TY - JOUR
AU - Degener, Bastian
AU - Kempkes, Barbara
AU - Kling, Peter
AU - Meyer auf der Heide, Friedhelm
ID - 16391
JF - ACM Transactions on Parallel Computing
SN - 2329-4949
TI - Linear and Competitive Strategies for Continuous Robot Formation Problems
ER -
TY - GEN
AU - Pfannschmidt, Karlson
ID - 251
TI - Solving the aggregated bandits problem
ER -
TY - CONF
AB - We investigate a non-cooperative game-theoretic model for the formation of communication networks by selfish agents. Each agent aims for a central position at minimum cost for creating edges. In particular, the general model (Fabrikant et al., PODC'03) became popular for studying the structure of the Internet or social networks. Despite its significance, locality in this game was first studied only recently (Bilò et al., SPAA'14), where a worst case locality model was presented, which came with a high efficiency loss in terms of quality of equilibria. Our main contribution is a new and more optimistic view on locality: agents are limited in their knowledge and actions to their local view ranges, but can probe different strategies and finally choose the best. We study the influence of our locality notion on the hardness of computing best responses, convergence to equilibria, and quality of equilibria. Moreover, we compare the strength of local versus non-local strategy changes. Our results address the gap between the original model and the worst case locality variant. On the bright side, our efficiency results are in line with observations from the original model, yet we have a non-constant lower bound on the Price of Anarchy.
AU - Cord-Landwehr, Andreas
AU - Lenzner, Pascal
ID - 275
T2 - Proceedings of the 40th Conference on Mathematical Foundations of Computer Science (MFCS)
TI - Network Creation Games: Think Global - Act Local
ER -
TY - THES
AU - Abshoff, Sebastian
ID - 270
TI - On the Complexity of Fundamental Problems in Dynamic Ad-hoc Networks
ER -
TY - CONF
AB - Besides the life-as-it-could-be driver of artificial life research there is also the concept of extending natural life by creating hybrids or mixed societies that are built from natural and artificial components. In this paper we motivate and present the research program of the project flora robotica. Our objective is to develop and to investigate closely linked symbiotic relationships between robots and natural plants and to explore the potentials of a plant-robot society able to produce architectural artifacts and living spaces. These robot-plant bio-hybrids create synergies that allow for new functions of plants and robots. They also create novel design opportunities for an architecture that fuses the design and construction phase. The bio-hybrid is an example of mixed societies between 'hard' artificial and 'wet' natural life, which enables an interaction between natural and artificial ecologies. They form an embodied, self-organizing, and distributed cognitive system which is supposed to grow and develop over long periods of time resulting in the creation of meaningful architectural structures. A key idea is to assign equal roles to robots and plants in order to create a highly integrated, symbiotic system. Besides the gain of knowledge, this project has the objective to create a bio-hybrid system with a defined function and application -- growing architectural artifacts.
AU - Hamann, Heiko
AU - Wahby, Mostafa
AU - Schmickl, Thomas
AU - Zahadat, Payam
AU - Hofstadler, Daniel
AU - Stoy, Kasper
AU - Risi, Sebastian
AU - Faina, Andres
AU - Veenstra, Frank
AU - Kernbach, Serge
AU - Kuksin, Igor
AU - Kernbach, Olga
AU - Ayres, Phil
AU - Wojtaszek, Przemyslaw
ID - 19960
SN - 9781479975600
T2 - Proceedings of the 2015 IEEE Symposium on Artificial Life (IEEE ALIFE'15)
TI - Flora Robotica - Mixed Societies of Symbiotic Robot-Plant Bio-Hybrids
ER -
TY - CHAP
AU - Hamann, Heiko
AU - Correll, Nikolaus
AU - Kacprzyk, Janusz
AU - Pedrycz, Witold
ID - 19989
T2 - Springer Handbook of Computational Intelligence
TI - Probabilistic Modeling of Swarming Systems
ER -
TY - CONF
AU - Hamann, Heiko
AU - Schmickl, Thomas
AU - Kengyel, Daniela
AU - Zahadat, Payam
AU - Radspieler, Gerald
AU - Wotawa, Franz
ID - 19991
T2 - Principles and Practice of Multi-Agent Systems (PRIMA 2015)
TI - Potential of Heterogeneity in Collective Behaviors: A Case Study on Heterogeneous Swarms
ER -
TY - CONF
AU - Dorigo, Marco
AU - Hamann, Heiko
AU - Valentini, Gabriele
ID - 20006
T2 - AAAI-15 Video Proceedings
TI - Self-organized collective decisions in a robot swarm
ER -
TY - CONF
AB - We consider online leasing problems in which demands arrive over time and need to be served by leasing resources. We introduce a new model for these problems such that a resource can be leased for K different durations each incurring a different cost (longer leases cost less per time unit). Each demand i can be served anytime between its arrival ai and its deadline ai+di by a leased resource. The objective is to meet all deadlines while minimizing the total leasing costs. This model is a natural generalization of Meyerson’s ParkingPermitProblem (FOCS 2005) in which di=0 for all i. We propose an online algorithm that is Θ(K+dmaxlmin)-competitive where dmax and lmin denote the largest di and the shortest available lease length, respectively. We also extend the SetCoverLeasing problem by deadlines and give a competitive online algorithm which also improves on existing solutions for the original SetCoverLeasing problem.
