@phdthesis{15631,
author = {Feldkord, Björn},
title = {{Mobile Resource Allocation}},
doi = {10.17619/UNIPB/1-869},
year = {2020},
}
@inproceedings{15169,
author = {Castenow, Jannik and Kolb, Christina and Scheideler, Christian},
booktitle = {Proceedings of the 21st International Conference on Distributed Computing and Networking (ICDCN)},
location = {Kolkata, Indien},
publisher = {ACM},
title = {{A Bounding Box Overlay for Competitive Routing in Hybrid Communication Networks}},
year = {2020},
}
@inproceedings{12870,
author = {Feldkord, Björn and Knollmann, Till and Malatyali, Manuel and Meyer auf der Heide, Friedhelm},
booktitle = {Proceedings of the 17th Workshop on Approximation and Online Algorithms (WAOA)},
pages = {120 -- 137},
publisher = {Springer},
title = {{Managing Multiple Mobile Resources}},
doi = {10.1007/978-3-030-39479-0_9},
year = {2019},
}
@article{13873,
author = {Feldkord, Björn and Meyer auf der Heide, Friedhelm},
journal = {ACM Transactions on Parallel Computing (TOPC)},
number = {3},
title = {{The Mobile Server Problem}},
doi = {10.1145/3364204},
volume = {6},
year = {2019},
}
@unpublished{16341,
abstract = {We present a technique for rendering highly complex 3D scenes in real-time by
generating uniformly distributed points on the scene's visible surfaces. The
technique is applicable to a wide range of scene types, like scenes directly
based on complex and detailed CAD data consisting of billions of polygons (in
contrast to scenes handcrafted solely for visualization). This allows to
visualize such scenes smoothly even in VR on a HMD with good image quality,
while maintaining the necessary frame-rates. In contrast to other point based
rendering methods, we place points in an approximated blue noise distribution
only on visible surfaces and store them in a highly GPU efficient data
structure, allowing to progressively refine the number of rendered points to
maximize the image quality for a given target frame rate. Our evaluation shows
that scenes consisting of a high amount of polygons can be rendered with
interactive frame rates with good visual quality on standard hardware.},
author = {Brandt, Sascha and Jähn, Claudius and Fischer, Matthias and Meyer auf der Heide, Friedhelm},
booktitle = {arXiv:1904.08225},
title = {{Rendering of Complex Heterogenous Scenes using Progressive Blue Surfels}},
year = {2019},
}
@phdthesis{8080,
abstract = {This thesis investigates approximate pure Nash equilibria in different game-theoretic models. In such an outcome, no player can improve her objective by more than a given factor through a deviation to another strategy. In the first part, we investigate two variants of Congestion Games in which the existence of pure Nash equilibria is guaranteed through a potential function argument. However, the computation of such equilibria might be hard. We construct and analyze approximation algorithms that enable the computation of states with low approximation factors in polynomial time. To show their guarantees we use sub games among players, bound the potential function values of arbitrary states and exploit a connection between Shapley and proportional cost shares. Furthermore, we apply and analyze sampling techniques for the computation of approximate Shapley values in different settings. In the second part, we concentrate on the existence of approximate pure Nash equilibria in games in which no pure Nash equilibria exist in general. In the model of Coevolving Opinion Formation Games, we bound the approximation guarantees for natural states nearly independent of the specific definition of the players' neighborhoods by applying a concept of virtual costs. For the special case of only one influential neighbor, we even show lower approximation factors for a natural strategy. Then, we investigate a two-sided Facility Location Game among facilities and clients on a line with an objective function consisting of distance and load. We show tight bounds on the approximation factor for settings with three facilities and infinitely many clients. For the general scenario with an arbitrary number of facilities, we bound the approximation factor for two promising candidates, namely facilities that are uniformly distributed and which are paired.},
author = {Feldotto, Matthias},
title = {{Approximate Pure Nash Equilibria in Congestion, Opinion Formation and Facility Location Games}},
doi = {10.17619/UNIPB/1-588},
year = {2019},
}
@inproceedings{10281,
abstract = {Competing firms tend to select similar locations for their stores. This phenomenon, called the principle of minimum differentiation, was captured by Hotelling with a landmark model of spatial competition but is still the object of an ongoing scientific debate. Although consistently observed in practice, many more realistic variants of Hotelling's model fail to support minimum differentiation or do not have pure equilibria at all. In particular, it was recently proven for a generalized model which incorporates negative network externalities and which contains Hotelling's model and classical selfish load balancing as special cases, that the unique equilibria do not adhere to minimum differentiation. Furthermore, it was shown that for a significant parameter range pure equilibria do not exist. We derive a sharp contrast to these previous results by investigating Hotelling's model with negative network externalities from an entirely new angle: approximate pure subgame perfect equilibria. This approach allows us to prove analytically and via agent-based simulations that approximate equilibria having good approximation guarantees and that adhere to minimum differentiation exist for the full parameter range of the model. Moreover, we show that the obtained approximate equilibria have high social welfare.},
author = {Feldotto, Matthias and Lenzner, Pascal and Molitor, Louise and Skopalik, Alexander},
booktitle = {Proceedings of the 18th International Conference on Autonomous Agents and MultiAgent Systems},
location = {Montreal QC, Canada},
pages = {1949----1951},
publisher = {International Foundation for Autonomous Agents and Multiagent Systems},
title = {{ From Hotelling to Load Balancing: Approximation and the Principle of Minimum Differentiation}},
year = {2019},
}
@misc{10344,
author = {Pukrop, Simon},
title = {{Scheduling Algorithms for Multi-Operation Jobs with Setups on a Single Machine}},
year = {2019},
}
@article{13937,
author = {Meyer auf der Heide, Friedhelm},
journal = {Mathematische Semesterberichte},
number = {2},
pages = {259--260},
title = {{Paul Curzon, Peter W. McOwan: Computational Thinking; Die Welt des algorithmischen Denkens – in Spielen, Zaubertricks und Rätseln}},
doi = {10.1007/s00591-019-00249-0},
volume = {66},
year = {2019},
}
@unpublished{16462,
abstract = {We introduce the mobile server problem, inspired by current trends to move
computational tasks from cloud structures to multiple devices close to the end
user. An example for this are embedded systems in autonomous cars that
communicate in order to coordinate their actions.
Our model is a variant of the classical Page Migration Problem. More
formally, we consider a mobile server holding a data page. The server can move
in the Euclidean space (of arbitrary dimension). In every round, requests for
data items from the page pop up at arbitrary points in the space. The requests
are served, each at a cost of the distance from the requesting point and the
server, and the mobile server may move, at a cost $D$ times the distance
traveled for some constant $D$. We assume a maximum distance $m$ the server is
allowed to move per round.
We show that no online algorithm can achieve a competitive ratio independent
of the length of the input sequence in this setting. Hence we augment the
maximum movement distance of the online algorithms to $(1+\delta)$ times the
maximum distance of the offline solution. We provide a deterministic algorithm
which is simple to describe and works for multiple variants of our problem. The
algorithm achieves almost tight competitive ratios independent of the length of
the input sequence.
Our Algorithm also achieves a constant competitive ratio without resource
augmentation in a variant where the distance between two consecutive requests
is restricted to a constant smaller than the limit for the server.},
author = {Feldkord, Björn and Meyer auf der Heide, Friedhelm},
booktitle = {arXiv:1904.05220},
title = {{The Mobile Server Problem}},
year = {2019},
}