020). Electrochemical N2 Reduction to Ammonia Using Single Au/Fe Atoms Supported on Nitrogen-Doped Porous Carbon. ACS Applied Energy Materials, 3(10), 10061–10069. https://doi.org/10.1021/acsaem.0c01740 bibtex: '@article{Sahoo_Heske_Antonietti_Qin_Oschatz_Kühne_2020, title={Electrochemical N2 Reduction to Ammonia Using Single Au/Fe Atoms Supported on Nitrogen-Doped Porous Carbon}, volume={3}, DOI={10.1021/acsaem.0c01740}, number={10}, journal={ACS Applied Energy Materials}, publisher={American Chemical Society}, author={Sahoo, Sudhir K. and Heske, Julian Joachim and Antonietti, Markus and Qin, Qing and Oschatz, Martin and Kühne, Thomas}, year={2020}, pages={10061–10069} }' chicago: 'Sahoo, Sudhir K., Julian Joachim Heske, Markus Antonietti, Qing Qin, Martin Oschatz, and Thomas Kühne. “Electrochemical N2 Reduction to Ammonia Using Single Au/Fe Atoms Supported on Nitrogen-Doped Porous Carbon.” ACS Applied Energy Materials 3, no. 10 (2020): 10061–69. https://doi.org/10.1021/acsaem.0c01740.' ieee: S. K. Sahoo, J. J. Heske, M. Antonietti, Q. Qin, M. Oschatz, and T. Kühne, “Electrochemical N2 Reduction to Ammonia Using Single Au/Fe Atoms Supported on Nitrogen-Doped Porous Carbon,” ACS Applied Energy Materials, vol. 3, no. 10, pp. 10061–10069, 2020. mla: Sahoo, Sudhir K., et al. “Electrochemical N2 Reduction to Ammonia Using Single Au/Fe Atoms Supported on Nitrogen-Doped Porous Carbon.” ACS Applied Energy Materials, vol. 3, no. 10, American Chemical Society, 2020, pp. 10061–69, doi:10.1021/acsaem.0c01740. short: S.K. Sahoo, J.J. Heske, M. Antonietti, Q. Qin, M. Oschatz, T. Kühne, ACS Applied Energy Materials 3 (2020) 10061–10069. date_created: 2021-02-16T10:49:02Z date_updated: 2022-01-06T06:54:50Z department: - _id: '304' doi: 10.1021/acsaem.0c01740 intvolume: ' 3' issue: '10' language: - iso: eng page: 10061-10069 project: - _id: '52' name: Computing Resources Provided by the Paderborn Center for Parallel Computing publication: ACS Applied Energy Materials publisher: American Chemical Society status: public title: Electrochemical N2 Reduction to Ammonia Using Single Au/Fe Atoms Supported on Nitrogen-Doped Porous Carbon type: journal_article user_id: '71692' volume: 3 year: '2020' ... --- _id: '17375' author: - first_name: Jiaqi full_name: Zhou, Jiaqi last_name: Zhou - first_name: Mohammad full_name: Khazaei, Mohammad last_name: Khazaei - first_name: Ahmad full_name: Ranjbar, Ahmad last_name: Ranjbar - first_name: Vei full_name: Wang, Vei last_name: Wang - first_name: Thomas D. full_name: Kühne, Thomas D. last_name: Kühne - first_name: Kaoru full_name: Ohno, Kaoru last_name: Ohno - first_name: Yoshiyuki full_name: Kawazoe, Yoshiyuki last_name: Kawazoe - first_name: Yunye full_name: Liang, Yunye last_name: Liang citation: ama: 'Zhou J, Khazaei M, Ranjbar A, et al. Modulation of nearly free electron states in hydroxyl-functionalized MXenes: a first-principles study. J Mater Chem C. 2020;8:5211-5221. doi:10.1039/C9TC06837F' apa: 'Zhou, J., Khazaei, M., Ranjbar, A., Wang, V., Kühne, T. D., Ohno, K., … Liang, Y. (2020). Modulation of nearly free electron states in hydroxyl-functionalized MXenes: a first-principles study. J. Mater. Chem. C, 8, 5211–5221. https://doi.org/10.1039/C9TC06837F' bibtex: '@article{Zhou_Khazaei_Ranjbar_Wang_Kühne_Ohno_Kawazoe_Liang_2020, title={Modulation of nearly free electron states in hydroxyl-functionalized MXenes: a first-principles study}, volume={8}, DOI={10.1039/C9TC06837F}, journal={J. Mater. Chem. C}, publisher={The Royal Society of Chemistry}, author={Zhou, Jiaqi and Khazaei, Mohammad and Ranjbar, Ahmad and Wang, Vei and Kühne, Thomas D. and Ohno, Kaoru and Kawazoe, Yoshiyuki and Liang, Yunye}, year={2020}, pages={5211–5221} }' chicago: 'Zhou, Jiaqi, Mohammad Khazaei, Ahmad Ranjbar, Vei Wang, Thomas D. Kühne, Kaoru Ohno, Yoshiyuki Kawazoe, and Yunye Liang. “Modulation of Nearly Free Electron States in Hydroxyl-Functionalized MXenes: A First-Principles Study.” J. Mater. Chem. C 8 (2020): 5211–21. https://doi.org/10.1039/C9TC06837F.' ieee: 'J. Zhou et al., “Modulation of nearly free electron states in hydroxyl-functionalized MXenes: a first-principles study,” J. Mater. Chem. C, vol. 8, pp. 5211–5221, 2020.' mla: 'Zhou, Jiaqi, et al. “Modulation of Nearly Free Electron States in Hydroxyl-Functionalized MXenes: A First-Principles Study.” J. Mater. Chem. C, vol. 8, The Royal Society of Chemistry, 2020, pp. 5211–21, doi:10.1039/C9TC06837F.' short: J. Zhou, M. Khazaei, A. Ranjbar, V. Wang, T.D. Kühne, K. Ohno, Y. Kawazoe, Y. Liang, J. Mater. Chem. C 8 (2020) 5211–5221. date_created: 2020-07-14T09:12:35Z date_updated: 2022-01-06T06:53:10Z department: - _id: '304' doi: 10.1039/C9TC06837F intvolume: ' 8' language: - iso: eng page: 5211-5221 publication: J. Mater. Chem. C publisher: The Royal Society of Chemistry status: public title: 'Modulation of nearly free electron states in hydroxyl-functionalized MXenes: a