@inproceedings{266,
abstract = {Many markets have seen a shift from the idea of buying and moved to leasing instead. Arguably, the latter has been the major catalyst for their success. Ten years ago, research realized this shift and initiated the study of "online leasing problems" by introducing leasing to online optimization problems. Resources required to provide a service in an "online leasing problem" are no more bought but leased for different durations. In this paper, we provide an overview of results that contribute to the understanding of "online resource leasing problems". },
author = {Markarian, Christine and Meyer auf der Heide, Friedhelm},
booktitle = {Proceedings of the 2015 ACM Symposium on Principles of Distributed Computing (PODC)},
pages = {343--344},
title = {{Online Resource Leasing}},
doi = {10.1145/2767386.2767454},
year = {2015},
}
@book{17431,
editor = {Gausemeier, Jürgen and Grafe, Michael and Meyer auf der Heide, Friedhelm},
publisher = {Verlagsschriftenreihe des Heinz Nixdorf Instituts},
title = {{Augmented & Virtual Reality in der Produktentstehung: Grundlagen, Methoden und Werkzeuge; Interaktions- und Visualisierungstechniken, Virtual Prototyping intelligenter technischer Systeme mit AR/VR}},
volume = {342},
year = {2015},
}
@article{17657,
abstract = {Inter-datacenter transfers of non-interactive but timely large flows over a private (managed) network is an important problem faced by many cloud service providers. The considered flows are non-interactive because they do not explicitly target the end users. However, most of them must be performed on a timely basis and are associated with a deadline. We propose to schedule these flows by a centralized controller, which determines when to transmit each flow and which path to use. Two scheduling models are presented in this paper. In the first, the controller also determines the rate of each flow, while in the second bandwidth is assigned by the network according to the TCP rules. We develop scheduling algorithms for both models and compare their complexity and performance.},
author = {Cohen, R. and Polevoy, Gleb},
issn = {2168-7161},
journal = {Cloud Computing, IEEE Transactions on},
keyword = {Approximation algorithms, Approximation methods, Bandwidth, Cloud computing, Routing, Schedules, Scheduling},
number = {99},
pages = {1--1},
title = {{Inter-Datacenter Scheduling of Large Data Flows}},
doi = {10.1109/TCC.2015.2487964},
volume = {PP},
year = {2015},
}
@inproceedings{274,
abstract = {Consider the problem in which n jobs that are classified into k types are to be scheduled on m identical machines without preemption. A machine requires a proper setup taking s time units before processing jobs of a given type. The objective is to minimize the makespan of the resulting schedule. We design and analyze an approximation algorithm that runs in time polynomial in n,m and k and computes a solution with an approximation factor that can be made arbitrarily close to 3/2.},
author = {Mäcker, Alexander and Malatyali, Manuel and Meyer auf der Heide, Friedhelm and Riechers, Sören},
booktitle = {Algorithms and Data Structures: 14th International Symposium, WADS 2015, Victoria, BC, Canada, August 5-7, 2015. Proceedings},
editor = {Dehne, Frank and Sack, Jörg Rüdiger and Stege, Ulrike},
pages = {542----553},
title = {{Non-preemptive Scheduling on Machines with Setup Times}},
doi = {10.1007/978-3-319-21840-3_45},
year = {2015},
}
@phdthesis{267,
author = {Markarian, Christine},
publisher = {Universität Paderborn},
title = {{Online Resource Leasing}},
year = {2015},
}
@article{320,
abstract = {We consider structural and algorithmic questions related to the Nash dynamics of weighted congestion games. In weighted congestion games with linear latency functions, the existence of pure Nash equilibria is guaranteed by a potential function argument. Unfortunately, this proof of existence is inefficient and computing pure Nash equilibria in such games is a PLS-hard problem even when all players have unit weights. The situation gets worse when superlinear (e.g., quadratic) latency functions come into play; in this case, the Nash dynamics of the game may contain cycles and pure Nash equilibria may not even exist. Given these obstacles, we consider approximate pure Nash equilibria as alternative solution concepts. A ρ--approximate pure Nash equilibrium is a state of a (weighted congestion) game from which no player has any incentive to deviate in order to improve her cost by a multiplicative factor higher than ρ. Do such equilibria exist for small values of ρ? And if so, can we compute them efficiently?We provide positive answers to both questions for weighted congestion games with polynomial latency functions by exploiting an “approximation” of such games by a new class of potential games that we call Ψ-games. This allows us to show that these games have d!-approximate pure Nash equilibria, where d is the maximum degree of the latency functions. Our main technical contribution is an efficient algorithm for computing O(1)-approximate pure Nash equilibria when d is a constant. For games with linear latency functions, the approximation guarantee is 3+√5/2 + Oγ for arbitrarily small γ > 0; for latency functions with maximum degree d≥ 2, it is d2d+o(d). The running time is polynomial in the number of bits in the representation of the game and 1/γ. As a byproduct of our techniques, we also show the following interesting structural statement for weighted congestion games with polynomial latency functions of maximum degree d ≥ 2: polynomially-long sequences of best-response moves from any initial state to a dO(d2)-approximate pure Nash equilibrium exist and can be efficiently identified in such games as long as d is a constant.To the best of our knowledge, these are the first positive algorithmic results for approximate pure Nash equilibria in weighted congestion games. Our techniques significantly extend our recent work on unweighted congestion games through the use of Ψ-games. The concept of approximating nonpotential games by potential ones is interesting in itself and might have further applications.},
