--- _id: '51737' article_number: '109826' author: - first_name: Gunter full_name: Kullmer, Gunter id: '291' last_name: Kullmer - first_name: Deborah full_name: Weiß, Deborah id: '45673' last_name: Weiß - first_name: Britta full_name: Schramm, Britta id: '4668' last_name: Schramm citation: ama: Kullmer G, Weiß D, Schramm B. An alternative and robust formulation of the fatigue crack growth rate curve for long cracks. Engineering Fracture Mechanics. 2024;296. doi:10.1016/j.engfracmech.2023.109826 apa: Kullmer, G., Weiß, D., & Schramm, B. (2024). An alternative and robust formulation of the fatigue crack growth rate curve for long cracks. Engineering Fracture Mechanics, 296, Article 109826. https://doi.org/10.1016/j.engfracmech.2023.109826 bibtex: '@article{Kullmer_Weiß_Schramm_2024, title={An alternative and robust formulation of the fatigue crack growth rate curve for long cracks}, volume={296}, DOI={10.1016/j.engfracmech.2023.109826}, number={109826}, journal={Engineering Fracture Mechanics}, publisher={Elsevier BV}, author={Kullmer, Gunter and Weiß, Deborah and Schramm, Britta}, year={2024} }' chicago: Kullmer, Gunter, Deborah Weiß, and Britta Schramm. “An Alternative and Robust Formulation of the Fatigue Crack Growth Rate Curve for Long Cracks.” Engineering Fracture Mechanics 296 (2024). https://doi.org/10.1016/j.engfracmech.2023.109826. ieee: 'G. Kullmer, D. Weiß, and B. Schramm, “An alternative and robust formulation of the fatigue crack growth rate curve for long cracks,” Engineering Fracture Mechanics, vol. 296, Art. no. 109826, 2024, doi: 10.1016/j.engfracmech.2023.109826.' mla: Kullmer, Gunter, et al. “An Alternative and Robust Formulation of the Fatigue Crack Growth Rate Curve for Long Cracks.” Engineering Fracture Mechanics, vol. 296, 109826, Elsevier BV, 2024, doi:10.1016/j.engfracmech.2023.109826. short: G. Kullmer, D. Weiß, B. Schramm, Engineering Fracture Mechanics 296 (2024). date_created: 2024-02-22T09:35:01Z date_updated: 2024-02-22T09:55:31Z department: - _id: '143' - _id: '630' doi: 10.1016/j.engfracmech.2023.109826 intvolume: ' 296' keyword: - Mechanical Engineering - Mechanics of Materials - General Materials Science language: - iso: eng project: - _id: '130' grant_number: '418701707' name: 'TRR 285: TRR 285' - _id: '132' name: 'TRR 285 - B: TRR 285 - Project Area B' - _id: '143' name: 'TRR 285 – B04: TRR 285 - Subproject B04' publication: Engineering Fracture Mechanics publication_identifier: issn: - 0013-7944 publication_status: published publisher: Elsevier BV status: public title: An alternative and robust formulation of the fatigue crack growth rate curve for long cracks type: journal_article user_id: '45673' volume: 296 year: '2024' ... --- _id: '36800' abstract: - lang: eng text: "Abstract. The miniaturisation of components leads to new demands on measurement systems. One of these is the resolution. As a volumetric analysis method and method of non-destructive testing, industrial X-ray computed\r\ntomography (XCT) has the ability to measure geometrical features and their corresponding dimensions without destroying them and can therefore be used for quality assurance. However, the concept of resolution is not trivial for XCT and has not yet been finally clarified. In particular, the interface structural resolution, the detectability of two surfaces facing each other after surface segmentation, faces a lack of a test specimen, a corresponding\r\nmeasurand and a reliable method. Simulation-based XCT investigations of a method to determine this type of resolution