first-principles study' type: journal_article user_id: '71692' volume: 8 year: '2020' ... --- _id: '17379' author: - first_name: 'Sudhir ' full_name: 'Kumar Sahoo, Sudhir ' last_name: Kumar Sahoo - first_name: Julian Joachim full_name: Heske, Julian Joachim id: '53238' last_name: Heske - first_name: Sam full_name: Azadi, Sam last_name: Azadi - first_name: 'Zhenzhe ' full_name: 'Zhang, Zhenzhe ' last_name: Zhang - first_name: ' Nadezda ' full_name: 'V Tarakina, Nadezda ' last_name: V Tarakina - first_name: 'Martin ' full_name: 'Oschatz, Martin ' last_name: Oschatz - first_name: 'Rustam ' full_name: 'Z. Khaliullin, Rustam ' last_name: Z. Khaliullin - first_name: ' Markus ' full_name: 'Antonietti, Markus ' last_name: Antonietti - first_name: Thomas full_name: Kühne, Thomas id: '49079' last_name: Kühne citation: ama: Kumar Sahoo S, Heske JJ, Azadi S, et al. On the Possibility of Helium Adsorption in Nitrogen Doped Graphitic Materials. Scientific Reports. 2020;10(1). doi:10.1038/s41598-020-62638-z apa: Kumar Sahoo, S., Heske, J. J., Azadi, S., Zhang, Z., V  Tarakina, Nadezda , Oschatz, M., … Kühne, T. (2020). On the Possibility of Helium Adsorption in Nitrogen Doped Graphitic Materials. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-62638-z bibtex: '@article{Kumar Sahoo_Heske_Azadi_Zhang_V  Tarakina_Oschatz_Z. Khaliullin_Antonietti_Kühne_2020, title={On the Possibility of Helium Adsorption in Nitrogen Doped Graphitic Materials}, volume={10}, DOI={10.1038/s41598-020-62638-z}, number={1}, journal={Scientific Reports}, author={Kumar Sahoo, Sudhir and Heske, Julian Joachim and Azadi, Sam and Zhang, Zhenzhe and V  Tarakina, Nadezda and Oschatz, Martin and Z. Khaliullin, Rustam and Antonietti, Markus and Kühne, Thomas}, year={2020} }' chicago: Kumar Sahoo, Sudhir , Julian Joachim Heske, Sam Azadi, Zhenzhe Zhang, Nadezda V  Tarakina, Martin Oschatz, Rustam Z. Khaliullin, Markus Antonietti, and Thomas Kühne. “On the Possibility of Helium Adsorption in Nitrogen Doped Graphitic Materials.” Scientific Reports 10, no. 1 (2020). https://doi.org/10.1038/s41598-020-62638-z. ieee: S. Kumar Sahoo et al., “On the Possibility of Helium Adsorption in Nitrogen Doped Graphitic Materials,” Scientific Reports, vol. 10, no. 1, 2020. mla: Kumar Sahoo, Sudhir, et al. “On the Possibility of Helium Adsorption in Nitrogen Doped Graphitic Materials.” Scientific Reports, vol. 10, no. 1, 2020, doi:10.1038/s41598-020-62638-z. short: S. Kumar Sahoo, J.J. Heske, S. Azadi, Z. Zhang, Nadezda V  Tarakina, M. Oschatz, R. Z. Khaliullin, Markus Antonietti, T. Kühne, Scientific Reports 10 (2020). date_created: 2020-07-14T09:31:03Z date_updated: 2022-01-06T06:53:10Z department: - _id: '304' doi: 10.1038/s41598-020-62638-z intvolume: ' 10' issue: '1' language: - iso: eng project: - _id: '52' name: Computing Resources Provided by the Paderborn Center for Parallel Computing publication: Scientific Reports publication_status: published status: public title: On the Possibility of Helium Adsorption in Nitrogen Doped Graphitic Materials type: journal_article user_id: '71692' volume: 10 year: '2020' ... --- _id: '17381' author: - first_name: Hossam full_name: Elgabarty, Hossam last_name: Elgabarty - first_name: Tobias full_name: Kampfrath, Tobias last_name: Kampfrath - first_name: Douwe Jan full_name: Bonthuis, Douwe Jan last_name: Bonthuis - first_name: Vasileios full_name: Balos, Vasileios last_name: Balos - first_name: Naveen Kumar full_name: Kaliannan, Naveen Kumar last_name: Kaliannan - first_name: Philip full_name: Loche, Philip last_name: Loche - first_name: Roland R. full_name: Netz, Roland R. last_name: Netz - first_name: Martin full_name: Wolf, Martin last_name: Wolf - first_name: Thomas D. full_name: K{\, Thomas D. last_name: K{\ - first_name: Mohsen full_name: Sajadi, Mohsen last_name: Sajadi citation: ama: Elgabarty H, Kampfrath T, Bonthuis DJ, et al. Energy transfer within the hydrogen bonding network of water following resonant terahertz excitation. Science Advances. 2020;6(17). doi:10.1126/sciadv.aay7074 apa: Elgabarty, H., Kampfrath, T., Bonthuis, D. J., Balos, V., Kaliannan, N. K., Loche, P., … Sajadi, M. (2020). Energy transfer within the hydrogen bonding network of water following resonant terahertz excitation. Science Advances, 6(17). https://doi.org/10.1126/sciadv.aay7074 bibtex: '@article{Elgabarty_Kampfrath_Bonthuis_Balos_Kaliannan_Loche_Netz_Wolf_K{\_Sajadi_2020, title={Energy transfer within the hydrogen bonding network of water following resonant terahertz excitation}, volume={6}, DOI={10.1126/sciadv.aay7074}, number={17}, journal={Science Advances}, publisher={American Association for the Advancement of Science}, author={Elgabarty, Hossam and Kampfrath, Tobias and Bonthuis, Douwe Jan and Balos, Vasileios and Kaliannan, Naveen Kumar and Loche, Philip and Netz, Roland R. and Wolf, Martin and K{\, Thomas D. and Sajadi, Mohsen}, year={2020} }' chicago: Elgabarty, Hossam, Tobias