author = {Caragiannis, Ioannis and Fanelli, Angelo and Gravin, Nick and Skopalik, Alexander},
journal = {Transactions on Economics and Computation},
number = {1},
publisher = {ACM},
title = {{Approximate Pure Nash Equilibria in Weighted Congestion Games: Existence, Efficient Computation, and Structure}},
doi = {10.1145/2614687},
volume = {3},
year = {2015},
}
@inproceedings{17425,
author = {Berssenbrügge, Jan and Wiederkehr, Olga and Jähn, Claudius and Fischer, Matthias},
booktitle = {12. Paderborner Workshop Augmented & Virtual Reality in der Produktentstehung},
pages = {65--78},
publisher = {Verlagsschriftenreihe des Heinz Nixdorf Instituts},
title = {{Anbindung des Virtuellen Prototypen an die Partialmodelle intelligenter technischer Systeme}},
volume = {343},
year = {2015},
}
@inproceedings{16460,
abstract = {Consider n nodes connected to a single coordinator. Each node receives an
individual online data stream of numbers and, at any point in time, the
coordinator has to know the k nodes currently observing the largest values, for
a given k between 1 and n. We design and analyze an algorithm that solves this
problem while bounding the amount of messages exchanged between the nodes and
the coordinator. Our algorithm employs the idea of using filters which,
intuitively speaking, leads to few messages to be sent, if the new input is
"similar" to the previous ones. The algorithm uses a number of messages that is
on expectation by a factor of O((log {\Delta} + k) log n) larger than that of
an offline algorithm that sets filters in an optimal way, where {\Delta} is
upper bounded by the largest value observed by any node.},
author = {Mäcker, Alexander and Malatyali, Manuel and Meyer auf der Heide, Friedhelm},
booktitle = {Proceedings of the 29th International Parallel and Distributed Processing Symposium (IPDPS)},
pages = {357--364},
publisher = {IEEE},
title = {{Online Top-k-Position Monitoring of Distributed Data Streams}},
doi = {10.1109/IPDPS.2015.40},
year = {2015},
}
@inproceedings{19988,
author = {Hamann, Heiko and Schmickl, Thomas and Zahadat, Payam},
booktitle = {13th European Conference on Artificial Life (ECAL 2015)},
pages = {174},
publisher = {MIT Press},
title = {{Evolving Collective Behaviors With Diverse But Predictable Sensor States}},
doi = {10.7551/978-0-262-33027-5-ch036},
year = {2015},
}
@inproceedings{19990,
author = {Ding, Hongli and Hamann, Heiko},
booktitle = {First International Symposium on Swarm Behavior and Bio-Inspired Robotics (SWARM 2015)},
title = {{Dependability in Swarm Robotics: Error Detection and Correction}},
year = {2015},
}
@inproceedings{20005,
author = {Dorigo, Marco and Hamann, Heiko and Valentini, Gabriele},
booktitle = {Proceedings of the 14th Int. Conf. on Autonomous Agents and Multiagent Systems (AAMAS 2015)},
title = {{Efficient Decision-Making in a Self-Organizing Robot Swarm: On the Speed Versus Accuracy Trade-Off}},
year = {2015},
}
@article{17658,
abstract = {Abstract We study the problem of bandwidth allocation with multiple interferences. In this problem the input consists of a set of users and a set of base stations. Each user has a list of requests, each consisting of a base station, a frequency demand, and a profit that may be gained by scheduling this request. The goal is to find a maximum profit set of user requests S that satisfies the following conditions: (i) S contains at most one request per user, (ii) the frequency sets allotted to requests in S that correspond to the same base station are pairwise non-intersecting, and (iii) the QoS received by any user at any frequency is reasonable according to an interference model. In this paper we consider two variants of bandwidth allocation with multiple interferences. In the first each request specifies a demand that can be satisfied by any subset of frequencies that is large enough. In the second each request specifies a specific frequency interval. Furthermore, we consider two interference models, multiplicative and additive. We show that these problems are extremely hard to approximate if the interferences depend on both the interfered and the interfering base stations. On the other hand, we provide constant factor approximation algorithms for both variants of bandwidth allocation with multiple interferences for the case where the interferences depend only on the interfering base stations. We also consider a restrictive special case that is closely related to the Knapsack problem. We show that this special case is NP-hard and that it admits an FPTAS. },
author = {Bar-Yehuda, Reuven and Polevoy, Gleb and Rawitz, Dror},
issn = {0166-218X},
journal = {Discrete Applied Mathematics },
keyword = {Local ratio},
pages = {23 -- 36},
publisher = {Elsevier},
title = {{Bandwidth allocation in cellular networks with multiple interferences}},
doi = {http://dx.doi.org/10.1016/j.dam.2015.05.013},
volume = {194},
year = {2015},
}
@inproceedings{395,
