@inproceedings{271, abstract = {{In \emph{bandwidth allocation games} (BAGs), the strategy of a player consists of various demands on different resources. The player's utility is at most the sum of these demands, provided they are fully satisfied. Every resource has a limited capacity and if it is exceeded by the total demand, it has to be split between the players. Since these games generally do not have pure Nash equilibria, we consider approximate pure Nash equilibria, in which no player can improve her utility by more than some fixed factor $\alpha$ through unilateral strategy changes. There is a threshold $\alpha_\delta$ (where $\delta$ is a parameter that limits the demand of each player on a specific resource) such that $\alpha$-approximate pure Nash equilibria always exist for $\alpha \geq \alpha_\delta$, but not for $\alpha < \alpha_\delta$. We give both upper and lower bounds on this threshold $\alpha_\delta$ and show that the corresponding decision problem is ${\sf NP}$-hard. We also show that the $\alpha$-approximate price of anarchy for BAGs is $\alpha+1$. For a restricted version of the game, where demands of players only differ slightly from each other (e.g. symmetric games), we show that approximate Nash equilibria can be reached (and thus also be computed) in polynomial time using the best-response dynamic. Finally, we show that a broader class of utility-maximization games (which includes BAGs) converges quickly towards states whose social welfare is close to the optimum.}}, author = {{Drees, Maximilian and Feldotto, Matthias and Riechers, Sören and Skopalik, Alexander}}, booktitle = {{Proceedings of the 8th International Symposium on Algorithmic Game Theory (SAGT)}}, pages = {{178--189}}, title = {{{On Existence and Properties of Approximate Pure Nash Equilibria in Bandwidth Allocation Games}}}, doi = {{10.1007/978-3-662-48433-3_14}}, year = {{2015}}, } @misc{277, author = {{Kothe, Nils}}, publisher = {{Universität Paderborn}}, title = {{{Multilevel Netzwerk Spiele mit konstanten Entfernungen im Highspeed-Netzwerk}}}, year = {{2015}}, } @article{17657, abstract = {{Inter-datacenter transfers of non-interactive but timely large flows over a private (managed) network is an important problem faced by many cloud service providers. The considered flows are non-interactive because they do not explicitly target the end users. However, most of them must be performed on a timely basis and are associated with a deadline. We propose to schedule these flows by a centralized controller, which determines when to transmit each flow and which path to use. Two scheduling models are presented in this paper. In the first, the controller also determines the rate of each flow, while in the second bandwidth is assigned by the network according to the TCP rules. We develop scheduling algorithms for both models and compare their complexity and performance.}}, author = {{Cohen, R. and Polevoy, Gleb}}, issn = {{2168-7161}}, journal = {{Cloud Computing, IEEE Transactions on}}, keywords = {{Approximation algorithms, Approximation methods, Bandwidth, Cloud computing, Routing, Schedules, Scheduling}}, number = {{99}}, pages = {{1--1}}, title = {{{Inter-Datacenter Scheduling of Large Data Flows}}}, doi = {{10.1109/TCC.2015.2487964}}, volume = {{PP}}, year = {{2015}}, } @article{17658, abstract = {{Abstract We study the problem of bandwidth allocation with multiple interferences. In this problem the input consists of a set of users and a set of base stations. Each user has a list of requests, each consisting of a base station, a frequency demand, and a profit that may be gained by scheduling this request. The goal is to find a maximum profit set of user requests S that satisfies the following conditions: (i) S contains at most one request per user, (ii) the frequency sets allotted to requests in S that correspond to the same base station are pairwise non-intersecting, and (iii) the QoS received by any user at any frequency is reasonable according to an interference model. In this paper we consider two variants of bandwidth allocation with multiple interferences. In the first each request specifies a demand that can be satisfied by any subset of frequencies that is large enough. In the second each request specifies a specific frequency interval. Furthermore, we consider two interference models, multiplicative and additive. We show that these problems are extremely hard to approximate if the interferences depend on both the interfered and the interfering base stations. On the other hand, we provide constant