Kampfrath, Douwe Jan Bonthuis, Vasileios Balos, Naveen Kumar Kaliannan, Philip Loche, Roland R. Netz, Martin Wolf, Thomas D. K{\, and Mohsen Sajadi. “Energy Transfer within the Hydrogen Bonding Network of Water Following Resonant Terahertz Excitation.” Science Advances 6, no. 17 (2020). https://doi.org/10.1126/sciadv.aay7074. ieee: H. Elgabarty et al., “Energy transfer within the hydrogen bonding network of water following resonant terahertz excitation,” Science Advances, vol. 6, no. 17, 2020. mla: Elgabarty, Hossam, et al. “Energy Transfer within the Hydrogen Bonding Network of Water Following Resonant Terahertz Excitation.” Science Advances, vol. 6, no. 17, American Association for the Advancement of Science, 2020, doi:10.1126/sciadv.aay7074. short: H. Elgabarty, T. Kampfrath, D.J. Bonthuis, V. Balos, N.K. Kaliannan, P. Loche, R.R. Netz, M. Wolf, T.D. K{\, M. Sajadi, Science Advances 6 (2020). date_created: 2020-07-14T09:32:33Z date_updated: 2022-01-06T06:53:10Z department: - _id: '304' doi: 10.1126/sciadv.aay7074 intvolume: ' 6' issue: '17' language: - iso: eng project: - _id: '52' name: Computing Resources Provided by the Paderborn Center for Parallel Computing publication: Science Advances publisher: American Association for the Advancement of Science status: public title: Energy transfer within the hydrogen bonding network of water following resonant terahertz excitation type: journal_article user_id: '71692' volume: 6 year: '2020' ... --- _id: '17386' author: - first_name: Thomas D. full_name: Kühne, Thomas D. last_name: Kühne - first_name: Marcella full_name: Iannuzzi, Marcella last_name: Iannuzzi - first_name: Mauro full_name: Del Ben, Mauro last_name: Del Ben - first_name: Vladimir V. full_name: Rybkin, Vladimir V. last_name: Rybkin - first_name: Patrick full_name: Seewald, Patrick last_name: Seewald - first_name: Frederick full_name: Stein, Frederick last_name: Stein - first_name: Teodoro full_name: Laino, Teodoro last_name: Laino - first_name: Rustam Z. full_name: Khaliullin, Rustam Z. last_name: Khaliullin - first_name: Ole full_name: Schütt, Ole last_name: Schütt - first_name: Florian full_name: Schiffmann, Florian last_name: Schiffmann - first_name: et full_name: al., et last_name: al. citation: ama: 'Kühne TD, Iannuzzi M, Del Ben M, et al. CP2K: An electronic structure and molecular dynamics software package - Quickstep: Efficient and accurate electronic structure calculations. The Journal of Chemical Physics. 2020;152(19):194103. doi:10.1063/5.0007045' apa: 'Kühne, T. D., Iannuzzi, M., Del Ben, M., Rybkin, V. V., Seewald, P., Stein, F., … al., et. (2020). CP2K: An electronic structure and molecular dynamics software package - Quickstep: Efficient and accurate electronic structure calculations. The Journal of Chemical Physics, 152(19), 194103. https://doi.org/10.1063/5.0007045' bibtex: '@article{Kühne_Iannuzzi_Del Ben_Rybkin_Seewald_Stein_Laino_Khaliullin_Schütt_Schiffmann_et al._2020, title={CP2K: An electronic structure and molecular dynamics software package - Quickstep: Efficient and accurate electronic structure calculations}, volume={152}, DOI={10.1063/5.0007045}, number={19}, journal={The Journal of Chemical Physics}, publisher={AIP Publishing}, author={Kühne, Thomas D. and Iannuzzi, Marcella and Del Ben, Mauro and Rybkin, Vladimir V. and Seewald, Patrick and Stein, Frederick and Laino, Teodoro and Khaliullin, Rustam Z. and Schütt, Ole and Schiffmann, Florian and et al.}, year={2020}, pages={194103} }' chicago: 'Kühne, Thomas D., Marcella Iannuzzi, Mauro Del Ben, Vladimir V. Rybkin, Patrick Seewald, Frederick Stein, Teodoro Laino, et al. “CP2K: An Electronic Structure and Molecular Dynamics Software Package - Quickstep: Efficient and Accurate Electronic Structure Calculations.” The Journal of Chemical Physics 152, no. 19 (2020): 194103. https://doi.org/10.1063/5.0007045.' ieee: 'T. D. Kühne et al., “CP2K: An electronic structure and molecular dynamics software package - Quickstep: Efficient and accurate electronic structure calculations,” The Journal of Chemical Physics, vol. 152, no. 19, p. 194103, 2020.' mla: 'Kühne, Thomas D., et al. “CP2K: An Electronic Structure and Molecular Dynamics Software Package - Quickstep: Efficient and Accurate Electronic Structure Calculations.” The Journal of Chemical Physics, vol. 152, no. 19, AIP Publishing, 2020, p. 194103, doi:10.1063/5.0007045.' short: T.D. Kühne, M. Iannuzzi, M. Del Ben, V.V. Rybkin, P. Seewald, F. Stein, T. Laino, R.Z. Khaliullin, O. Schütt, F. Schiffmann, et al., The Journal of Chemical Physics 152 (2020) 194103. date_created: 2020-07-14T09:41:47Z date_updated: 2022-01-06T06:53:10Z department: - _id: '304' doi: 10.1063/5.0007045 intvolume: ' 152' issue: '19' language: - iso: eng page: '194103' project: - _id: '52' name: Computing Resources Provided by the Paderborn Center for Parallel Computing publication: The Journal of Chemical Physics