abstract = {We consider a multilevel network game, where nodes can improvetheir communication costs by connecting to a high-speed network.The n nodes are connected by a static network and each node can decideindividually to become a gateway to the high-speed network. The goalof a node v is to minimize its private costs, i.e., the sum (SUM-game) ormaximum (MAX-game) of communication distances from v to all othernodes plus a fixed price α > 0 if it decides to be a gateway. Between gatewaysthe communication distance is 0, and gateways also improve othernodes’ distances by behaving as shortcuts. For the SUM-game, we showthat for α ≤ n − 1, the price of anarchy is Θ (n/√α) and in this rangeequilibria always exist. In range α ∈ (n−1, n(n−1)) the price of anarchyis Θ(√α), and for α ≥ n(n − 1) it is constant. For the MAX-game, weshow that the price of anarchy is either Θ (1 + n/√α), for α ≥ 1, orelse 1. Given a graph with girth of at least 4α, equilibria always exist.Concerning the dynamics, both games are not potential games. For theSUM-game, we even show that it is not weakly acyclic.},
author = {Abshoff, Sebastian and Cord-Landwehr, Andreas and Jung, Daniel and Skopalik, Alexander},
booktitle = {Proceedings of the 10th International Conference on Web and Internet Economics (WINE)},
pages = {435--440},
title = {{Multilevel Network Games}},
doi = {10.1007/978-3-319-13129-0_36},
year = {2014},
}
@inproceedings{453,
abstract = {In this paper we study the potential function in congestion games. We consider both games with non-decreasing cost functions as well as games with non-increasing utility functions. We show that the value of the potential function $\Phi(\sf s)$ of any outcome $\sf s$ of a congestion game approximates the optimum potential value $\Phi(\sf s^*)$ by a factor $\Psi_{\mathcal{F}}$ which only depends on the set of cost/utility functions $\mathcal{F}$, and an additive term which is bounded by the sum of the total possible improvements of the players in the outcome $\sf s$. The significance of this result is twofold. On the one hand it provides \emph{Price-of-Anarchy}-like results with respect to the potential function. On the other hand, we show that these approximations can be used to compute $(1+\varepsilon)\cdot\Psi_{\mathcal{F}}$-approximate pure Nash equilibria for congestion games with non-decreasing cost functions. For the special case of polynomial cost functions, this significantly improves the guarantees from Caragiannis et al. [FOCS 2011]. Moreover, our machinery provides the first guarantees for general latency functions.},
author = {Feldotto, Matthias and Gairing, Martin and Skopalik, Alexander},
booktitle = {Proceedings of the 10th International Conference on Web and Internet Economics (WINE)},
pages = {30--43},
title = {{Bounding the Potential Function in Congestion Games and Approximate Pure Nash Equilibria}},
doi = {10.1007/978-3-319-13129-0_3},
year = {2014},
}
@inproceedings{20121,
abstract = {Collective decision making in self-organized systems is challenging because it relies on local perception and local communication. Globally defined qualities such as consensus time and decision accuracy are both difficult to predict and difficult to guarantee. We present the weighted voter model which implements a self-organized collective decision making process. We provide an ODE model, a master equation model (numerically solved by the Gillespie algorithm), and agent-based simulations of the proposed decision-making strategy. This set of models enables us to investigate the system behavior in the thermodynamic limit and to investigate finite-size effects due to random fluctuations. Based on our results, we give minimum requirements to guarantee consensus on the optimal decision, a minimum swarm size to guarantee a certain accuracy, and we show that the proposed approach scales with system size and is robust to noise.},
author = {Dorigo, Marco and Hamann, Heiko and Valentini, Gabriele and Lomuscio, Alessio and Scerri, Paul and Bazzan, Ana and Huhns, Michael},
booktitle = {Proceedings of the 13th Int. Conf. on Autonomous Agents and Multiagent Systems (AAMAS 2014)},
title = {{Self-Organized Collective Decision Making: The Weighted Voter Model}},
year = {2014},
}
@inproceedings{20126,
author = {Hamann, Heiko},
booktitle = {Int. Conf. on Genetic and Evolutionary Computation (GECCO 2014)},
pages = {31--32},
title = {{Evolving Prediction Machines: Collective Behaviors Based on Minimal Surprisal}},
doi = {10.1145/2598394.2598507},
year = {2014},
}
@inproceedings{17661,
author = {King, Thomas C. and Liu, Qingzhi and Polevoy, Gleb and de Weerdt, Mathijs and Dignum, Virginia and van Riemsdijk, M. Birna and Warnier, Martijn},
booktitle = {Proceedings of the 2014 International Conference on Autonomous Agents and Multi-agent Systems},
isbn = {978-1-4503-2738-1},
keyword = {crowd-sensing, crowdsourcing, data aggregation, game theory, norms, reciprocation, self interested agents, simulation},
pages = {1651--1652},
publisher = {International Foundation for Autonomous Agents and Multiagent Systems},
title = {{Request Driven Social Sensing}},
year = {2014},
}
@inproceedings{17659,
author = {Polevoy, Gleb and Trajanovski, Stojan and de Weerdt, Mathijs M.},
booktitle = {Proceedings of the 2014 International Conference on Autonomous Agents and Multi-agent Systems},
isbn = {978-1-4503-2738-1},
keyword = {competition, equilibrium, market, models, shared effort games, simulation},
pages = {861--868},
publisher = {International Foundation for Autonomous Agents and Multiagent Systems},
title = {{Nash Equilibria in Shared Effort Games}},
year = {2014},
}
@inproceedings{435,
abstract = {We give a polynomial time algorithm to compute an optimal energy and fractional weighted flow trade-off schedule for a speed-scalable processor with discrete speeds.Our algorithm uses a geometric approach that is based on structural properties obtained from a primal-dual formulation of the problem.},
author = {Antoniadis, Antonios and Barcelo, Neal and Consuegra, Mario and Kling, Peer and Nugent, Michael and Pruhs, Kirk and Scquizzato, Michele},
booktitle = {Proceedings of the 31st Symposium on Theoretical Aspects of Computer Science (STACS)},