are presented in this article using the geometry of a test specimen that contains several radially\r\narranged holes of the same size. The borehole diameters correspond to the distance between the holes to investigate the resolvability of surfaces and interfaces. The evaluation is based on mean and extreme values of grey value\r\nprofiles between the individual boreholes of the reconstructed volume. It is shown that the geometrical detectability of the test specimen surface and interface can be extended by a reasonable choice of the threshold value for\r\nsurface segmentation within a defined interval. With regard to the resolving capability, a distinction is made between assured detectability and possible detectability, as well as the threshold value used when using the ISO50\r\nthreshold for surface segmentation and measurement chain completion. " author: - first_name: Matthias full_name: Busch, Matthias last_name: Busch - first_name: Tino full_name: Hausotte, Tino last_name: Hausotte citation: ama: Busch M, Hausotte T. Simulation-based investigation of the metrological interface structural resolution capability of X-ray computed tomography scanners. Journal of Sensors and Sensor Systems. 2023;12(1):1-8. doi:10.5194/jsss-12-1-2023 apa: Busch, M., & Hausotte, T. (2023). Simulation-based investigation of the metrological interface structural resolution capability of X-ray computed tomography scanners. Journal of Sensors and Sensor Systems, 12(1), 1–8. https://doi.org/10.5194/jsss-12-1-2023 bibtex: '@article{Busch_Hausotte_2023, title={Simulation-based investigation of the metrological interface structural resolution capability of X-ray computed tomography scanners}, volume={12}, DOI={10.5194/jsss-12-1-2023}, number={1}, journal={Journal of Sensors and Sensor Systems}, publisher={Copernicus GmbH}, author={Busch, Matthias and Hausotte, Tino}, year={2023}, pages={1–8} }' chicago: 'Busch, Matthias, and Tino Hausotte. “Simulation-Based Investigation of the Metrological Interface Structural Resolution Capability of X-Ray Computed Tomography Scanners.” Journal of Sensors and Sensor Systems 12, no. 1 (2023): 1–8. https://doi.org/10.5194/jsss-12-1-2023.' ieee: 'M. Busch and T. Hausotte, “Simulation-based investigation of the metrological interface structural resolution capability of X-ray computed tomography scanners,” Journal of Sensors and Sensor Systems, vol. 12, no. 1, pp. 1–8, 2023, doi: 10.5194/jsss-12-1-2023.' mla: Busch, Matthias, and Tino Hausotte. “Simulation-Based Investigation of the Metrological Interface Structural Resolution Capability of X-Ray Computed Tomography Scanners.” Journal of Sensors and Sensor Systems, vol. 12, no. 1, Copernicus GmbH, 2023, pp. 1–8, doi:10.5194/jsss-12-1-2023. short: M. Busch, T. Hausotte, Journal of Sensors and Sensor Systems 12 (2023) 1–8. date_created: 2023-01-13T14:37:34Z date_updated: 2023-01-13T14:40:12Z department: - _id: '630' doi: 10.5194/jsss-12-1-2023 intvolume: ' 12' issue: '1' keyword: - Electrical and Electronic Engineering - Instrumentation language: - iso: eng main_file_link: - open_access: '1' url: https://jsss.copernicus.org/articles/12/1/2023/ oa: '1' page: 1-8 project: - _id: '130' grant_number: '418701707' name: 'TRR 285: TRR 285' - _id: '133' name: 'TRR 285 - C: TRR 285 - Project Area C' - _id: '149' name: 'TRR 285 – C05: TRR 285 - Subproject C05' publication: Journal of Sensors and Sensor Systems publication_identifier: issn: - 2194-878X publication_status: published publisher: Copernicus GmbH status: public title: Simulation-based investigation of the metrological interface structural resolution capability of X-ray computed tomography scanners type: journal_article user_id: '7850' volume: 12 year: '2023' ... --- _id: '38509' author: - first_name: Alexander full_name: Brosius, Alexander last_name: Brosius - first_name: Lars full_name: Ewenz, Lars last_name: Ewenz - first_name: Richard full_name: Stephan, Richard last_name: Stephan - first_name: Martina full_name: Zimmermann, Martina last_name: Zimmermann citation: ama: 'Brosius A, Ewenz L, Stephan R, Zimmermann M. Anrisserkennung an geclinchten Proben während einer zyklischen Belastung unter Nutzung eines Scanning Laser Doppler Vibrometers. In: Zimmermann M, ed. Tagung Werkstoffprüfung 2022. Deutsche Gesellschaft für Materialkunde e.V. (DGM); 2023.' apa: Brosius, A., Ewenz, L., Stephan, R., & Zimmermann, M. (2023). Anrisserkennung an geclinchten Proben während einer zyklischen Belastung unter Nutzung eines Scanning Laser Doppler Vibrometers. In M. Zimmermann (Ed.), Tagung Werkstoffprüfung 2022. Deutsche Gesellschaft für Materialkunde e.V. (DGM). bibtex: '@inproceedings{Brosius_Ewenz_Stephan_Zimmermann_2023, title={Anrisserkennung an geclinchten Proben während einer zyklischen Belastung unter Nutzung eines Scanning Laser Doppler Vibrometers}, booktitle={Tagung Werkstoffprüfung 2022}, publisher={Deutsche Gesellschaft für Materialkunde e.V. (DGM)}, author={Brosius, Alexander and Ewenz, Lars and Stephan, Richard and Zimmermann, Martina}, editor={Zimmermann, Martina}, year={2023} }' chicago: Brosius, Alexander, Lars Ewenz, Richard Stephan, and Martina Zimmermann. “Anrisserkennung an Geclinchten Proben Während Einer Zyklischen Belastung Unter Nutzung Eines Scanning Laser Doppler Vibrometers.” In Tagung Werkstoffprüfung 2022, edited by Martina Zimmermann. Deutsche Gesellschaft für Materialkunde e.V. (DGM), 2023. ieee: A. Brosius, L. Ewenz, R. Stephan, and M. Zimmermann, “Anrisserkennung an geclinchten Proben während einer zyklischen Belastung unter Nutzung eines Scanning Laser Doppler Vibrometers,” in Tagung Werkstoffprüfung 2022, Dresden, 2023. mla: Brosius, Alexander, et al. “Anrisserkennung an Geclinchten Proben Während Einer Zyklischen Belastung Unter Nutzung Eines Scanning Laser Doppler Vibrometers.” Tagung Werkstoffprüfung 2022, edited by Martina Zimmermann, Deutsche Gesellschaft für Materialkunde e.V. (DGM), 2023. short: 'A. Brosius, L. Ewenz, R. Stephan, M. Zimmermann, in: M. Zimmermann (Ed.), Tagung Werkstoffprüfung 2022, Deutsche Gesellschaft für Materialkunde e.V. (DGM), 2023.' conference: location: Dresden name: Tagung Werkstoffprüfung 2022 date_created: 2023-01-23T19:41:13Z date_updated: 2023-01-23T19:53:24Z department: - _id: '630' editor: - first_name: Martina full_name: Zimmermann, Martina last_name: Zimmermann language: - iso: eng project: - _id: '130' grant_number: '418701707' name: 'TRR 285: TRR 285' - _id: '132' name: 'TRR 285 - B: TRR 285 - Project Area B' - _id: '141' name: 'TRR 285 – B02: TRR 285 - Subproject B02' - _id: '133' name: 'TRR 285 - C: TRR 285 - Project Area C' - _id: '148' name: 'TRR 285 – C04: TRR 285 - Subproject C04' publication: Tagung Werkstoffprüfung 2022 publication_identifier: isbn: - 978-3-88355-430-3 publisher: Deutsche Gesellschaft für Materialkunde e.V. (DGM) status: public title: Anrisserkennung an geclinchten Proben während einer zyklischen Belastung unter Nutzung eines Scanning Laser Doppler Vibrometers type: conference user_id: '7850' year: '2023' ... --- _id: '38511' author: - first_name: Lars full_name: Ewenz, Lars last_name: Ewenz - first_name: Martin full_name: Kuczyk, Martin last_name: Kuczyk - first_name: 'S. ' full_name: 'Schöne, S. ' last_name: Schöne - first_name: Martina full_name: Zimmermann, Martina last_name: Zimmermann citation: ama: 'Ewenz L, Kuczyk M, Schöne S, Zimmermann M. Ableitung flacher Probengeometrien zur Abbildung mehraxialer Spannungszustände in Clinchverbindungen unter zyklischer Beanspruchung. In: Zimmermann M, ed. Tagung Werkstoffprüfung 2022. Deutsche Gesellschaft für Materialkunde e.V. (DGM); 2023.' apa: Ewenz, L., Kuczyk, M., Schöne, S., & Zimmermann, M. (2023). Ableitung flacher Probengeometrien zur Abbildung mehraxialer Spannungszustände in Clinchverbindungen unter zyklischer Beanspruchung. In M. Zimmermann (Ed.), Tagung Werkstoffprüfung 2022. Deutsche Gesellschaft für Materialkunde e.V. (DGM). bibtex: '@inproceedings{Ewenz_Kuczyk_Schöne_Zimmermann_2023, title={Ableitung flacher Probengeometrien zur Abbildung mehraxialer Spannungszustände in Clinchverbindungen unter zyklischer Beanspruchung}, booktitle={Tagung Werkstoffprüfung 2022}, publisher={Deutsche Gesellschaft für Materialkunde e.V. (DGM)}, author={Ewenz, Lars and Kuczyk, Martin and Schöne, S. and Zimmermann, Martina}, editor={Zimmermann, Martina}, year={2023} }' chicago: Ewenz, Lars, Martin Kuczyk, S. Schöne, and Martina Zimmermann. “Ableitung Flacher Probengeometrien Zur Abbildung Mehraxialer Spannungszustände in Clinchverbindungen Unter Zyklischer Beanspruchung.” In Tagung Werkstoffprüfung 2022, edited by Martina Zimmermann. Deutsche Gesellschaft für Materialkunde e.V. (DGM), 2023. ieee: L. Ewenz, M. Kuczyk, S. Schöne, and M. Zimmermann, “Ableitung flacher Probengeometrien zur Abbildung mehraxialer Spannungszustände in Clinchverbindungen unter zyklischer Beanspruchung,” in Tagung Werkstoffprüfung 2022, Dresden, 2023. mla: Ewenz, Lars, et al. “Ableitung Flacher Probengeometrien Zur Abbildung Mehraxialer Spannungszustände in Clinchverbindungen Unter Zyklischer Beanspruchung.” Tagung Werkstoffprüfung 2022, edited by Martina Zimmermann, Deutsche Gesellschaft für Materialkunde e.V. (DGM), 2023. short: 'L. Ewenz, M. Kuczyk, S. Schöne, M. Zimmermann, in: M. Zimmermann (Ed.), Tagung Werkstoffprüfung 2022, Deutsche Gesellschaft für Materialkunde e.V. (DGM), 2023.' conference: location: Dresden name: Tagung Werkstoffprüfung 2022 date_created: 2023-01-23T19:46:34Z date_updated: 2023-01-23T19:53:01Z department: - _id: '630' editor: - first_name: Martina full_name: Zimmermann, Martina last_name: Zimmermann language: - iso: eng project: - _id: '130' grant_number: '418701707' name: 'TRR 285: TRR 285' - _id: '132' name: 'TRR 285 - B: TRR 285 - Project Area B' - _id: '141' name: 'TRR 285 – B02: TRR 285 - Subproject B02' publication: Tagung Werkstoffprüfung 2022 publication_identifier: unknown: - 978-3-88355-430-3 publisher: Deutsche Gesellschaft für Materialkunde e.V. (DGM) status: public title: Ableitung flacher Probengeometrien zur Abbildung mehraxialer Spannungszustände in Clinchverbindungen unter zyklischer Beanspruchung type: conference user_id: '7850' year: '2023' ... --- _id: '38507' author: - first_name: Lars full_name: Ewenz, Lars last_name: Ewenz - first_name: R. full_name: Kühne, R. last_name: Kühne - first_name: S. full_name: Schöne, S. last_name: Schöne - first_name: Martina full_name: Zimmermann, Martina last_name: Zimmermann citation: ama: 'Ewenz L, Kühne R, Schöne S, Zimmermann M. Untersuchungen zum Geometrie- und Frequenzeinfluss bei der Ermittlung zyklischer Kennwerte geclinchter