publication_identifier: issn: - 1089-7690 publisher: AIP Publishing status: public title: 'CP2K: An electronic structure and molecular dynamics software package - Quickstep: Efficient and accurate electronic structure calculations' type: journal_article user_id: '71692' volume: 152 year: '2020' ... --- _id: '19844' abstract: - lang: eng text: The defect-electronic properties of {112} microfaceted surfaces of epitaxially grown CuInSe2 thin films are investigated by scanning tunneling spectroscopy and photoelectron spectroscopy techniques after various surface treatments. The intrinsic CuInSe2 surface is found to be largely passivated in terms of electronic defect levels in the band-gap region. However, surface oxidation leads to an overall high density of defect levels in conjunction with a considerable net surface dipole, which persists even after oxide removal. Yet, a subsequent annealing under vacuum restores the initial condition. Such oxidation/reduction cycles are reversible for many times providing robust control of the surface and interface properties in these materials. Based on ab initio simulations, a mechanism where oxygen dissociatively adsorbs and subsequently diffuses to a subsurface site is proposed as the initial step of the observed dipole formation. Our results emphasize the relevance of oxidation-induced dipole effects at the thin film surface and provide a comprehensive understanding toward passivation strategies of these surfaces. author: - first_name: Amala full_name: Elizabeth, Amala last_name: Elizabeth - first_name: Sudhir K. full_name: Sahoo, Sudhir K. last_name: Sahoo - first_name: David full_name: Lockhorn, David last_name: Lockhorn - first_name: Alexander full_name: Timmer, Alexander last_name: Timmer - first_name: Nabi full_name: Aghdassi, Nabi last_name: Aghdassi - first_name: Helmut full_name: Zacharias, Helmut last_name: Zacharias - first_name: Thomas full_name: Kühne, Thomas id: '49079' last_name: Kühne - first_name: Susanne full_name: Siebentritt, Susanne last_name: Siebentritt - first_name: Hossein full_name: Mirhosseini, Hossein id: '71051' last_name: Mirhosseini orcid: https://orcid.org/0000-0001-6179-1545 - first_name: Harry full_name: Mönig, Harry last_name: Mönig citation: ama: Elizabeth A, Sahoo SK, Lockhorn D, et al. Oxidation/reduction cycles and their reversible effect on the dipole formation at CuInSe2 surfaces. Phys Rev Materials. 2020;4:063401. doi:10.1103/PhysRevMaterials.4.063401 apa: Elizabeth, A., Sahoo, S. K., Lockhorn, D., Timmer, A., Aghdassi, N., Zacharias, H., Kühne, T., Siebentritt, S., Mirhosseini, H., & Mönig, H. (2020). Oxidation/reduction cycles and their reversible effect on the dipole formation at CuInSe2 surfaces. Phys. Rev. Materials, 4, 063401. https://doi.org/10.1103/PhysRevMaterials.4.063401 bibtex: '@article{Elizabeth_Sahoo_Lockhorn_Timmer_Aghdassi_Zacharias_Kühne_Siebentritt_Mirhosseini_Mönig_2020, title={ Oxidation/reduction cycles and their reversible effect on the dipole formation at CuInSe2 surfaces}, volume={4}, DOI={10.1103/PhysRevMaterials.4.063401}, journal={Phys. Rev. Materials}, publisher={American Physical Society}, author={Elizabeth, Amala and Sahoo, Sudhir K. and Lockhorn, David and Timmer, Alexander and Aghdassi, Nabi and Zacharias, Helmut and Kühne, Thomas and Siebentritt, Susanne and Mirhosseini, Hossein and Mönig, Harry}, year={2020}, pages={063401} }' chicago: 'Elizabeth, Amala, Sudhir K. Sahoo, David Lockhorn, Alexander Timmer, Nabi Aghdassi, Helmut Zacharias, Thomas Kühne, Susanne Siebentritt, Hossein Mirhosseini, and Harry Mönig. “ Oxidation/Reduction Cycles and Their Reversible Effect on the Dipole Formation at CuInSe2 Surfaces.” Phys. Rev. Materials 4 (2020): 063401. https://doi.org/10.1103/PhysRevMaterials.4.063401.' ieee: 'A. Elizabeth et al., “ Oxidation/reduction cycles and their reversible effect on the dipole formation at CuInSe2 surfaces,” Phys. Rev. Materials, vol. 4, p. 063401, 2020, doi: 10.1103/PhysRevMaterials.4.063401.' mla: Elizabeth, Amala, et al. “ Oxidation/Reduction Cycles and Their Reversible Effect on the Dipole Formation at CuInSe2 Surfaces.” Phys. Rev. Materials, vol. 4, American Physical Society, 2020, p. 063401, doi:10.1103/PhysRevMaterials.4.063401. short: A. Elizabeth, S.K. Sahoo, D. Lockhorn, A. Timmer, N. Aghdassi, H. Zacharias, T. Kühne, S. Siebentritt, H. Mirhosseini, H. Mönig, Phys. Rev. Materials 4 (2020) 063401. date_created: 2020-10-02T09:16:41Z date_updated: 2022-07-21T09:32:16Z department: - _id: '304' doi: 10.1103/PhysRevMaterials.4.063401 intvolume: ' 4' language: - iso: eng page: '063401' project: - _id: '52' name: Computing Resources Provided by the Paderborn Center for Parallel Computing publication: Phys. Rev. Materials publisher: American Physical Society status: public title: ' Oxidation/reduction cycles and their reversible effect on the dipole formation at CuInSe2 surfaces' type: journal_article user_id: '71051' volume: 4 year: '2020' ... --- _id: '21112' abstract: - lang: eng text: Photovoltaics is one of the most promising and fastest-growing renewable energy technologies. Although the price-performance ratio of solar cells has improved significantly over recent years{,} further systematic investigations are needed to achieve higher performance and lower cost for future solar cells. In conjunction with experiments{,} computer simulations are powerful tools to investigate the thermodynamics and kinetics of solar cells. Over the last few years{,} we have developed and employed advanced computational techniques to gain a better understanding of solar cells based on copper indium gallium selenide (Cu(In{,}Ga)Se2). Furthermore{,} we have utilized state-of-the-art data-driven science and machine learning for the development of photovoltaic materials. In this Perspective{,} we review our results along with a survey of the field. author: - first_name: S. Hossein full_name: Mirhosseini, S. Hossein id: '71051' last_name: Mirhosseini orcid: 0000-0001-6179-1545 - first_name: Ramya full_name: Kormath Madam Raghupathy, Ramya id: '71692' last_name: Kormath Madam Raghupathy orcid: https://orcid.org/0000-0003-4667-9744 - first_name: Sudhir K. full_name: Sahoo, Sudhir K. last_name: Sahoo - first_name: Hendrik full_name: Wiebeler, Hendrik last_name: Wiebeler - first_name: Manjusha full_name: Chugh, Manjusha id: '71511' last_name: Chugh - first_name: Thomas full_name: Kühne, Thomas id: '49079' last_name: Kühne citation: ama: Mirhosseini SH, Kormath Madam Raghupathy R, Sahoo SK, Wiebeler H, Chugh M, Kühne T. In silico investigation of Cu(In,Ga)Se2-based solar cells. Phys Chem Chem Phys. 2020;22:26682-26701. doi:10.1039/D0CP04712K apa: Mirhosseini, S. H., Kormath Madam Raghupathy, R., Sahoo, S. K., Wiebeler, H., Chugh, M., & Kühne, T. (2020). In silico investigation of Cu(In,Ga)Se2-based solar cells. Phys. Chem. Chem. Phys., 22, 26682–26701. https://doi.org/10.1039/D0CP04712K bibtex: '@article{Mirhosseini_Kormath Madam Raghupathy_Sahoo_Wiebeler_Chugh_Kühne_2020, title={In silico investigation of Cu(In,Ga)Se2-based solar cells}, volume={22}, DOI={10.1039/D0CP04712K}, journal={Phys. Chem. Chem. Phys.}, publisher={The Royal Society of Chemistry}, author={Mirhosseini, S. Hossein and Kormath Madam Raghupathy, Ramya and Sahoo, Sudhir K. and Wiebeler, Hendrik and Chugh, Manjusha and Kühne, Thomas}, year={2020}, pages={26682–26701} }' chicago: 'Mirhosseini, S. Hossein, Ramya Kormath Madam Raghupathy, Sudhir K. Sahoo, Hendrik Wiebeler, Manjusha Chugh, and Thomas Kühne. “In Silico Investigation of Cu(In,Ga)Se2-Based Solar Cells.” Phys. Chem. Chem. Phys. 22 (2020): 26682–701. https://doi.org/10.1039/D0CP04712K.' ieee: 'S. H. Mirhosseini, R. Kormath Madam Raghupathy, S. K. Sahoo, H. Wiebeler, M. Chugh, and T. Kühne, “In silico investigation of Cu(In,Ga)Se2-based solar cells,” Phys. Chem. Chem. Phys., vol. 22, pp. 26682–26701, 2020, doi: 10.1039/D0CP04712K.' mla: Mirhosseini, S. Hossein, et al. “In Silico Investigation of Cu(In,Ga)Se2-Based Solar Cells.” Phys. Chem. Chem. Phys., vol. 22, The Royal Society of Chemistry, 2020, pp. 26682–701, doi:10.1039/D0CP04712K. short: S.H. Mirhosseini, R. Kormath Madam Raghupathy, S.K. Sahoo, H. Wiebeler, M. Chugh, T. Kühne, Phys. Chem. Chem. Phys. 22 (2020) 26682–26701. date_created: 2021-01-29T15:21:45Z date_updated: 2022-07-21T09:34:02Z department: - _id: '304' doi: 10.1039/D0CP04712K intvolume: ' 22' language: - iso: eng page: 26682-26701 project: - _id: '52' name: Computing Resources Provided by the Paderborn Center for Parallel Computing publication: Phys. Chem. Chem. Phys. publisher: The Royal Society of Chemistry status: public title: In silico investigation of Cu(In,Ga)Se2-based solar cells type: journal_article user_id: '71051' volume: 22 year: '2020' ... --- _id: '21240' abstract: - lang: eng text: Rechargeable aqueous Zn-ion energy storage devices are promising candidates for next-generation energy storage technologies. However, the lack of highly reversible Zn2+-storage anode materials with low potential windows remains a primary concern. Here, we report a two-dimensional polyarylimide covalent organic framework (PI-COF) anode with high-kinetics Zn2+-storage capability. The well-organized pore channels of PI-COF allow the high accessibility of the build-in redox-active carbonyl groups and efficient ion diffusion with a low energy barrier. The constructed PI-COF anode exhibits a specific capacity (332 C g–1 or 92 mAh g–1 at 0.7 A g–1), a high rate capability (79.8% at 7 A g–1), and a long cycle life (85% over 4000 cycles). In situ Raman investigation and first-principle calculations clarify the two-step Zn2+-storage mechanism, in which imide carbonyl groups reversibly form negatively charged enolates. Dendrite-free full Zn-ion devices are fabricated by coupling PI-COF anodes with MnO2 cathodes, delivering excellent energy