pages = {63----74},
title = {{Efficient Computation of Optimal Energy and Fractional Weighted Flow Trade-off Schedules}},
doi = {10.4230/LIPIcs.STACS.2014.63},
year = {2014},
}
@inproceedings{459,
abstract = {In this survey article, we discuss two algorithmic research areas that emerge from problems that arise when resources are offered in the cloud. The first area, online leasing, captures problems arising from the fact that resources in the cloud are not bought, but leased by cloud vendors. The second area, Distributed Storage Systems, deals with problems arising from so-called cloud federations, i.e., when several cloud providers are needed to fulfill a given task.},
author = {Kniesburges, Sebastian and Markarian, Christine and Meyer auf der Heide, Friedhelm and Scheideler, Christian},
booktitle = {Proceedings of the 21st International Colloquium on Structural Information and Communication Complexity (SIROCCO)},
pages = {1--13},
title = {{Algorithmic Aspects of Resource Management in the Cloud}},
doi = {10.1007/978-3-319-09620-9_1},
year = {2014},
}
@inproceedings{20007,
author = {Hamann, Heiko and Karsai, Istvan and Schmickl, Thomas and Hilbun, Allison},
booktitle = {Symposium on Biomathematics and Ecology: Education and Research},
title = {{The common stomach: Organizing task allocation in wasp societies}},
year = {2014},
}
@inproceedings{20127,
author = {Birattari, Mauro and Dorigo, Marco and Hamann, Heiko and Garnier, Simon and Montes de Oca, Marco and Solnon, Christine and Stuetzle, Thomas and Ding, Hongli},
booktitle = {Ninth Int. Conf. on Swarm Intelligence (ANTS 2014)},
pages = {262--269},
title = {{Sorting in Swarm Robots Using Communication-Based Cluster Size Estimation}},
doi = {10.1007/978-3-319-09952-1_25},
volume = {8667},
year = {2014},
}
@article{17662,
author = {Polevoy, Gleb and Smorodinsky, Rann and Tennenholtz, Moshe},
issn = {2167-8375},
journal = {ACM Trans. Econ. Comput.},
keyword = {Competition, efficiency, equilibrium, market, social welfare},
number = {1},
pages = {1:1--1:16},
publisher = {ACM},
title = {{Signaling Competition and Social Welfare}},
doi = {10.1145/2560766},
volume = {2},
year = {2014},
}
@phdthesis{431,
abstract = {In meiner Dissertation besch{\"a}ftige ich mich mit dem Entwurf und der Analyse energieeffizienter Schedulingalgorithmen, insbesondere f{\"u}r sogenannte Speed-Scaling Modelle. Diese stellen das theoretische Pendant von Techniken wie AMDs PowerNOW! und Intels SpeedStep dar, welche es erlauben die Geschwindigkeit von Prozessoren zur Laufzeit an die derzeitigen Bedingungen anzupassen. Theoretische Untersuchungen solcher Modelle sind auf eine Arbeit von Yao, Demers und Shenker (FOCS'95) zur{\"u}ckzuf{\"u}hren. Hier kombinieren die Autoren klassisches Deadline-Scheduling mit einem Prozessor der Speed-Scaling beherrscht. Es gilt Jobs verschiedener Gr{\"o}ße fristgerecht abzuarbeiten und die dabei verwendete Energie zu minimieren. Der Energieverbrauch des Prozessors wird durch eine konvexe Funktion $\POW\colon\R_{\geq0}\to\R_{\geq0}$ modelliert, welche die Geschwindigkeit auf den Energieverbrauch abbildet.Meine Dissertation betrachtet verschiedene Varianten des urspr{\"u}nglichen Speed-Scaling Modells. Forschungsrelevante Ergebnisse sind in den Kapiteln 3 bis 6 zu finden und erstrecken sich {\"u}ber die im Folgenden beschriebenen Aspekte:- Kapitel 3 und 4 betrachten verschiedene \emph{Price-Collecting} Varianten des Originalproblems. Hier d{\"u}rfen einzelne Deadlines verfehlt werden, sofern eine jobabh{\"a}ngige Strafe gezahlt wird. Ich entwerfe insbesondere Online-Algorithmen mit einer beweisbar guten Competitiveness. Dabei liefern meine Ergebnisse substantielle Verbesserungen bestehender Arbeiten und erweitern diese unter Anderem auf Szenarien mit mehreren Prozessoren.- In Kapitel 5 wird statt des klassischen Deadline-Schedulings eine Linearkombination der durchschnittlichen Antwortzeit und des Energieverbrauchs betrachtet. Die Frage, ob dieses Problem NP-schwer ist, stellt eine der zentralen Forschungsfragen in diesem Gebiet dar. F{\"u}r eine relaxierte Form dieser Frage entwerfe ich einen effizienter Algorithmus und beweise seine Optimalit{\"a}t.- Das letzte Kapitel betrachtet ein Modell, welches – auf den ersten Blick – nicht direkt zur Speed-Scaling Literatur z{\"a}hlt. Hier geht es stattdessen um ein allgemeines Resource-Constrained Scheduling, in dem sich die Prozessoren zusammen eine gemeinsame, beliebig aufteilbare Ressource teilen. Ich untersuche die Komplexit{\"a}t des Problems und entwerfe verschiedene Approximationsalgorithmen.},
author = {Kling, Peter},
publisher = {Universität Paderborn},
title = {{Energy-efficient Scheduling Algorithms}},
year = {2014},
}
@inproceedings{412,
abstract = {In this paper we present and analyze HSkip+, a self-stabilizing overlay network for nodes with arbitrary heterogeneous bandwidths. HSkip+ has the same topology as the Skip+ graph proposed by Jacob et al. [PODC 2009] but its self-stabilization mechanism significantly outperforms the self-stabilization mechanism proposed for Skip+. Also, the nodes are now ordered according to their bandwidths and not according to their identifiers. Various other solutions have already been proposed for overlay networks with heterogeneous bandwidths, but they are not self-stabilizing. In addition to HSkip+ being self-stabilizing, its performance is on par with the best previous bounds on the time and work for joining or leaving a network of peers of logarithmic diameter and degree and arbitrary bandwidths. Also, the dilation and congestion for routing messages is on par with the best previous bounds for such networks, so that HSkip+ combines the advantages of both worlds. Our theoretical investigations are backed by simulations demonstrating that HSkip+ is indeed performing much better than Skip+ and working correctly under high churn rates.},