factor approximation algorithms for both variants of bandwidth allocation with multiple interferences for the case where the interferences depend only on the interfering base stations. We also consider a restrictive special case that is closely related to the Knapsack problem. We show that this special case is NP-hard and that it admits an FPTAS. }}, author = {{Bar-Yehuda, Reuven and Polevoy, Gleb and Rawitz, Dror}}, issn = {{0166-218X}}, journal = {{Discrete Applied Mathematics }}, keywords = {{Local ratio}}, pages = {{23 -- 36}}, publisher = {{Elsevier}}, title = {{{Bandwidth allocation in cellular networks with multiple interferences}}}, doi = {{http://dx.doi.org/10.1016/j.dam.2015.05.013}}, volume = {{194}}, year = {{2015}}, } @inproceedings{370, abstract = {{Max-min fairness (MMF) is a widely known approach to a fair allocation of bandwidth to each of the users in a network. This allocation can be computed by uniformly raising the bandwidths of all users without violating capacity constraints. We consider an extension of these allocations by raising the bandwidth with arbitrary and not necessarily uniform time-depending velocities (allocation rates). These allocations are used in a game-theoretic context for routing choices, which we formalize in progressive filling games (PFGs).We present a variety of results for equilibria in PFGs. We show that these games possess pure Nash and strong equilibria. While computation in general is NP-hard, there are polynomial-time algorithms for prominent classes of Max-Min-Fair Games (MMFG), including the case when all users have the same source-destination pair. We characterize prices of anarchy and stability for pure Nash and strong equilibria in PFGs and MMFGs when players have different or the same source-destination pairs. In addition, we show that when a designer can adjust allocation rates, it is possible to design games with optimal strong equilibria. Some initial results on polynomial-time algorithms in this direction are also derived. }}, author = {{Harks, Tobias and Höfer, Martin and Schewior, Kevin and Skopalik, Alexander}}, booktitle = {{Proceedings of the 33rd Annual IEEE International Conference on Computer Communications (INFOCOM'14)}}, pages = {{352--360}}, title = {{{Routing Games with Progressive Filling}}}, doi = {{10.1109/TNET.2015.2468571}}, year = {{2014}}, } @misc{373, author = {{Pahl, David}}, publisher = {{Universität Paderborn}}, title = {{{Reputationssysteme für zusammengesetzte Dienstleistungen}}}, year = {{2014}}, } @inproceedings{17659, author = {{Polevoy, Gleb and Trajanovski, Stojan and de Weerdt, Mathijs M.}}, booktitle = {{Proceedings of the 2014 International Conference on Autonomous Agents and Multi-agent Systems}}, isbn = {{978-1-4503-2738-1}}, keywords = {{competition, equilibrium, market, models, shared effort games, simulation}}, pages = {{861--868}}, publisher = {{International Foundation for Autonomous Agents and Multiagent Systems}}, title = {{{Nash Equilibria in Shared Effort Games}}}, year = {{2014}}, } @inproceedings{17660, author = {{Polevoy, Gleb and de Weerdt, Mathijs M.}}, booktitle = {{Proceedings of the 2014 International Conference on Autonomous Agents and Multi-agent Systems}}, isbn = {{978-1-4503-2738-1}}, keywords = {{dynamics, emotion modeling, negotiation, network interaction, shared effort game}}, pages = {{1741--1742}}, publisher = {{International Foundation for Autonomous Agents and Multiagent Systems}}, title = {{{Improving Human Interaction in Crowdsensing}}}, year = {{2014}}, } @inproceedings{17661, author = {{King, Thomas C. and Liu, Qingzhi and Polevoy, Gleb and de Weerdt, Mathijs and Dignum, Virginia and van Riemsdijk, M. Birna and Warnier, Martijn}}, booktitle = {{Proceedings of the 2014 International Conference on Autonomous Agents and Multi-agent Systems}}, isbn = {{978-1-4503-2738-1}}, keywords = {{crowd-sensing, crowdsourcing, data aggregation, game theory, norms, reciprocation, self interested agents, simulation}}, pages = {{1651--1652}}, publisher = {{International Foundation for Autonomous Agents and Multiagent Systems}}, title = {{{Request Driven Social Sensing}}}, year = {{2014}}, } @article{17662, author = {{Polevoy, Gleb and Smorodinsky, Rann and Tennenholtz, Moshe}}, issn = {{2167-8375}}, journal = {{ACM Trans. Econ. Comput.}}, keywords = {{Competition, efficiency, equilibrium, market, social welfare}}, number = {{1}}, pages = {{1:1--1:16}}, publisher = {{ACM}}, title = {{{Signaling Competition and Social Welfare}}}, doi = {{10.1145/2560766}}, volume = {{2}}, year = {{2014}}, }