AU - Li, Shouwei
AU - Mäcker, Alexander
AU - Markarian, Christine
AU - Meyer auf der Heide, Friedhelm
AU - Riechers, Sören
ID - 240
T2 - Proceedings of the 21st Annual International Computing and Combinatorics Conference (COCOON)
TI - Towards Flexible Demands in Online Leasing Problems
ER -
TY - CONF
AB - In \emph{bandwidth allocation games} (BAGs), the strategy of a player consists of various demands on different resources. The player's utility is at most the sum of these demands, provided they are fully satisfied. Every resource has a limited capacity and if it is exceeded by the total demand, it has to be split between the players. Since these games generally do not have pure Nash equilibria, we consider approximate pure Nash equilibria, in which no player can improve her utility by more than some fixed factor $\alpha$ through unilateral strategy changes. There is a threshold $\alpha_\delta$ (where $\delta$ is a parameter that limits the demand of each player on a specific resource) such that $\alpha$-approximate pure Nash equilibria always exist for $\alpha \geq \alpha_\delta$, but not for $\alpha < \alpha_\delta$. We give both upper and lower bounds on this threshold $\alpha_\delta$ and show that the corresponding decision problem is ${\sf NP}$-hard. We also show that the $\alpha$-approximate price of anarchy for BAGs is $\alpha+1$. For a restricted version of the game, where demands of players only differ slightly from each other (e.g. symmetric games), we show that approximate Nash equilibria can be reached (and thus also be computed) in polynomial time using the best-response dynamic. Finally, we show that a broader class of utility-maximization games (which includes BAGs) converges quickly towards states whose social welfare is close to the optimum.
AU - Drees, Maximilian
AU - Feldotto, Matthias
AU - Riechers, Sören
AU - Skopalik, Alexander
ID - 271
T2 - Proceedings of the 8th International Symposium on Algorithmic Game Theory (SAGT)
TI - On Existence and Properties of Approximate Pure Nash Equilibria in Bandwidth Allocation Games
ER -
TY - CONF
AU - Jähn, Claudius
AU - Fischer, Matthias
AU - Gerges, Maria
AU - Berssenbrügge, Jan
ID - 17427
T2 - 12. Paderborner Workshop Augmented & Virtual Reality in der Produktentstehung
TI - Automatische Ableitung geometrischer Eigenschaften von Bauteilen aus dem 3-D-Polygonmodell
VL - 342
ER -
TY - CONF
AU - Wahby, Mostafa
AU - Hamann, Heiko
ID - 19959
T2 - Applications of Evolutionary Computation (EvoApplications 2015)
TI - On the Tradeoff between Hardware Protection and Optimization Success: A Case Study in Onboard Evolutionary Robotics for Autonomous Parallel Parking
ER -
TY - CONF
AB - Aggregation is a crucial task in swarm robotics to ensure cooperation. We investigate the task of aggregation on an area specified indirectly by certain environmental features, here it is a light distribution. We extend the original BEECLUST algorithm, that implements an aggregation behavior, to an adaptive variant that automatically adapts to any light conditions. We compare these two control algorithms in a number of swarm robot experiments with different light conditions. The improved, adaptive variant is found to be significantly better in the tested setup.
AU - Wahby, Mostafa
AU - Weinhold, Alexander
AU - Hamann, Heiko
ID - 19966
SN - 9781631901003
T2 - Proceedings of the 9th EAI International Conference on Bio-inspired Information and Communications Technologies (formerly BIONETICS)
TI - Revisiting BEECLUST: Aggregation of Swarm Robots with Adaptiveness to Different Light Settings
ER -
TY - CONF
AB - Fitness function design is known to be a critical feature of the evolutionary-robotics approach. Potentially, the complexity of evolving a successful controller for a given task can be reduced by integrating a priori knowledge into the fitness function which complicates the comparability of studies in evolutionary robotics. Still, there are only few publications that study the actual effects of different fitness functions on the robot's performance. In this paper, we follow the fitness function classification of Nelson et al. (2009) and investigate a selection of four classes of fitness functions that require different degrees of a priori knowledge. The robot controllers are evolved in simulation using NEAT and we investigate different tasks including obstacle avoidance and (periodic) goal homing. The best evolved controllers were then post-evaluated by examining their potential for adaptation, determining their convergence rates, and using cross-comparisons based on the different fitness function classes. The results confirm that the integration of more a priori knowledge can simplify a task and show that more attention should be paid to fitness function classes when comparing different studies.