Überlappverbindungen. In: Zimmermann M, ed. Tagung Werkstoffprüfung 2022. Deutsche Gesellschaft für Materialkunde e.V. (DGM); 2023.' apa: Ewenz, L., Kühne, R., Schöne, S., & Zimmermann, M. (2023). Untersuchungen zum Geometrie- und Frequenzeinfluss bei der Ermittlung zyklischer Kennwerte geclinchter Überlappverbindungen. In M. Zimmermann (Ed.), Tagung Werkstoffprüfung 2022. Deutsche Gesellschaft für Materialkunde e.V. (DGM). bibtex: '@inproceedings{Ewenz_Kühne_Schöne_Zimmermann_2023, title={Untersuchungen zum Geometrie- und Frequenzeinfluss bei der Ermittlung zyklischer Kennwerte geclinchter Überlappverbindungen}, booktitle={Tagung Werkstoffprüfung 2022}, publisher={Deutsche Gesellschaft für Materialkunde e.V. (DGM)}, author={Ewenz, Lars and Kühne, R. and Schöne, S. and Zimmermann, Martina}, editor={Zimmermann, Martina}, year={2023} }' chicago: Ewenz, Lars, R. Kühne, S. Schöne, and Martina Zimmermann. “Untersuchungen Zum Geometrie- Und Frequenzeinfluss Bei Der Ermittlung Zyklischer Kennwerte Geclinchter Überlappverbindungen.” In Tagung Werkstoffprüfung 2022, edited by Martina Zimmermann. Deutsche Gesellschaft für Materialkunde e.V. (DGM), 2023. ieee: L. Ewenz, R. Kühne, S. Schöne, and M. Zimmermann, “Untersuchungen zum Geometrie- und Frequenzeinfluss bei der Ermittlung zyklischer Kennwerte geclinchter Überlappverbindungen,” in Tagung Werkstoffprüfung 2022, 2023. mla: Ewenz, Lars, et al. “Untersuchungen Zum Geometrie- Und Frequenzeinfluss Bei Der Ermittlung Zyklischer Kennwerte Geclinchter Überlappverbindungen.” Tagung Werkstoffprüfung 2022, edited by Martina Zimmermann, Deutsche Gesellschaft für Materialkunde e.V. (DGM), 2023. short: 'L. Ewenz, R. Kühne, S. Schöne, M. Zimmermann, in: M. Zimmermann (Ed.), Tagung Werkstoffprüfung 2022, Deutsche Gesellschaft für Materialkunde e.V. (DGM), 2023.' date_created: 2023-01-23T19:31:32Z date_updated: 2023-01-23T19:37:46Z department: - _id: '630' editor: - first_name: Martina full_name: Zimmermann, Martina last_name: Zimmermann language: - iso: eng project: - _id: '130' grant_number: '418701707' name: 'TRR 285: TRR 285' - _id: '132' name: 'TRR 285 - B: TRR 285 - Project Area B' - _id: '141' name: 'TRR 285 – B02: TRR 285 - Subproject B02' publication: Tagung Werkstoffprüfung 2022 publication_identifier: unknown: - 978-3-88355-430-3 publisher: Deutsche Gesellschaft für Materialkunde e.V. (DGM) status: public title: Untersuchungen zum Geometrie- und Frequenzeinfluss bei der Ermittlung zyklischer Kennwerte geclinchter Überlappverbindungen type: conference user_id: '7850' year: '2023' ... --- _id: '51739' author: - first_name: Deborah full_name: Weiß, Deborah id: '45673' last_name: Weiß - first_name: Tobias full_name: Duffe, Tobias id: '41322' last_name: Duffe - first_name: Moritz full_name: Buczek, Moritz last_name: Buczek - first_name: Gunter full_name: Kullmer, Gunter id: '291' last_name: Kullmer - first_name: Britta full_name: Schramm, Britta id: '4668' last_name: Schramm citation: ama: 'Weiß D, Duffe T, Buczek M, Kullmer G, Schramm B. Bruchmechanische Untersuchung des Dualphasenstahls HCT590X unter Temperatureinfluss. In: Deutscher Verband für Materialforschung und -prüfung e.V.; 2023. doi:10.48447/WP-2023-244' apa: 'Weiß, D., Duffe, T., Buczek, M., Kullmer, G., & Schramm, B. (2023). Bruchmechanische Untersuchung des Dualphasenstahls HCT590X unter Temperatureinfluss. Werkstoffprüfung 2023: Werkstoffe und Bauteile auf dem Prüfstand - Tagung, Berlin. https://doi.org/10.48447/WP-2023-244' bibtex: '@inproceedings{Weiß_Duffe_Buczek_Kullmer_Schramm_2023, title={Bruchmechanische Untersuchung des Dualphasenstahls HCT590X unter Temperatureinfluss}, DOI={10.48447/WP-2023-244}, publisher={Deutscher Verband für Materialforschung und -prüfung e.V.