densities (23.9 ∼ 66.5 Wh kg–1) and supercapacitor-level power densities (133 ∼ 4782 W kg–1). This study demonstrates the feasibility of covalent organic framework as Zn2+-storage anodes and shows a promising prospect for constructing reliable aqueous energy storage devices. author: - first_name: Minghao full_name: Yu, Minghao last_name: Yu - first_name: Naisa full_name: Chandrasekhar, Naisa last_name: Chandrasekhar - first_name: Ramya full_name: Kormath Madam Raghupathy, Ramya id: '71692' last_name: Kormath Madam Raghupathy orcid: https://orcid.org/0000-0003-4667-9744 - first_name: Khoa Hoang full_name: Ly, Khoa Hoang last_name: Ly - first_name: Haozhe full_name: Zhang, Haozhe last_name: Zhang - first_name: Evgenia full_name: Dmitrieva, Evgenia last_name: Dmitrieva - first_name: Chaolun full_name: Liang, Chaolun last_name: Liang - first_name: Xihong full_name: Lu, Xihong last_name: Lu - first_name: Thomas full_name: Kühne, Thomas id: '49079' last_name: Kühne - first_name: S. Hossein full_name: Mirhosseini, S. Hossein id: '71051' last_name: Mirhosseini orcid: 0000-0001-6179-1545 - first_name: Inez M. full_name: Weidinger, Inez M. last_name: Weidinger - first_name: Xinliang full_name: Feng, Xinliang last_name: Feng citation: ama: Yu M, Chandrasekhar N, Kormath Madam Raghupathy R, et al. A High-Rate Two-Dimensional Polyarylimide Covalent Organic Framework Anode for Aqueous Zn-Ion Energy Storage Devices. Journal of the American Chemical Society. 2020;142(46):19570-19578. doi:10.1021/jacs.0c07992 apa: Yu, M., Chandrasekhar, N., Kormath Madam Raghupathy, R., Ly, K. H., Zhang, H., Dmitrieva, E., Liang, C., Lu, X., Kühne, T., Mirhosseini, S. H., Weidinger, I. M., & Feng, X. (2020). A High-Rate Two-Dimensional Polyarylimide Covalent Organic Framework Anode for Aqueous Zn-Ion Energy Storage Devices. Journal of the American Chemical Society, 142(46), 19570–19578. https://doi.org/10.1021/jacs.0c07992 bibtex: '@article{Yu_Chandrasekhar_Kormath Madam Raghupathy_Ly_Zhang_Dmitrieva_Liang_Lu_Kühne_Mirhosseini_et al._2020, title={A High-Rate Two-Dimensional Polyarylimide Covalent Organic Framework Anode for Aqueous Zn-Ion Energy Storage Devices}, volume={142}, DOI={10.1021/jacs.0c07992}, number={46}, journal={Journal of the American Chemical Society}, publisher={American Chemical Society}, author={Yu, Minghao and Chandrasekhar, Naisa and Kormath Madam Raghupathy, Ramya and Ly, Khoa Hoang and Zhang, Haozhe and Dmitrieva, Evgenia and Liang, Chaolun and Lu, Xihong and Kühne, Thomas and Mirhosseini, S. Hossein and et al.}, year={2020}, pages={19570–19578} }' chicago: 'Yu, Minghao, Naisa Chandrasekhar, Ramya Kormath Madam Raghupathy, Khoa Hoang Ly, Haozhe Zhang, Evgenia Dmitrieva, Chaolun Liang, et al. “A High-Rate Two-Dimensional Polyarylimide Covalent Organic Framework Anode for Aqueous Zn-Ion Energy Storage Devices.” Journal of the American Chemical Society 142, no. 46 (2020): 19570–78. https://doi.org/10.1021/jacs.0c07992.' ieee: 'M. Yu et al., “A High-Rate Two-Dimensional Polyarylimide Covalent Organic Framework Anode for Aqueous Zn-Ion Energy Storage Devices,” Journal of the American Chemical Society, vol. 142, no. 46, pp. 19570–19578, 2020, doi: 10.1021/jacs.0c07992.' mla: Yu, Minghao, et al. “A High-Rate Two-Dimensional Polyarylimide Covalent Organic Framework Anode for Aqueous Zn-Ion Energy Storage Devices.” Journal of the American Chemical Society, vol. 142, no. 46, American Chemical Society, 2020, pp. 19570–78, doi:10.1021/jacs.0c07992. short: M. Yu, N. Chandrasekhar, R. Kormath Madam Raghupathy, K.H. Ly, H. Zhang, E. Dmitrieva, C. Liang, X. Lu, T. Kühne, S.H. Mirhosseini, I.M. Weidinger, X. Feng, Journal of the American Chemical Society 142 (2020) 19570–19578. date_created: 2021-02-16T11:28:04Z date_updated: 2022-07-21T09:38:24Z department: - _id: '304' doi: 10.1021/jacs.0c07992 intvolume: ' 142' issue: '46' language: - iso: eng page: 19570-19578 project: - _id: '52' name: Computing Resources Provided by the Paderborn Center for Parallel Computing publication: Journal of the American Chemical Society publication_identifier: issn: - 0002-7863 publisher: American Chemical Society status: public title: A High-Rate Two-Dimensional Polyarylimide Covalent Organic Framework Anode for Aqueous Zn-Ion Energy Storage Devices type: journal_article user_id: '71051' volume: 142 year: '2020' ... --- _id: '17374' abstract: - lang: eng text: Lead halide perovskite semiconductors providing record efficiencies of solar cells have usually mixed compositions doped in A- and X-sites to enhance the phase stability. The cubic form of formamidinium (FA) lead iodide reveals excellent opto-electronic properties but transforms at room temperature (RT) into a hexagonal structure which does not effectively absorb visible light. This metastable form and the mechanism of its stabilization by Cs+ and Br− incorporation are poorly characterized and insufficiently understood. We report