AU - Hamann, Heiko
AU - Divband Soorati, Mohammad
ID - 19980
T2 - Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2015)
TI - The Effect of Fitness Function Design on Performance in Evolutionary Robotics: The Influence of a Priori Knowledge
ER -
TY - GEN
AB - In the gathering problem, n autonomous robots have to meet on a single point.
We consider the gathering of a closed chain of point-shaped, anonymous robots
on a grid. The robots only have local knowledge about a constant number of
neighboring robots along the chain in both directions. Actions are performed in
the fully synchronous time model FSYNC. Every robot has a limited memory that
may contain one timestamp of the global clock, also visible to its direct
neighbors. In this synchronous time model, there is no limited view gathering
algorithm known to perform better than in quadratic runtime. The configurations
that show the quadratic lower bound are closed chains. In this paper, we
present the first sub-quadratic---in fact linear time---gathering algorithm for
closed chains on a grid.
AU - Abshoff, Sebastian
AU - Andreas Cord-Landwehr, Andreas
AU - Jung, Daniel
AU - Meyer auf der Heide, Friedhelm
ID - 16397
T2 - ArXiv: 1501.04877
TI - Towards Gathering Robots with Limited View in Linear Time: The Closed Chain Case
ER -
TY - JOUR
AU - Valentini, Gabriele
AU - Hamann, Heiko
ID - 19992
JF - Swarm Intelligence
SN - 1935-3812
TI - Time-variant feedback processes in collective decision-making systems: influence and effect of dynamic neighborhood sizes
ER -
TY - GEN
AU - Pautz, Jannis
ID - 316
TI - Budget Games with priced strategies
ER -
TY - GEN
AU - Kothe, Nils
ID - 277
TI - Multilevel Netzwerk Spiele mit konstanten Entfernungen im Highspeed-Netzwerk
ER -
TY - JOUR
AB - Recent approaches in evolutionary robotics (ER) propose to generate behavioral diversity in order to evolve desired behaviors more easily. These approaches require the definition of a behavioral distance, which often includes task-specific features and hence a priori knowledge. Alternative methods, which do not explicitly force selective pressure towards diversity (SPTD) but still generate it, are known from the field of artificial life, such as in artificial ecologies (AEs). In this study, we investigate how SPTD is generated without task-specific behavioral features or other forms of a priori knowledge and detect how methods of generating SPTD can be transferred from the domain of AE to ER. A promising finding is that in both types of systems, in systems from ER that generate behavioral diversity and also in the investigated speciation model, selective pressure is generated towards unpopulated regions of search space. In a simple case study we investigate the practical implications of these findings and point to options for transferring the idea of self-organizing SPTD in AEs to the domain of ER.
AU - Hamann, Heiko
ID - 19962
JF - Artificial Life
SN - 1064-5462
TI - Lessons from Speciation Dynamics: How to Generate Selective Pressure Towards Diversity
ER -
TY - CONF
AU - Wahby, Mostafa
AU - Divband Soorati, Mohammad
AU - von Mammen, Sebastian
AU - Hamann, Heiko
ID - 19967
T2 - Proceedings. 25. Computational Intelligence Workshop
TI - Evolution of Controllers for Robot-Plant Bio-Hybdrids: A Simple Case Study Using a Model of Plant Growth and Motion
ER -
TY - GEN
AB - We consider the following variant of the two dimensional gathering problem
for swarms of robots: Given a swarm of $n$ indistinguishable, point shaped
robots on a two dimensional grid. Initially, the robots form a closed chain on
the grid and must keep this connectivity during the whole process of their
gathering. Connectivity means, that neighboring robots of the chain need to be
positioned at the same or neighboring points of the grid. In our model,
gathering means to keep shortening the chain until the robots are located
inside a $2\times 2$ subgrid. Our model is completely local (no global control,
no global coordinates, no compass, no global communication or vision, \ldots).
Each robot can only see its next constant number of left and right neighbors on
the chain. This fixed constant is called the \emph{viewing path length}. All
its operations and detections are restricted to this constant number of robots.
Other robots, even if located at neighboring or the same grid point cannot be
detected. Only based on the relative positions of its detectable chain
neighbors, a robot can decide to obtain a certain state. Based on this state
and their local knowledge, the robots do local modifications to the chain by
moving to neighboring grid points without breaking the chain. These
modifications are performed without the knowledge whether they lead to a global
progress or not. We assume the fully synchronous $\mathcal{FSYNC}$ model. For
this problem, we present a gathering algorithm which needs linear time. This
result generalizes the result from \cite{hopper}, where an open chain with
specified distinguishable (and fixed) endpoints is considered.