}, author={Weiß, Deborah and Duffe, Tobias and Buczek, Moritz and Kullmer, Gunter and Schramm, Britta}, year={2023} }' chicago: Weiß, Deborah, Tobias Duffe, Moritz Buczek, Gunter Kullmer, and Britta Schramm. “Bruchmechanische Untersuchung des Dualphasenstahls HCT590X unter Temperatureinfluss.” Deutscher Verband für Materialforschung und -prüfung e.V., 2023. https://doi.org/10.48447/WP-2023-244. ieee: 'D. Weiß, T. Duffe, M. Buczek, G. Kullmer, and B. Schramm, “Bruchmechanische Untersuchung des Dualphasenstahls HCT590X unter Temperatureinfluss,” presented at the Werkstoffprüfung 2023: Werkstoffe und Bauteile auf dem Prüfstand - Tagung, Berlin, 2023, doi: 10.48447/WP-2023-244.' mla: Weiß, Deborah, et al. Bruchmechanische Untersuchung des Dualphasenstahls HCT590X unter Temperatureinfluss. Deutscher Verband für Materialforschung und -prüfung e.V., 2023, doi:10.48447/WP-2023-244. short: 'D. Weiß, T. Duffe, M. Buczek, G. Kullmer, B. Schramm, in: Deutscher Verband für Materialforschung und -prüfung e.V., 2023.' conference: end_date: 2023-11-24 location: Berlin name: 'Werkstoffprüfung 2023: Werkstoffe und Bauteile auf dem Prüfstand - Tagung' start_date: 2023-11-23 date_created: 2024-02-22T09:54:40Z date_updated: 2024-02-22T09:55:36Z department: - _id: '143' - _id: '630' doi: 10.48447/WP-2023-244 language: - iso: ger project: - _id: '130' grant_number: '418701707' name: 'TRR 285: TRR 285' - _id: '132' name: 'TRR 285 - B: TRR 285 - Project Area B' - _id: '143' name: 'TRR 285 – B04: TRR 285 - Subproject B04' publication_status: published publisher: Deutscher Verband für Materialforschung und -prüfung e.V. status: public title: Bruchmechanische Untersuchung des Dualphasenstahls HCT590X unter Temperatureinfluss type: conference user_id: '45673' year: '2023' ... --- _id: '30626' abstract: - lang: eng text: Clinching is a very cost-efficient method for joining two or more sheets made of identical or different materials. However, the current evaluation methods cannot confirm the critical geometrical features of joints such as neck thickness, undercut, and bottom thickness. Furthermore, the effects caused by joining process such as elastic deformation and crack-closure are significant for the joining quality, but often earn insufficient attention. Therefore, computed tomography (CT) and Transient Dynamic Analysis (TDA) as an ultrasonic testing and evaluation procedure are combined to overcome the obstacles mentioned above. In order to have a well-defined and reproducible typical geometrical error in clinching, specimens with a pre-specified lateral offset of the punch with 0.1 mm, 0.2 mm are as well as with no lateral offset are investigated using CT. The specimens are treated with conductive copper varnish in varying intensities to support the two sheets' distinguishability in the CT measurement. The subsequently extracted surfaces from CT-scan data are used to create three-dimensional models for a numerical Transient Dynamic Analysis. Hereby, a harmonic force is applied to one sheet and the transferred energy is determined at the opposite side of the clinch point on the other sheet. The transmitted energy can be used as a quantitative measure for the joining quality. This setup is simulated by means of Finite-Element-Method and the specimens are investigated experimentally using a piezo actuator and a piezo sensor. The