author = {Feldotto, Matthias and Scheideler, Christian and Graffi, Kalman},
booktitle = {Proceedings of the 14th IEEE International Conference on Peer-to-Peer Computing (P2P)},
pages = {1--10},
title = {{HSkip+: A Self-Stabilizing Overlay Network for Nodes with Heterogeneous Bandwidths}},
doi = {10.1109/P2P.2014.6934300},
year = {2014},
}
@misc{373,
author = {Pahl, David},
publisher = {Universität Paderborn},
title = {{Reputationssysteme für zusammengesetzte Dienstleistungen}},
year = {2014},
}
@inproceedings{380,
abstract = {Network creation games model the creation and usage costs of networks formed by n selfish nodes. Each node v can buy a set of edges, each for a fixed price α > 0. Its goal is to minimize its private costs, i.e., the sum (SUM-game, Fabrikant et al., PODC 2003) or maximum (MAX-game, Demaine et al., PODC 2007) of distances from v to all other nodes plus the prices of the bought edges. The above papers show the existence of Nash equilibria as well as upper and lower bounds for the prices of anarchy and stability. In several subsequent papers, these bounds were improved for a wide range of prices α. In this paper, we extend these models by incorporating quality-of-service aspects: Each edge cannot only be bought at a fixed quality (edge length one) for a fixed price α. Instead, we assume that quality levels (i.e., edge lengths) are varying in a fixed interval [βˇ,β^] , 0 series = {LNCS}},
author = {Cord-Landwehr, Andreas and Mäcker, Alexander and Meyer auf der Heide, Friedhelm},
booktitle = {Proceedings of the 10th International Conference on Web and Internet Economics (WINE)},
pages = {423--428},
title = {{Quality of Service in Network Creation Games}},
doi = {10.1007/978-3-319-13129-0_34},
year = {2014},
}
@inproceedings{455,
abstract = {We study the existence of approximate pure Nash equilibria in weighted congestion games and develop techniques to obtain approximate potential functions that prove the existence of alpha-approximate pure Nash equilibria and the convergence of alpha-improvement steps. Specifically, we show how to obtain upper bounds for approximation factor alpha for a given class of cost functions. For example for concave cost functions the factor is at most 3/2, for quadratic cost functions it is at most 4/3, and for polynomial cost functions of maximal degree d it is at at most d + 1. For games with two players we obtain tight bounds which are as small as for example 1.054 in the case of quadratic cost functions.},
author = {Hansknecht, Christoph and Klimm, Max and Skopalik, Alexander},
booktitle = {Proceedings of the 17th. International Workshop on Approximation Algorithms for Combinatorial Optimization Problems (APPROX)},
pages = {242 -- 257},
title = {{Approximate pure Nash equilibria in weighted congestion games}},
doi = {10.4230/LIPIcs.APPROX-RANDOM.2014.242},
year = {2014},
}
@inproceedings{462,
abstract = {We discuss a technique to analyze complex infinitely repeated games using techniques from the fields of game theory and simulations. Our research is motivated by the analysis of electronic markets with thousands of participants and possibly complex strategic behavior. We consider an example of a global market of composed IT services to demonstrate the use of our simulation technique. We present our current work in this area and we want to discuss further approaches for the future.},
author = {Feldotto, Matthias and Skopalik, Alexander},
booktitle = {Proceedings of the 4th International Conference on Simulation and Modeling Methodologies, Technologies and Applications (SIMULTECH 2014)},
pages = {625--630},
title = {{A Simulation Framework for Analyzing Complex Infinitely Repeated Games}},
doi = {10.5220/0005110406250630},
year = {2014},
}
@inproceedings{20008,
author = {Hamann, Heiko and Valentini, Gabriele},
booktitle = {Ninth Int. Conf. on Swarm Intelligence (ANTS 2014)},
isbn = {9783319099514},
issn = {0302-9743},
title = {{Swarm in a Fly Bottle: Feedback-Based Analysis of Self-organizing Temporary Lock-ins}},
doi = {10.1007/978-3-319-09952-1_15},
year = {2014},
}
@inbook{20128,
author = {Khaluf, Yara and Dorigo, Marco and Hamann, Heiko and Valentini, Gabriele and Bartz-Beielstein, T.},
booktitle = {13th International Conference on Parallel Problem Solving from Nature (PPSN 2014)},
pages = {181--190},
publisher = {Springer},
title = {{Derivation of a Micro-Macro Link for Collective Decision-Making Systems: Uncover Network Features Based on Drift Measurements}},
doi = {10.1007/978-3-319-10762-2_18},
volume = {8672},
year = {2014},
}
@inproceedings{20130,
author = {Cervera, Enric and Khaluf, Yara and Birattari, Mauro and Hamann, Heiko and Pobil, Angel P. del and Chinellato, Eris and Martinez-Martin, Ester and Hallam, John and Morales, Antonio},
booktitle = {Simulation of Adaptive Behavior (SAB 2014)},
pages = {270--279},
title = {{A Swarm Robotics Approach to Task Allocation Under Soft Deadlines and Negligible Switching Costs}},
doi = {10.1007/978-3-319-08864-8_26},
volume = {8575},
year = {2014},
}
@inbook{16394,
author = {Lukovszki, Tamás and Meyer auf der Heide, Friedhelm},
booktitle = {Lecture Notes in Computer Science},
isbn = {9783319144719},
issn = {0302-9743},
title = {{Fast Collisionless Pattern Formation by Anonymous, Position-Aware Robots}},
doi = {10.1007/978-3-319-14472-6_17},
year = {2014},
}
@book{16870,
editor = {Flocchini, Paola and Gao, Jie and Kranakis, Evangelos and Meyer auf der Heide, Friedhelm},
isbn = {9783642453458},
issn = {0302-9743},
publisher = {Springer},
title = {{Algorithms for Sensor Systems - 9th International Symposium on Algorithms and Experiments for Sensor Systems, Wireless Networks and Distributed Robotics, {ALGOSENSORS} 2013}},