AU - Abshoff, Sebastian
AU - Cord-Landwehr, Andreas
AU - Fischer, Matthias
AU - Jung, Daniel
AU - Meyer auf der Heide, Friedhelm
ID - 16449
T2 - arXiv:1510.05454
TI - Gathering a Closed Chain of Robots on a Grid
ER -
TY - GEN
AB - We consider the problem of dominating set-based virtual backbone used for
routing in asymmetric wireless ad-hoc networks. These networks have non-uniform
transmission ranges and are modeled using the well-established disk graphs. The
corresponding graph theoretic problem seeks a strongly connected
dominating-absorbent set of minimum cardinality in a digraph. A subset of nodes
in a digraph is a strongly connected dominating-absorbent set if the subgraph
induced by these nodes is strongly connected and each node in the graph is
either in the set or has both an in-neighbor and an out-neighbor in it.
Distributed algorithms for this problem are of practical significance due to
the dynamic nature of ad-hoc networks. We present a first distributed
approximation algorithm, with a constant approximation factor and O(Diam)
running time, where Diam is the diameter of the graph. Moreover we present a
simple heuristic algorithm and conduct an extensive simulation study showing
that our heuristic outperforms previously known approaches for the problem.
AU - Abu-Khzam, Faisal N.
AU - Markarian, Christine
AU - Meyer auf der Heide, Friedhelm
AU - Schubert, Michael
ID - 16452
T2 - arXiv:1510.01866
TI - Approximation and Heuristic Algorithms for Computing Backbones in Asymmetric Ad-Hoc Networks
ER -
TY - THES
AU - Jähn, Claudius
ID - 317
TI - Bewertung von Renderingalgorithmen für komplexe 3-D-Szenen
ER -
TY - CONF
AB - Many markets have seen a shift from the idea of buying and moved to leasing instead. Arguably, the latter has been the major catalyst for their success. Ten years ago, research realized this shift and initiated the study of "online leasing problems" by introducing leasing to online optimization problems. Resources required to provide a service in an "online leasing problem" are no more bought but leased for different durations. In this paper, we provide an overview of results that contribute to the understanding of "online resource leasing problems".
AU - Markarian, Christine
AU - Meyer auf der Heide, Friedhelm
ID - 266
T2 - Proceedings of the 2015 ACM Symposium on Principles of Distributed Computing (PODC)
TI - Online Resource Leasing
ER -
TY - BOOK
ED - Gausemeier, Jürgen
ED - Grafe, Michael
ED - Meyer auf der Heide, Friedhelm
ID - 17431
TI - Augmented & Virtual Reality in der Produktentstehung: Grundlagen, Methoden und Werkzeuge; Interaktions- und Visualisierungstechniken, Virtual Prototyping intelligenter technischer Systeme mit AR/VR
VL - 342
ER -
TY - JOUR
AB - Inter-datacenter transfers of non-interactive but timely large flows over a private (managed) network is an important problem faced by many cloud service providers. The considered flows are non-interactive because they do not explicitly target the end users. However, most of them must be performed on a timely basis and are associated with a deadline. We propose to schedule these flows by a centralized controller, which determines when to transmit each flow and which path to use. Two scheduling models are presented in this paper. In the first, the controller also determines the rate of each flow, while in the second bandwidth is assigned by the network according to the TCP rules. We develop scheduling algorithms for both models and compare their complexity and performance.
AU - Cohen, R.
AU - Polevoy, Gleb
ID - 17657
IS - 99
JF - Cloud Computing, IEEE Transactions on
KW - Approximation algorithms
KW - Approximation methods
KW - Bandwidth
KW - Cloud computing
KW - Routing
KW - Schedules
KW - Scheduling
SN - 2168-7161
TI - Inter-Datacenter Scheduling of Large Data Flows
VL - PP
ER -
TY - CONF
AB - Consider the problem in which n jobs that are classified into k types are to be scheduled on m identical machines without preemption. A machine requires a proper setup taking s time units before processing jobs of a given type. The objective is to minimize the makespan of the resulting schedule. We design and analyze an approximation algorithm that runs in time polynomial in n,m and k and computes a solution with an approximation factor that can be made arbitrarily close to 3/2.