novelty of the results presented here is the completely non-destructive investigation of joint specimen by CT of similar materials with a contrast given foil in between the sheets and the subsequent TDA, which can easily detect difference between the specimens by evaluation of the energy dissipation of the joints. author: - first_name: D. full_name: Köhler, D. last_name: Köhler - first_name: B. full_name: Sadeghian, B. last_name: Sadeghian - first_name: J. full_name: Troschitz, J. last_name: Troschitz - first_name: R. full_name: Kupfer, R. last_name: Kupfer - first_name: M. full_name: Gude, M. last_name: Gude - first_name: A. full_name: Brosius, A. last_name: Brosius citation: ama: Köhler D, Sadeghian B, Troschitz J, Kupfer R, Gude M, Brosius A. Characterisation of lateral offsets in clinch points with computed tomography and transient dynamic analysis. Journal of Advanced Joining Processes. 2022;5:100089. doi:10.1016/j.jajp.2021.100089 apa: Köhler, D., Sadeghian, B., Troschitz, J., Kupfer, R., Gude, M., & Brosius, A. (2022). Characterisation of lateral offsets in clinch points with computed tomography and transient dynamic analysis. Journal of Advanced Joining Processes, 5, 100089. https://doi.org/10.1016/j.jajp.2021.100089 bibtex: '@article{Köhler_Sadeghian_Troschitz_Kupfer_Gude_Brosius_2022, title={Characterisation of lateral offsets in clinch points with computed tomography and transient dynamic analysis}, volume={5}, DOI={10.1016/j.jajp.2021.100089}, journal={Journal of Advanced Joining Processes}, author={Köhler, D. and Sadeghian, B. and Troschitz, J. and Kupfer, R. and Gude, M. and Brosius, A.}, year={2022}, pages={100089} }' chicago: 'Köhler, D., B. Sadeghian, J. Troschitz, R. Kupfer, M. Gude, and A. Brosius. “Characterisation of Lateral Offsets in Clinch Points with Computed Tomography and Transient Dynamic Analysis.” Journal of Advanced Joining Processes 5 (2022): 100089. https://doi.org/10.1016/j.jajp.2021.100089.' ieee: 'D. Köhler, B. Sadeghian, J. Troschitz, R. Kupfer, M. Gude, and A. Brosius, “Characterisation of lateral offsets in clinch points with computed tomography and transient dynamic analysis,” Journal of Advanced Joining Processes, vol. 5, p. 100089, 2022, doi: 10.1016/j.jajp.2021.100089.' mla: Köhler, D., et al. “Characterisation of Lateral Offsets in Clinch Points with Computed Tomography and Transient Dynamic Analysis.” Journal of Advanced Joining Processes, vol. 5, 2022, p. 100089, doi:10.1016/j.jajp.2021.100089. short: D. Köhler, B. Sadeghian, J. Troschitz, R. Kupfer, M. Gude, A. Brosius, Journal of Advanced Joining Processes 5 (2022) 100089. date_created: 2022-03-28T10:27:42Z date_updated: 2023-01-02T10:54:44Z department: - _id: '630' doi: 10.1016/j.jajp.2021.100089 intvolume: ' 5' language: - iso: eng page: '100089' project: - _id: '130' grant_number: '418701707' name: 'TRR 285: TRR 285' - _id: '133' name: 'TRR 285 - C: TRR 285 - Project Area C' - _id: '148' name: 'TRR 285 – C04: TRR 285 - Subproject C04' publication: Journal of Advanced Joining Processes status: public title: Characterisation of lateral offsets in clinch points with computed tomography and transient dynamic analysis type: journal_article user_id: '14931' volume: 5 year: '2022' ... --- _id: '30625' abstract: - lang: eng text: Continuous fiber reinforced thermoplastics (CFRT)/steel hybrid parts offer promising properties and possibilities, which can exceed the capabilities of both individual materials. In this case, the joining operation presents the main challenge. This paper