doi = {10.1007/978-3-642-45346-5},
volume = {8243},
year = {2014},
}
@inproceedings{379,
abstract = {In the leasing variant of Set Cover presented by Anthony et al.[1], elements U arrive over time and must be covered by sets from a familyF of subsets of U. Each set can be leased for K different periods of time.Let |U| = n and |F| = m. Leasing a set S for a period k incurs a cost ckS and allows S to cover its elements for the next lk time steps. The objectiveis to minimize the total cost of the sets leased, such that elements arrivingat any time t are covered by sets which contain them and are leased duringtime t. Anthony et al. [1] gave an optimal O(log n)-approximation forthe problem in the offline setting, unless P = NP [22]. In this paper, wegive randomized algorithms for variants of Set Cover Leasing in the onlinesetting, including a generalization of Online Set Cover with Repetitionspresented by Alon et al. [2], where elements appear multiple times andmust be covered by a different set at each arrival. Our results improve theO(log2(mn)) competitive factor of Online Set Cover with Repetitions [2]to O(log d log(dn)) = O(logmlog(mn)), where d is the maximum numberof sets an element belongs to.},
author = {Abshoff, Sebastian and Markarian, Christine and Meyer auf der Heide, Friedhelm},
booktitle = {Proceedings of the 8th Annual International Conference on Combinatorial Optimization and Applications (COCOA)},
pages = {25--34},
title = {{Randomized Online Algorithms for Set Cover Leasing Problems}},
doi = {10.1007/978-3-319-12691-3_3},
year = {2014},
}
@inproceedings{451,
abstract = {We introduce the concept of budget games. Players choose a set of tasks and each task has a certain demand on every resource in the game. Each resource has a budget. If the budget is not enough to satisfy the sum of all demands, it has to be shared between the tasks. We study strategic budget games, where the budget is shared proportionally. We also consider a variant in which the order of the strategic decisions influences the distribution of the budgets. The complexity of the optimal solution as well as existence, complexity and quality of equilibria are analysed. Finally, we show that the time an ordered budget game needs to convergence towards an equilibrium may be exponential.},
author = {Drees, Maximilian and Riechers, Sören and Skopalik, Alexander},
booktitle = {Proceedings of the 7th International Symposium on Algorithmic Game Theory (SAGT)},
editor = {Lavi, Ron},
pages = {110--121},
title = {{Budget-restricted utility games with ordered strategic decisions}},
doi = {10.1007/978-3-662-44803-8_10},
year = {2014},
}
@inproceedings{456,
abstract = {We study the existence of approximate pure Nash equilibriain social context congestion games. For any given set of allowed costfunctions F, we provide a threshold value μ(F), and show that for theclass of social context congestion games with cost functions from F, α-Nash dynamics are guaranteed to converge to α-approximate pure Nashequilibrium if and only if α > μ(F).Interestingly, μ(F) is related and always upper bounded by Roughgarden’sanarchy value [19].},
author = {Gairing, Martin and Kotsialou, Grammateia and Skopalik, Alexander},
booktitle = {Proceedings of the 10th International Conference on Web and Internet Economics (WINE)},
pages = {480 -- 485},
title = {{Approximate pure Nash equilibria in Social Context Congestion Games}},
doi = {10.1007/978-3-319-13129-0_43},
year = {2014},
}
@inproceedings{20129,
author = {Hamann, Heiko and Sayama, Hiroki and Rieffel, John and Risi, Sebastian and Doursat, Rene and Lipson, Hod},
booktitle = {14th Int. Conf. on the Synthesis and Simulation of Living Systems (ALIFE 2014)},
pages = {344--351},
publisher = {MIT Press},
title = {{Evolution of Collective Behaviors by Minimizing Surprise}},
doi = {10.7551/978-0-262-32621-6-ch055},
year = {2014},
}
@inbook{16395,
author = {Abshoff, Sebastian and Meyer auf der Heide, Friedhelm},
booktitle = {Structural Information and Communication Complexity},
isbn = {9783319096193},
issn = {0302-9743},
title = {{Continuous Aggregation in Dynamic Ad-Hoc Networks}},
doi = {10.1007/978-3-319-09620-9_16},
year = {2014},
}
@inproceedings{368,
abstract = {We consider the problem of scheduling a number of jobs on $m$ identical processors sharing a continuously divisible resource. Each job j comes with a resource requirement r_j \in {0,1}. The job can be processed at full speed if granted its full resource requirement. If receiving only an x-portion of r_j, it is processed at an x-fraction of the full speed. Our goal is to find a resource assignment that minimizes the makespan (i.e., the latest completion time). Variants of such problems, relating the resource assignment of jobs to their \emph{processing speeds}, have been studied under the term discrete-continuous scheduling. Known results are either very pessimistic or heuristic in nature.In this paper, we suggest and analyze a slightly simplified model. It focuses on the assignment of shared continuous resources to the processors. The job assignment to processors and the ordering of the jobs have already been fixed. It is shown that, even for unit size jobs, finding an optimal solution is NP-hard if the number of processors is part of the input. Positive results for unit size jobs include an efficient optimal algorithm for 2 processors. Moreover, we prove that balanced schedules yield a 2-1/m-approximation for a fixed number of processors. Such schedules are computed by our GreedyBalance algorithm, for which the bound is tight.},
author = {Brinkmann, Andre and Kling, Peter and Meyer auf der Heide, Friedhelm and Nagel, Lars and Riechers, Sören and Süss, Tim },
