TY - GEN AB - Electronic structure calculations have been instrumental in providing many important insights into a range of physical and chemical properties of various molecular and solid-state systems. Their importance to various fields, including materials science, chemical sciences, computational chemistry and device physics, is underscored by the large fraction of available public supercomputing resources devoted to these calculations. As we enter the exascale era, exciting new opportunities to increase simulation numbers, sizes, and accuracies present themselves. In order to realize these promises, the community of electronic structure software developers will however first have to tackle a number of challenges pertaining to the efficient use of new architectures that will rely heavily on massive parallelism and hardware accelerators. This roadmap provides a broad overview of the state-of-the-art in electronic structure calculations and of the various new directions being pursued by the community. It covers 14 electronic structure codes, presenting their current status, their development priorities over the next five years, and their plans towards tackling the challenges and leveraging the opportunities presented by the advent of exascale computing. AU - Gavini, Vikram AU - Baroni, Stefano AU - Blum, Volker AU - Bowler, David R. AU - Buccheri, Alexander AU - Chelikowsky, James R. AU - Das, Sambit AU - Dawson, William AU - Delugas, Pietro AU - Dogan, Mehmet AU - Draxl, Claudia AU - Galli, Giulia AU - Genovese, Luigi AU - Giannozzi, Paolo AU - Giantomassi, Matteo AU - Gonze, Xavier AU - Govoni, Marco AU - Gulans, Andris AU - Gygi, François AU - Herbert, John M. AU - Kokott, Sebastian AU - Kühne, Thomas AU - Liou, Kai-Hsin AU - Miyazaki, Tsuyoshi AU - Motamarri, Phani AU - Nakata, Ayako AU - Pask, John E. AU - Plessl, Christian AU - Ratcliff, Laura E. AU - Richard, Ryan M. AU - Rossi, Mariana AU - Schade, Robert AU - Scheffler, Matthias AU - Schütt, Ole AU - Suryanarayana, Phanish AU - Torrent, Marc AU - Truflandier, Lionel AU - Windus, Theresa L. AU - Xu, Qimen AU - Yu, Victor W. -Z. AU - Perez, Danny ID - 33493 T2 - arXiv:2209.12747 TI - Roadmap on Electronic Structure Codes in the Exascale Era ER - TY - CONF AU - Karp, Martin AU - Podobas, Artur AU - Kenter, Tobias AU - Jansson, Niclas AU - Plessl, Christian AU - Schlatter, Philipp AU - Markidis, Stefano ID - 46193 T2 - International Conference on High Performance Computing in Asia-Pacific Region TI - A High-Fidelity Flow Solver for Unstructured Meshes on Field-Programmable Gate Arrays: Design, Evaluation, and Future Challenges ER - TY - GEN AB - The CP2K program package, which can be considered as the swiss army knife of atomistic simulations, is presented with a special emphasis on ab-initio molecular dynamics using the second-generation Car-Parrinello method. After outlining current and near-term development efforts with regards to massively parallel low-scaling post-Hartree-Fock and eigenvalue solvers, novel approaches on how we plan to take full advantage of future low-precision hardware architectures are introduced. Our focus here is on combining our submatrix method with the approximate computing paradigm to address the immanent exascale era. AU - Kühne, Thomas AU - Plessl, Christian AU - Schade, Robert AU - Schütt, Ole ID - 32404 T2 - arXiv:2205.14741 TI - CP2K on the road to exascale ER - TY - JOUR AB - A parallel hybrid quantum-classical algorithm for the solution of the quantum-chemical ground-state energy problem on gate-based quantum computers is presented. This approach is based on the reduced density-matrix functional theory (RDMFT) formulation of the electronic structure problem. For that purpose, the density-matrix functional of the full system is decomposed into an indirectly coupled sum of density-matrix functionals for all its subsystems using the adaptive cluster approximation to RDMFT. The approximations involved in the decomposition and the adaptive cluster approximation itself can be systematically converged to the exact result. The solutions for the density-matrix functionals of the effective subsystems involves a constrained minimization over many-particle states that are approximated by parametrized trial states on the quantum computer similarly to the variational quantum eigensolver. The independence of the density-matrix functionals of the effective subsystems introduces a new level of parallelization and allows for the computational treatment of much larger molecules on a quantum computer with a given qubit count. In addition, for the proposed algorithm techniques are presented to reduce the qubit count, the number of quantum programs, as well as its depth. The evaluation of a density-matrix functional as the essential part of our approach is demonstrated for Hubbard-like systems on IBM quantum computers based on superconducting transmon qubits. AU - Schade, Robert AU - Bauer, Carsten AU - Tamoev, Konstantin AU - Mazur, Lukas AU - Plessl, Christian AU - Kühne, Thomas ID - 33226 JF - Phys. Rev. Research