here the vibrational properties of cubic FAPbI3 investigated by DFT calculations on phonon frequencies and intensities, and micro-Raman spectroscopy. The effects of Cs+ and Br− partial substitution are discussed. We support our results with the study of FAPbBr3 which expands the identification of vibrational modes to the previously unpublished low frequency region (<500 cm−1). Our results show that the incorporation of Cs+ and Br− leads to the coupling of the displacement of the A-site components and weakens the bonds between FA+ and the PbX6 octahedra. We suggest that the enhancement of α-FAPbI3 stability can be a product of the release of tensile stresses in the Pb–X bond, which is reflected in a red-shift of the low frequency region of the Raman spectrum (<200 cm−1). author: - first_name: Josefa full_name: Ibaceta-Jaña, Josefa last_name: Ibaceta-Jaña - first_name: Ruslan full_name: Muydinov, Ruslan last_name: Muydinov - first_name: Pamela full_name: Rosado, Pamela last_name: Rosado - first_name: Hossein full_name: Mirhosseini, Hossein id: '71051' last_name: Mirhosseini orcid: https://orcid.org/0000-0001-6179-1545 - first_name: Manjusha full_name: Chugh, Manjusha id: '71511' last_name: Chugh - first_name: Olga full_name: Nazarenko, Olga last_name: Nazarenko - first_name: Dmitry N. full_name: Dirin, Dmitry N. last_name: Dirin - first_name: Dirk full_name: Heinrich, Dirk last_name: Heinrich - first_name: Markus R. full_name: Wagner, Markus R. last_name: Wagner - first_name: Thomas full_name: Kühne, Thomas id: '49079' last_name: Kühne - first_name: Bernd full_name: Szyszka, Bernd last_name: Szyszka - first_name: Maksym V. full_name: Kovalenko, Maksym V. last_name: Kovalenko - first_name: Axel full_name: Hoffmann, Axel last_name: Hoffmann citation: ama: Ibaceta-Jaña J, Muydinov R, Rosado P, et al. Vibrational dynamics in lead halide hybrid perovskites investigated by Raman spectroscopy. Phys Chem Chem Phys. 2020;22:5604-5614. doi:10.1039/C9CP06568G apa: Ibaceta-Jaña, J., Muydinov, R., Rosado, P., Mirhosseini, H., Chugh, M., Nazarenko, O., Dirin, D. N., Heinrich, D., Wagner, M. R., Kühne, T., Szyszka, B., Kovalenko, M. V., & Hoffmann, A. (2020). Vibrational dynamics in lead halide hybrid perovskites investigated by Raman spectroscopy. Phys. Chem. Chem. Phys., 22, 5604–5614. https://doi.org/10.1039/C9CP06568G bibtex: '@article{Ibaceta-Jaña_Muydinov_Rosado_Mirhosseini_Chugh_Nazarenko_Dirin_Heinrich_Wagner_Kühne_et al._2020, title={Vibrational dynamics in lead halide hybrid perovskites investigated by Raman spectroscopy}, volume={22}, DOI={10.1039/C9CP06568G}, journal={Phys. Chem. Chem. Phys.}, publisher={The Royal Society of Chemistry}, author={Ibaceta-Jaña, Josefa and Muydinov, Ruslan and Rosado, Pamela and Mirhosseini, Hossein and Chugh, Manjusha and Nazarenko, Olga and Dirin, Dmitry N. and Heinrich, Dirk and Wagner, Markus R. and Kühne, Thomas and et al.}, year={2020}, pages={5604–5614} }' chicago: 'Ibaceta-Jaña, Josefa, Ruslan Muydinov, Pamela Rosado, Hossein Mirhosseini, Manjusha Chugh, Olga Nazarenko, Dmitry N. Dirin, et al. “Vibrational Dynamics in Lead Halide Hybrid Perovskites Investigated by Raman Spectroscopy.” Phys. Chem. Chem. Phys. 22 (2020): 5604–14. https://doi.org/10.1039/C9CP06568G.' ieee: 'J. Ibaceta-Jaña et al., “Vibrational dynamics in lead halide hybrid perovskites investigated by Raman spectroscopy,” Phys. Chem. Chem. Phys., vol. 22, pp. 5604–5614, 2020, doi: 10.1039/C9CP06568G.' mla: Ibaceta-Jaña, Josefa, et al. “Vibrational Dynamics in Lead Halide Hybrid Perovskites Investigated by Raman Spectroscopy.” Phys. Chem. Chem. Phys., vol. 22, The Royal Society of Chemistry, 2020, pp. 5604–14, doi:10.1039/C9CP06568G. short: J. Ibaceta-Jaña, R. Muydinov, P. Rosado, H. Mirhosseini, M. Chugh, O. Nazarenko, D.N. Dirin, D. Heinrich, M.R. Wagner, T. Kühne, B. Szyszka, M.V. Kovalenko, A. Hoffmann, Phys. Chem. Chem. Phys. 22 (2020) 5604–5614. date_created: 2020-07-14T09:10:16Z date_updated: 2022-07-21T09:37:51Z department: - _id: '304' doi: 10.1039/C9CP06568G intvolume: ' 22' language: - iso: eng page: 5604-5614 project: - _id: '52' name: Computing Resources Provided by the Paderborn Center for Parallel Computing publication: Phys. Chem. Chem. Phys. publisher: The Royal Society of Chemistry status: public title: Vibrational dynamics in lead halide hybrid perovskites investigated by Raman spectroscopy type: journal_article user_id: '71051' volume: 22 year: '2020' ... --- _id: '17376' abstract: - lang: eng text: The record conversion efficiency of thin-film solar cells based on Cu(In,Ga)Se2 (CIGS) absorbers has exceeded 23%. Such a high performance is currently only attainable by the incorporation of heavy alkali metals like Cs into the absorber through an alkali fluoride post-deposition treatment (PDT). As the effect of the incorporated heavy alkali metals is under discussion, we investigated the local composition and microstructure