AU - Mäcker, Alexander
AU - Malatyali, Manuel
AU - Meyer auf der Heide, Friedhelm
AU - Riechers, Sören
ED - Dehne, Frank
ED - Sack, Jörg Rüdiger
ED - Stege, Ulrike
ID - 274
T2 - Algorithms and Data Structures: 14th International Symposium, WADS 2015, Victoria, BC, Canada, August 5-7, 2015. Proceedings
TI - Non-preemptive Scheduling on Machines with Setup Times
ER -
TY - THES
AU - Markarian, Christine
ID - 267
TI - Online Resource Leasing
ER -
TY - JOUR
AB - We consider structural and algorithmic questions related to the Nash dynamics of weighted congestion games. In weighted congestion games with linear latency functions, the existence of pure Nash equilibria is guaranteed by a potential function argument. Unfortunately, this proof of existence is inefficient and computing pure Nash equilibria in such games is a PLS-hard problem even when all players have unit weights. The situation gets worse when superlinear (e.g., quadratic) latency functions come into play; in this case, the Nash dynamics of the game may contain cycles and pure Nash equilibria may not even exist. Given these obstacles, we consider approximate pure Nash equilibria as alternative solution concepts. A ρ--approximate pure Nash equilibrium is a state of a (weighted congestion) game from which no player has any incentive to deviate in order to improve her cost by a multiplicative factor higher than ρ. Do such equilibria exist for small values of ρ? And if so, can we compute them efficiently?We provide positive answers to both questions for weighted congestion games with polynomial latency functions by exploiting an “approximation” of such games by a new class of potential games that we call Ψ-games. This allows us to show that these games have d!-approximate pure Nash equilibria, where d is the maximum degree of the latency functions. Our main technical contribution is an efficient algorithm for computing O(1)-approximate pure Nash equilibria when d is a constant. For games with linear latency functions, the approximation guarantee is 3+√5/2 + Oγ for arbitrarily small γ > 0; for latency functions with maximum degree d≥ 2, it is d2d+o(d). The running time is polynomial in the number of bits in the representation of the game and 1/γ. As a byproduct of our techniques, we also show the following interesting structural statement for weighted congestion games with polynomial latency functions of maximum degree d ≥ 2: polynomially-long sequences of best-response moves from any initial state to a dO(d2)-approximate pure Nash equilibrium exist and can be efficiently identified in such games as long as d is a constant.To the best of our knowledge, these are the first positive algorithmic results for approximate pure Nash equilibria in weighted congestion games. Our techniques significantly extend our recent work on unweighted congestion games through the use of Ψ-games. The concept of approximating nonpotential games by potential ones is interesting in itself and might have further applications.
AU - Caragiannis, Ioannis
AU - Fanelli, Angelo
AU - Gravin, Nick
AU - Skopalik, Alexander
ID - 320
IS - 1
JF - Transactions on Economics and Computation
TI - Approximate Pure Nash Equilibria in Weighted Congestion Games: Existence, Efficient Computation, and Structure
VL - 3
ER -
TY - CONF
AU - Berssenbrügge, Jan
AU - Wiederkehr, Olga
AU - Jähn, Claudius
AU - Fischer, Matthias
ID - 17425
T2 - 12. Paderborner Workshop Augmented & Virtual Reality in der Produktentstehung
TI - Anbindung des Virtuellen Prototypen an die Partialmodelle intelligenter technischer Systeme
VL - 343
ER -
TY - CONF
AB - Consider n nodes connected to a single coordinator. Each node receives an
individual online data stream of numbers and, at any point in time, the
coordinator has to know the k nodes currently observing the largest values, for
a given k between 1 and n. We design and analyze an algorithm that solves this
problem while bounding the amount of messages exchanged between the nodes and
the coordinator. Our algorithm employs the idea of using filters which,
intuitively speaking, leads to few messages to be sent, if the new input is
"similar" to the previous ones. The algorithm uses a number of messages that is
on expectation by a factor of O((log {\Delta} + k) log n) larger than that of
an offline algorithm that sets filters in an optimal way, where {\Delta} is
upper bounded by the largest value observed by any node.
AU - Mäcker, Alexander
AU - Malatyali, Manuel
AU - Meyer auf der Heide, Friedhelm
ID - 16460
T2 - Proceedings of the 29th International Parallel and Distributed Processing Symposium (IPDPS)
TI - Online Top-k-Position Monitoring of Distributed Data Streams
ER -
TY - CONF
AU - Hamann, Heiko
AU - Schmickl, Thomas
AU - Zahadat, Payam
ID - 19988
T2 - 13th European Conference on Artificial Life (ECAL 2015)
TI - Evolving Collective Behaviors With Diverse But Predictable Sensor States
ER -
TY - CONF
AU - Ding, Hongli
AU - Hamann, Heiko
ID - 19990
T2 - First International Symposium on Swarm Behavior and Bio-Inspired Robotics (SWARM 2015)
TI - Dependability in Swarm Robotics: Error Detection and Correction
ER -
TY - CONF
AU - Dorigo, Marco
AU - Hamann, Heiko
AU - Valentini, Gabriele
ID - 20005
T2 - Proceedings of the 14th Int. Conf. on Autonomous Agents and Multiagent Systems (AAMAS 2015)
TI - Efficient Decision-Making in a Self-Organizing Robot Swarm: On the Speed Versus Accuracy Trade-Off
ER -
TY - JOUR
AB - Abstract We study the problem of bandwidth allocation with multiple interferences. In this problem the input consists of a set of users and a set of base stations. Each user has a list of requests, each consisting of a base station, a frequency demand, and a profit that may be gained by scheduling this request. The goal is to find a maximum profit set of user requests S that satisfies the following conditions: (i) S contains at most one request per user, (ii) the frequency sets allotted to requests in S that correspond to the same base station are pairwise non-intersecting, and (iii) the QoS received by any user at any frequency is reasonable according to an interference model. In this paper we consider two variants of bandwidth allocation with multiple interferences. In the first each request specifies a demand that can be satisfied by any subset of frequencies that is large enough. In the second each request specifies a specific frequency interval. Furthermore, we consider two interference models, multiplicative and additive. We show that these problems are extremely hard to approximate if the interferences depend on both the interfered and the interfering base stations. On the other hand, we provide constant factor approximation algorithms for both variants of bandwidth allocation with multiple interferences for the case where the interferences depend only on the interfering base stations. We also consider a restrictive special case that is closely related to the Knapsack problem. We show that this special case is NP-hard and that it admits an FPTAS.