booktitle = {Proceedings of the 26th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA)},
pages = {128--137},
title = {{Scheduling Shared Continuous Resources on Many-Cores}},
doi = {10.1145/2612669.2612698},
year = {2014},
}
@inproceedings{370,
abstract = {Max-min fairness (MMF) is a widely known approach to a fair allocation of bandwidth to each of the users in a network. This allocation can be computed by uniformly raising the bandwidths of all users without violating capacity constraints. We consider an extension of these allocations by raising the bandwidth with arbitrary and not necessarily uniform time-depending velocities (allocation rates). These allocations are used in a game-theoretic context for routing choices, which we formalize in progressive filling games (PFGs).We present a variety of results for equilibria in PFGs. We show that these games possess pure Nash and strong equilibria. While computation in general is NP-hard, there are polynomial-time algorithms for prominent classes of Max-Min-Fair Games (MMFG), including the case when all users have the same source-destination pair. We characterize prices of anarchy and stability for pure Nash and strong equilibria in PFGs and MMFGs when players have different or the same source-destination pairs. In addition, we show that when a designer can adjust allocation rates, it is possible to design games with optimal strong equilibria. Some initial results on polynomial-time algorithms in this direction are also derived. },
author = {Harks, Tobias and Höfer, Martin and Schewior, Kevin and Skopalik, Alexander},
booktitle = {Proceedings of the 33rd Annual IEEE International Conference on Computer Communications (INFOCOM'14)},
pages = {352--360},
title = {{Routing Games with Progressive Filling}},
doi = {10.1109/TNET.2015.2468571},
year = {2014},
}
@inproceedings{452,
abstract = {Today's networks, like the Internet, do not consist of one but a mixture of several interconnected networks. Each has individual qualities and hence the performance of a network node results from the networks' interplay.We introduce a new game theoretic model capturing the interplay between a high-speed backbone network and a low-speed general purpose network. In our model, n nodes are connected by a static network and each node can decide individually to become a gateway node. A gateway node pays a fixed price for its connection to the high-speed network, but can utilize the high-speed network to gain communication distance 0 to all other gateways. Communication distances in the low-speed network are given by the hop distances. The effective communication distance between any two nodes then is given by the shortest path, which is possibly improved by using gateways as shortcuts.Every node v has the objective to minimize its communication costs, given by the sum (SUM-game) or maximum (MAX-game) of the effective communication distances from v to all other nodes plus a fixed price \alpha > 0, if it decides to be a gateway. For both games and different ranges of \alpha, we study the existence of equilibria, the price of anarchy, and convergence properties of best-response dynamics.},
author = {Abshoff, Sebastian and Cord-Landwehr, Andreas and Jung, Daniel and Skopalik, Alexander},
booktitle = {Proceedings of the 7th International Symposium on Algorithmic Game Theory (SAGT)},
editor = {Lavi, Ron},
pages = {294},
title = {{Brief Announcement: A Model for Multilevel Network Games}},
year = {2014},
}
@phdthesis{19039,
author = {Petring, Ralf},
title = {{Multi-Algorithmen-Rendering: Darstellung heterogener 3-D-Szenen in Echtzeit}},
year = {2014},
}
@article{20120,
abstract = {A grand challenge in the field of artificial life is to find a general theory of emergent self-organizing systems. In swarm systems most of the observed complexity is based on motion of simple entities. Similarly, statistical mechanics focuses on collective properties induced by the motion of many interacting particles. In this article we apply methods from statistical mechanics to swarm systems. We try to explain the emergent behavior of a simulated swarm by applying methods based on the fluctuation theorem. Empirical results indicate that swarms are able to produce negative entropy within an isolated subsystem due to frozen accidents. Individuals of a swarm are able to locally detect fluctuations of the global entropy measure and store them, if they are negative entropy productions. By accumulating these stored fluctuations over time the swarm as a whole is producing negative entropy and the system ends up in an ordered state. We claim that this indicates the existence of an inverted fluctuation theorem for emergent self-organizing dissipative systems. This approach bears the potential of general applicability.},
author = {Hamann, Heiko and Schmickl, Thomas and Crailsheim, Karl},
journal = {Artificial Life},
number = {1},
pages = {77--93},
title = {{Analysis of Swarm Behaviors Based on an Inversion of the Fluctuation Theorem}},
doi = {10.1162/ARTL_a_00097},
volume = {20},
year = {2014},
}
@inproceedings{17660,
author = {Polevoy, Gleb and de Weerdt, Mathijs M.},
booktitle = {Proceedings of the 2014 International Conference on Autonomous Agents and Multi-agent Systems},
isbn = {978-1-4503-2738-1},
keyword = {dynamics, emotion modeling, negotiation, network interaction, shared effort game},
pages = {1741--1742},
publisher = {International Foundation for Autonomous Agents and Multiagent Systems},
title = {{Improving Human Interaction in Crowdsensing}},
year = {2014},
}
@inproceedings{477,