of high efficiency CIGS solar cells via various high-resolution techniques in a combinatory approach. An accumulation of Cs is clearly detected at the p-n junction along with variations in the local CIGS composition, showing the formation of a beneficial secondary phase with a laterally inhomogeneous distribution. Additionally, Cs accumulations were detected at grain boundaries with a random misorientation of the adjacent grains where a reduced Cu concentration and increased In and Se concentrations are detected. No accumulation was found at Σ3 twin boundaries as well as the grain interior. These experimental findings are in excellent agreement with complementary ab-initio calculations, demonstrating that the grain boundaries are passivated by the presence of Cs. Further, it is unlikely that Cs with its large ionic radius is incorporated into the CIGS grains where it would cause detrimental defects. author: - first_name: Philipp full_name: Schöppe, Philipp last_name: Schöppe - first_name: Sven full_name: Schönherr, Sven last_name: Schönherr - first_name: Manjusha full_name: Chugh, Manjusha id: '71511' last_name: Chugh - first_name: Hossein full_name: Mirhosseini, Hossein id: '71051' last_name: Mirhosseini orcid: https://orcid.org/0000-0001-6179-1545 - first_name: Philip full_name: Jackson, Philip last_name: Jackson - first_name: Roland full_name: Wuerz, Roland last_name: Wuerz - first_name: Maurizio full_name: Ritzer, Maurizio last_name: Ritzer - first_name: Andreas full_name: Johannes, Andreas last_name: Johannes - first_name: Gema full_name: Martínez-Criado, Gema last_name: Martínez-Criado - first_name: Wolfgang full_name: Wisniewski, Wolfgang last_name: Wisniewski - first_name: Torsten full_name: Schwarz, Torsten last_name: Schwarz - first_name: Christian full_name: T. Plass, Christian last_name: T. Plass - first_name: Martin full_name: Hafermann, Martin last_name: Hafermann - first_name: Thomas full_name: Kühne, Thomas id: '49079' last_name: Kühne - first_name: Claudia full_name: S. Schnohr, Claudia last_name: S. Schnohr - first_name: Carsten full_name: Ronning, Carsten last_name: Ronning citation: ama: Schöppe P, Schönherr S, Chugh M, et al. Revealing the origin of the beneficial effect of cesium in highly efficient Cu(In,Ga)Se2 solar cells. Nano Energy. 2020;71:104622. doi:https://doi.org/10.1016/j.nanoen.2020.104622 apa: Schöppe, P., Schönherr, S., Chugh, M., Mirhosseini, H., Jackson, P., Wuerz, R., Ritzer, M., Johannes, A., Martínez-Criado, G., Wisniewski, W., Schwarz, T., T. Plass, C., Hafermann, M., Kühne, T., S. Schnohr, C., & Ronning, C. (2020). Revealing the origin of the beneficial effect of cesium in highly efficient Cu(In,Ga)Se2 solar cells. Nano Energy, 71, 104622. https://doi.org/10.1016/j.nanoen.2020.104622 bibtex: '@article{Schöppe_Schönherr_Chugh_Mirhosseini_Jackson_Wuerz_Ritzer_Johannes_Martínez-Criado_Wisniewski_et al._2020, title={Revealing the origin of the beneficial effect of cesium in highly efficient Cu(In,Ga)Se2 solar cells}, volume={71}, DOI={https://doi.org/10.1016/j.nanoen.2020.104622}, journal={Nano Energy}, author={Schöppe, Philipp and Schönherr, Sven and Chugh, Manjusha and Mirhosseini, Hossein and Jackson, Philip and Wuerz, Roland and Ritzer, Maurizio and Johannes, Andreas and Martínez-Criado, Gema and Wisniewski, Wolfgang and et al.}, year={2020}, pages={104622} }' chicago: 'Schöppe, Philipp, Sven Schönherr, Manjusha Chugh, Hossein Mirhosseini, Philip Jackson, Roland Wuerz, Maurizio Ritzer, et al. “Revealing the Origin of the Beneficial Effect of Cesium in Highly Efficient Cu(In,Ga)Se2 Solar Cells.” Nano Energy 71 (2020): 104622. https://doi.org/10.1016/j.nanoen.2020.104622.' ieee: 'P. Schöppe et al., “Revealing the origin of the beneficial effect of cesium in highly efficient Cu(In,Ga)Se2 solar cells,” Nano Energy, vol. 71, p. 104622, 2020, doi: https://doi.org/10.1016/j.nanoen.2020.104622.' mla: Schöppe, Philipp, et al. “Revealing the Origin of the Beneficial Effect of Cesium in Highly Efficient Cu(In,Ga)Se2 Solar Cells.” Nano Energy, vol. 71, 2020, p. 104622, doi:https://doi.org/10.1016/j.nanoen.2020.104622. short: P. Schöppe, S. Schönherr, M. Chugh, H. Mirhosseini, P. Jackson, R. Wuerz, M. Ritzer, A. Johannes, G. Martínez-Criado, W. Wisniewski, T. Schwarz, C. T. Plass, M. Hafermann, T. Kühne, C. S. Schnohr, C. Ronning, Nano Energy 71 (2020) 104622. date_created: 2020-07-14T09:15:14Z date_updated: 2022-07-21T09:46:46Z department: - _id: '304' doi: https://doi.org/10.1016/j.nanoen.2020.104622 intvolume: ' 71' language: - iso: eng page: '104622' project: - _id: '52' name: Computing Resources Provided by the Paderborn Center for Parallel Computing publication: Nano Energy publication_identifier: issn: - 2211-2855 status: public title: Revealing the origin of the beneficial effect of cesium in highly efficient Cu(In,Ga)Se2 solar cells type: journal_article user_id: '71051' volume: 71 year: '2020' ...