AU - Bar-Yehuda, Reuven
AU - Polevoy, Gleb
AU - Rawitz, Dror
ID - 17658
JF - Discrete Applied Mathematics
KW - Local ratio
SN - 0166-218X
TI - Bandwidth allocation in cellular networks with multiple interferences
VL - 194
ER -
TY - CONF
AB - In this paper we study the potential function in congestion games. We consider both games with non-decreasing cost functions as well as games with non-increasing utility functions. We show that the value of the potential function $\Phi(\sf s)$ of any outcome $\sf s$ of a congestion game approximates the optimum potential value $\Phi(\sf s^*)$ by a factor $\Psi_{\mathcal{F}}$ which only depends on the set of cost/utility functions $\mathcal{F}$, and an additive term which is bounded by the sum of the total possible improvements of the players in the outcome $\sf s$. The significance of this result is twofold. On the one hand it provides \emph{Price-of-Anarchy}-like results with respect to the potential function. On the other hand, we show that these approximations can be used to compute $(1+\varepsilon)\cdot\Psi_{\mathcal{F}}$-approximate pure Nash equilibria for congestion games with non-decreasing cost functions. For the special case of polynomial cost functions, this significantly improves the guarantees from Caragiannis et al. [FOCS 2011]. Moreover, our machinery provides the first guarantees for general latency functions.
AU - Feldotto, Matthias
AU - Gairing, Martin
AU - Skopalik, Alexander
ID - 453
T2 - Proceedings of the 10th International Conference on Web and Internet Economics (WINE)
TI - Bounding the Potential Function in Congestion Games and Approximate Pure Nash Equilibria
ER -
TY - CONF
AB - Collective decision making in self-organized systems is challenging because it relies on local perception and local communication. Globally defined qualities such as consensus time and decision accuracy are both difficult to predict and difficult to guarantee. We present the weighted voter model which implements a self-organized collective decision making process. We provide an ODE model, a master equation model (numerically solved by the Gillespie algorithm), and agent-based simulations of the proposed decision-making strategy. This set of models enables us to investigate the system behavior in the thermodynamic limit and to investigate finite-size effects due to random fluctuations. Based on our results, we give minimum requirements to guarantee consensus on the optimal decision, a minimum swarm size to guarantee a certain accuracy, and we show that the proposed approach scales with system size and is robust to noise.
AU - Dorigo, Marco
AU - Hamann, Heiko
AU - Valentini, Gabriele
AU - Lomuscio, Alessio
AU - Scerri, Paul
AU - Bazzan, Ana
AU - Huhns, Michael
ID - 20121
T2 - Proceedings of the 13th Int. Conf. on Autonomous Agents and Multiagent Systems (AAMAS 2014)
TI - Self-Organized Collective Decision Making: The Weighted Voter Model
ER -
TY - CONF
AU - Hamann, Heiko
ID - 20126
T2 - Int. Conf. on Genetic and Evolutionary Computation (GECCO 2014)
TI - Evolving Prediction Machines: Collective Behaviors Based on Minimal Surprisal
ER -
TY - CONF
AU - King, Thomas C.
AU - Liu, Qingzhi
AU - Polevoy, Gleb
AU - de Weerdt, Mathijs
AU - Dignum, Virginia
AU - van Riemsdijk, M. Birna
AU - Warnier, Martijn
ID - 17661
KW - crowd-sensing
KW - crowdsourcing
KW - data aggregation
KW - game theory
KW - norms
KW - reciprocation
KW - self interested agents
KW - simulation
SN - 978-1-4503-2738-1
T2 - Proceedings of the 2014 International Conference on Autonomous Agents and Multi-agent Systems
TI - Request Driven Social Sensing
ER -
TY - CONF
AU - Polevoy, Gleb
AU - Trajanovski, Stojan
AU - de Weerdt, Mathijs M.