abstract = {We consider the k-token dissemination problem, where k initially arbitrarily distributed tokens have to be disseminated to all nodes in a dynamic network (as introduced by Kuhn et al., STOC 2010). In contrast to general dynamic networks, our dynamic networks are unit disk graphs, i.e., nodes are embedded into the Euclidean plane and two nodes are connected if and only if their distance is at most R. Our worst-case adversary is allowed to move the nodes on the plane, but the maximum velocity v_max of each node is limited and the graph must be connected in each round. For this model, we provide almost tight lower and upper bounds for k-token dissemination if nodes are restricted to send only one token per round. It turns out that the maximum velocity v_max is a meaningful parameter to characterize dynamics in our model.},
author = {Abshoff, Sebastian and Benter, Markus and Cord-Landwehr, Andreas and Malatyali, Manuel and Meyer auf der Heide, Friedhelm},
booktitle = {Algorithms for Sensor Systems - 9th International Symposium on Algorithms and Experiments for Sensor Systems, Wireless Networks and Distributed Robotics, {ALGOSENSORS} 2013, Sophia Antipolis, France, September 5-6, 2013, Revised Selected Papers},
pages = {22--34},
title = {{Token Dissemination in Geometric Dynamic Networks}},
doi = {10.1007/978-3-642-45346-5_3},
year = {2013},
}
@phdthesis{17440,
author = {Eikel, Benjamin},
title = {{Spherical visibility sampling : preprocessed visibility for occlusion culling in complex 3D scenes}},
year = {2013},
}
@inproceedings{505,
abstract = {In this paper we introduce “On-The-Fly Computing”, our vision of future IT services that will be provided by assembling modular software components available on world-wide markets. After suitable components have been found, they are automatically integrated, configured and brought to execution in an On-The-Fly Compute Center. We envision that these future compute centers will continue to leverage three current trends in large scale computing which are an increasing amount of parallel processing, a trend to use heterogeneous computing resources, and—in the light of rising energy cost—energy-efficiency as a primary goal in the design and operation of computing systems. In this paper, we point out three research challenges and our current work in these areas.},
author = {Happe, Markus and Kling, Peter and Plessl, Christian and Platzner, Marco and Meyer auf der Heide, Friedhelm},
booktitle = {Proceedings of the 9th IEEE Workshop on Software Technology for Future embedded and Ubiquitous Systems (SEUS)},
publisher = {IEEE},
title = {{On-The-Fly Computing: A Novel Paradigm for Individualized IT Services}},
doi = {10.1109/ISORC.2013.6913232},
year = {2013},
}
@unpublished{524,
abstract = {We study the complexity theory for the local distributed setting introduced by Korman, Peleg and Fraigniaud. They have defined three complexity classes LD (Local Decision), NLD (Nondeterministic Local Decision) and NLD^#n. The class LD consists of all languages which can be decided with a constant number of communication rounds. The class NLD consists of all languages which can be verified by a nondeterministic algorithm with a constant number of communication rounds. In order to define the nondeterministic classes, they have transferred the notation of nondeterminism into the distributed setting by the use of certificates and verifiers. The class NLD^#n consists of all languages which can be verified by a nondeterministic algorithm where each node has access to an oracle for the number of nodes. They have shown the hierarchy LD subset NLD subset NLD^#n. Our main contributions are strict hierarchies within the classes defined by Korman, Peleg and Fraigniaud. We define additional complexity classes: the class LD(t) consists of all languages which can be decided with at most t communication rounds. The class NLD-O(f) consists of all languages which can be verified by a local verifier such that the size of the certificates that are needed to verify the language are bounded by a function from O(f). Our main results are refined strict hierarchies within these nondeterministic classes.},
author = {Meyer auf der Heide, Friedhelm and Swirkot, Kamil},
publisher = {arXiv},
title = {{Hierarchies in Local Distributed Decision}},
year = {2013},
}
@inproceedings{562,
abstract = {In Distributed Cloud Computing, applications are deployed across many data centres at topologically diverse locations to improved network-related quality of service (QoS). As we focus on interactive applications, we minimize the latency between users and an application by allocating Cloud resources nearby the customers. Allocating resources at all locations will result in the best latency but also in the highest expenses. So we need to find an optimal subset of locations which reduces the latency but also the expenses – the facility location problem (FLP). In addition, we consider resource capacity restrictions, as a resource can only serve a limited amount of users. An FLP can be globally solved. Additionally, we propose a local, distributed heuristic. This heuristic is running within the network and does not depend on a global component. No distributed, local approximations for the capacitated FLP have been proposed so far due to the complexity of the problem. We compared the heuristic with an optimal solution obtained from a mixed integer program for different network topologies. We investigated the influence of different parameters like overall resource utilization or different latency weights.},
author = {Keller, Matthias and Pawlik, Stefan and Pietrzyk, Peter and Karl, Holger},
booktitle = {Proceedings of the 6th International Conference on Utility and Cloud Computing (UCC) workshop on Distributed cloud computing},
pages = {429--434},
title = {{A Local Heuristic for Latency-Optimized Distributed Cloud Deployment}},
doi = {10.1109/UCC.2013.85},
year = {2013},
}