TI - Parallel quantum chemistry on noisy intermediate-scale quantum computers VL - 4 ER - TY - JOUR AU - Schade, Robert AU - Kenter, Tobias AU - Elgabarty, Hossam AU - Lass, Michael AU - Schütt, Ole AU - Lazzaro, Alfio AU - Pabst, Hans AU - Mohr, Stephan AU - Hutter, Jürg AU - Kühne, Thomas AU - Plessl, Christian ID - 33684 JF - Parallel Computing KW - Artificial Intelligence KW - Computer Graphics and Computer-Aided Design KW - Computer Networks and Communications KW - Hardware and Architecture KW - Theoretical Computer Science KW - Software SN - 0167-8191 TI - Towards electronic structure-based ab-initio molecular dynamics simulations with hundreds of millions of atoms VL - 111 ER - TY - JOUR AU - Meyer, Marius AU - Kenter, Tobias AU - Plessl, Christian ID - 27364 JF - Journal of Parallel and Distributed Computing SN - 0743-7315 TI - In-depth FPGA Accelerator Performance Evaluation with Single Node Benchmarks from the HPC Challenge Benchmark Suite for Intel and Xilinx FPGAs using OpenCL ER - TY - JOUR AB - N-body methods are one of the essential algorithmic building blocks of high-performance and parallel computing. Previous research has shown promising performance for implementing n-body simulations with pairwise force calculations on FPGAs. However, to avoid challenges with accumulation and memory access patterns, the presented designs calculate each pair of forces twice, along with both force sums of the involved particles. Also, they require large problem instances with hundreds of thousands of particles to reach their respective peak performance, limiting the applicability for strong scaling scenarios. This work addresses both issues by presenting a novel FPGA design that uses each calculated force twice and overlaps data transfers and computations in a way that allows to reach peak performance even for small problem instances, outperforming previous single precision results even in double precision, and scaling linearly over multiple interconnected FPGAs. For a comparison across architectures, we provide an equally optimized CPU reference, which for large problems actually achieves higher peak performance per device, however, given the strong scaling advantages of the FPGA design, in parallel setups with few thousand particles per device, the FPGA platform achieves highest performance and power efficiency. AU - Menzel, Johannes AU - Plessl, Christian AU - Kenter, Tobias ID - 28099 IS - 1 JF - ACM Transactions on Reconfigurable Technology and Systems SN - 1936-7406 TI - The Strong Scaling Advantage of FPGAs in HPC for N-body Simulations VL - 15 ER - TY - CONF AU - Kenter, Tobias AU - Shambhu, Adesh AU - Faghih-Naini, Sara AU - Aizinger, Vadym ID - 46194 T2 - Proceedings of the Platform for Advanced Scientific Computing Conference TI - Algorithm-hardware co-design of a discontinuous Galerkin shallow-water model for a dataflow architecture on FPGA ER - TY - CONF AU - Karp, Martin AU - Podobas, Artur AU - Jansson, Niclas AU - Kenter, Tobias AU - Plessl, Christian AU - Schlatter, Philipp AU - Markidis, Stefano ID - 46195 T2 - 2021 IEEE International Parallel and Distributed Processing Symposium (IPDPS) TI - High-Performance Spectral Element Methods on Field-Programmable Gate Arrays : Implementation, Evaluation, and Future Projection ER - TY - CHAP AB - Solving partial differential equations on unstructured grids is a cornerstone of engineering and scientific computing. Nowadays, heterogeneous parallel platforms with CPUs, GPUs, and FPGAs enable energy-efficient and computationally demanding simulations. We developed the HighPerMeshes C++-embedded Domain-Specific Language (DSL) for bridging the abstraction gap between the mathematical and algorithmic formulation of mesh-based algorithms for PDE problems on the one hand and an increasing number of heterogeneous platforms with their different parallel programming and runtime models on the other hand. Thus, the HighPerMeshes DSL aims at higher productivity in the code development process for multiple target platforms. We introduce the concepts as well as the basic structure of the HighPerMeshes DSL, and demonstrate its usage with three examples, a Poisson and monodomain problem, respectively, solved by the continuous finite element method, and the discontinuous Galerkin method for Maxwell’s equation. The mapping of the abstract algorithmic description onto parallel hardware, including distributed memory compute clusters, is presented. Finally, the achievable performance and scalability are demonstrated for a typical example problem on a multi-core CPU cluster. AU - Alhaddad, Samer AU - Förstner, Jens AU - Groth, Stefan AU - Grünewald, Daniel AU - Grynko, Yevgen AU - Hannig, Frank AU - Kenter, Tobias AU - Pfreundt, Franz-Josef AU - Plessl, Christian AU - Schotte, Merlind AU - Steinke, Thomas AU - Teich, Jürgen AU - Weiser, Martin AU - Wende, Florian ID - 21587 KW - tet_topic_hpc SN - 0302-9743 T2 - Euro-Par 2020: Parallel Processing Workshops TI - HighPerMeshes – A Domain-Specific Language for Numerical Algorithms on Unstructured Grids ER -