ID - 17659
KW - competition
KW - equilibrium
KW - market
KW - models
KW - shared effort games
KW - simulation
SN - 978-1-4503-2738-1
T2 - Proceedings of the 2014 International Conference on Autonomous Agents and Multi-agent Systems
TI - Nash Equilibria in Shared Effort Games
ER -
TY - CONF
AB - We consider a multilevel network game, where nodes can improvetheir communication costs by connecting to a high-speed network.The n nodes are connected by a static network and each node can decideindividually to become a gateway to the high-speed network. The goalof a node v is to minimize its private costs, i.e., the sum (SUM-game) ormaximum (MAX-game) of communication distances from v to all othernodes plus a fixed price α > 0 if it decides to be a gateway. Between gatewaysthe communication distance is 0, and gateways also improve othernodes’ distances by behaving as shortcuts. For the SUM-game, we showthat for α ≤ n − 1, the price of anarchy is Θ (n/√α) and in this rangeequilibria always exist. In range α ∈ (n−1, n(n−1)) the price of anarchyis Θ(√α), and for α ≥ n(n − 1) it is constant. For the MAX-game, weshow that the price of anarchy is either Θ (1 + n/√α), for α ≥ 1, orelse 1. Given a graph with girth of at least 4α, equilibria always exist.Concerning the dynamics, both games are not potential games. For theSUM-game, we even show that it is not weakly acyclic.
AU - Abshoff, Sebastian
AU - Cord-Landwehr, Andreas
AU - Jung, Daniel
AU - Skopalik, Alexander
ID - 395
T2 - Proceedings of the 10th International Conference on Web and Internet Economics (WINE)
TI - Multilevel Network Games
ER -
TY - CONF
AB - We give a polynomial time algorithm to compute an optimal energy and fractional weighted flow trade-off schedule for a speed-scalable processor with discrete speeds.Our algorithm uses a geometric approach that is based on structural properties obtained from a primal-dual formulation of the problem.
AU - Antoniadis, Antonios
AU - Barcelo, Neal
AU - Consuegra, Mario
AU - Kling, Peer
AU - Nugent, Michael
AU - Pruhs, Kirk
AU - Scquizzato, Michele
ID - 435
T2 - Proceedings of the 31st Symposium on Theoretical Aspects of Computer Science (STACS)
TI - Efficient Computation of Optimal Energy and Fractional Weighted Flow Trade-off Schedules
ER -
TY - CONF
AB - In this survey article, we discuss two algorithmic research areas that emerge from problems that arise when resources are offered in the cloud. The first area, online leasing, captures problems arising from the fact that resources in the cloud are not bought, but leased by cloud vendors. The second area, Distributed Storage Systems, deals with problems arising from so-called cloud federations, i.e., when several cloud providers are needed to fulfill a given task.
AU - Kniesburges, Sebastian
AU - Markarian, Christine
AU - Meyer auf der Heide, Friedhelm
AU - Scheideler, Christian
ID - 459
T2 - Proceedings of the 21st International Colloquium on Structural Information and Communication Complexity (SIROCCO)
TI - Algorithmic Aspects of Resource Management in the Cloud
ER -
TY - CONF
AU - Hamann, Heiko
AU - Karsai, Istvan
AU - Schmickl, Thomas
AU - Hilbun, Allison
ID - 20007
T2 - Symposium on Biomathematics and Ecology: Education and Research
TI - The common stomach: Organizing task allocation in wasp societies
ER -
TY - CONF
AU - Birattari, Mauro
AU - Dorigo, Marco
AU - Hamann, Heiko
AU - Garnier, Simon
AU - Montes de Oca, Marco
AU - Solnon, Christine
AU - Stuetzle, Thomas
AU - Ding, Hongli
ID - 20127
T2 - Ninth Int. Conf. on Swarm Intelligence (ANTS 2014)
TI - Sorting in Swarm Robots Using Communication-Based Cluster Size Estimation
VL - 8667
ER -
TY - JOUR
AU - Polevoy, Gleb
AU - Smorodinsky, Rann
AU - Tennenholtz, Moshe
ID - 17662
IS - 1
JF - ACM Trans. Econ. Comput.
KW - Competition
KW - efficiency
KW - equilibrium
KW - market
KW - social welfare
SN - 2167-8375
TI - Signaling Competition and Social Welfare
VL - 2
ER -
TY - THES
AB - In meiner Dissertation besch{\"a}ftige ich mich mit dem Entwurf und der Analyse energieeffizienter Schedulingalgorithmen, insbesondere f{\"u}r sogenannte Speed-Scaling Modelle. Diese stellen das theoretische Pendant von Techniken wie AMDs PowerNOW! und Intels SpeedStep dar, welche es erlauben die Geschwindigkeit von Prozessoren zur Laufzeit an die derzeitigen Bedingungen anzupassen. Theoretische Untersuchungen solcher Modelle sind auf eine Arbeit von Yao, Demers und Shenker (FOCS'95) zur{\"u}ckzuf{\"u}hren. Hier kombinieren die Autoren klassisches Deadline-Scheduling mit einem Prozessor der Speed-Scaling beherrscht. Es gilt Jobs verschiedener Gr{\"o}ße fristgerecht abzuarbeiten und die dabei verwendete Energie zu minimieren. Der Energieverbrauch des Prozessors wird durch eine konvexe Funktion $\POW\colon\R_{\geq0}\to\R_{\geq0}$ modelliert, welche die Geschwindigkeit auf den Energieverbrauch abbildet.Meine Dissertation betrachtet verschiedene Varianten des urspr{\"u}nglichen Speed-Scaling Modells. Forschungsrelevante Ergebnisse sind in den Kapiteln 3 bis 6 zu finden und erstrecken sich {\"u}ber die im Folgenden beschriebenen Aspekte:- Kapitel 3 und 4 betrachten verschiedene \emph{Price-Collecting} Varianten des Originalproblems. Hier d{\"u}rfen einzelne Deadlines verfehlt werden, sofern eine jobabh{\"a}ngige Strafe gezahlt wird. Ich entwerfe insbesondere Online-Algorithmen mit einer beweisbar guten Competitiveness. Dabei liefern meine Ergebnisse substantielle Verbesserungen bestehender Arbeiten und erweitern diese unter Anderem auf Szenarien mit mehreren Prozessoren.- In Kapitel 5 wird statt des klassischen Deadline-Schedulings eine Linearkombination der durchschnittlichen Antwortzeit und des Energieverbrauchs betrachtet. Die Frage, ob dieses Problem NP-schwer ist, stellt eine der zentralen Forschungsfragen in diesem Gebiet dar. F{\"u}r eine relaxierte Form dieser Frage entwerfe ich einen effizienter Algorithmus und beweise seine Optimalit{\"a}t.- Das letzte Kapitel betrachtet ein Modell, welches – auf den ersten Blick – nicht direkt zur Speed-Scaling Literatur z{\"a}hlt. Hier geht es stattdessen um ein allgemeines Resource-Constrained Scheduling, in dem sich die Prozessoren zusammen eine gemeinsame, beliebig aufteilbare Ressource teilen. Ich untersuche die Komplexit{\"a}t des Problems und entwerfe verschiedene Approximationsalgorithmen.
AU - Kling, Peter
ID - 431
TI - Energy-efficient Scheduling Algorithms
ER -
TY - CONF
AB - In this paper we present and analyze HSkip+, a self-stabilizing overlay network for nodes with arbitrary heterogeneous bandwidths. HSkip+ has the same topology as the Skip+ graph proposed by Jacob et al. [PODC 2009] but its self-stabilization mechanism significantly outperforms the self-stabilization mechanism proposed for Skip+. Also, the nodes are now ordered according to their bandwidths and not according to their identifiers. Various other solutions have already been proposed for overlay networks with heterogeneous bandwidths, but they are not self-stabilizing. In addition to HSkip+ being self-stabilizing, its performance is on par with the best previous bounds on the time and work for joining or leaving a network of peers of logarithmic diameter and degree and arbitrary bandwidths. Also, the dilation and congestion for routing messages is on par with the best previous bounds for such networks, so that HSkip+ combines the advantages of both worlds. Our theoretical investigations are backed by simulations demonstrating that HSkip+ is indeed performing much better than Skip+ and working correctly under high churn rates.
AU - Feldotto, Matthias
AU - Scheideler, Christian
AU - Graffi, Kalman
ID - 412
T2 - Proceedings of the 14th IEEE International Conference on Peer-to-Peer Computing (P2P)
TI - HSkip+: A Self-Stabilizing Overlay Network for Nodes with Heterogeneous Bandwidths
ER -
TY - GEN
AU - Pahl, David
ID - 373
TI - Reputationssysteme für zusammengesetzte Dienstleistungen
ER -
TY - CONF
AB - Network creation games model the creation and usage costs of networks formed by n selfish nodes. Each node v can buy a set of edges, each for a fixed price α > 0. Its goal is to minimize its private costs, i.e., the sum (SUM-game, Fabrikant et al., PODC 2003) or maximum (MAX-game, Demaine et al., PODC 2007) of distances from v to all other nodes plus the prices of the bought edges. The above papers show the existence of Nash equilibria as well as upper and lower bounds for the prices of anarchy and stability. In several subsequent papers, these bounds were improved for a wide range of prices α. In this paper, we extend these models by incorporating quality-of-service aspects: Each edge cannot only be bought at a fixed quality (edge length one) for a fixed price α. Instead, we assume that quality levels (i.e., edge lengths) are varying in a fixed interval [βˇ,β^] , 0 series = {LNCS}
AU - Cord-Landwehr, Andreas
AU - Mäcker, Alexander
AU - Meyer auf der Heide, Friedhelm
ID - 380
T2 - Proceedings of the 10th International Conference on Web and Internet Economics (WINE)
TI - Quality of Service in Network Creation Games
ER -