studies the direct pin pressing where metallic pins with undercutting geometries, protruding from the metal component, are inserted into a locally infrared heated CFRT component. The aim is to investigate the joining process with a focus on the filling of the undercut features with matrix and fibers to create a primarily form-fitting joint. For good mechanical properties of the joint, it is crucial, that the undercutting features are filled and do not lead to significant deconsolidations. The pin structures are manufactured from 42CrMo4 steel on a cnc-lathe and are joined via welding with HCT600+Zn sheet metal. The CFRT samples are manufactured from polypropylene and approximately 45% vol. unidirectional glass fibers. In the scope of this study, different pin geometries are joined with varying process settings and micro sections of the joints are investigated via reflected light microscopy. It could be shown that the undercuts can be completely filled with matrix and fiber material using the described process route. Based on the optical investigations a suitable setting of joining parameters is defined and lap shear as well as cross head samples are manufactured and experimentally tested. It could be seen that independently from the pin geometry the lap shear strength was primarily limited due to shear failure of the pin structures and it is assumed that the base diameter and pin strength predominantly determine the joint strength. Cross head samples failed due to pin extraction. Here, a significant increase of the joint strength with undercutting features could be shown in comparison to cylindrical reference pins. author: - first_name: J. full_name: Popp, J. last_name: Popp - first_name: D. full_name: Drummer, D. last_name: Drummer citation: ama: Popp J, Drummer D. Joining of continuous fiber reinforced thermoplastic/steel hybrid parts via undercutting pin structures and infrared heating. Journal of Advanced Joining Processes. 2022;5:100084. doi:10.1016/j.jajp.2021.100084 apa: Popp, J., & Drummer, D. (2022). Joining of continuous fiber reinforced thermoplastic/steel hybrid parts via undercutting pin structures and infrared heating. Journal of Advanced Joining Processes, 5, 100084. https://doi.org/10.1016/j.jajp.2021.100084 bibtex: '@article{Popp_Drummer_2022, title={Joining of continuous fiber reinforced thermoplastic/steel hybrid parts via undercutting pin structures and infrared heating}, volume={5}, DOI={10.1016/j.jajp.2021.100084}, journal={Journal of Advanced Joining Processes}, author={Popp, J. and Drummer, D.}, year={2022}, pages={100084} }' chicago: 'Popp, J., and D. Drummer. “Joining of Continuous Fiber Reinforced Thermoplastic/Steel Hybrid Parts via Undercutting Pin Structures and Infrared Heating.” Journal of Advanced Joining Processes 5 (2022): 100084. https://doi.org/10.1016/j.jajp.2021.100084.' ieee: 'J. Popp and D. Drummer, “Joining of continuous fiber reinforced thermoplastic/steel hybrid parts via undercutting pin structures and infrared heating,” Journal of Advanced Joining Processes, vol. 5, p. 100084, 2022, doi: 10.1016/j.jajp.2021.100084.' mla: Popp, J., and D. Drummer. “Joining of Continuous Fiber Reinforced Thermoplastic/Steel Hybrid Parts via Undercutting Pin Structures and Infrared Heating.” Journal of Advanced Joining Processes, vol. 5, 2022, p. 100084, doi:10.1016/j.jajp.2021.100084. short: J. Popp, D. Drummer, Journal of Advanced Joining Processes 5 (2022) 100084. date_created: 2022-03-28T10:25:57Z date_updated: 2023-01-02T10:55:23Z department: - _id: '630' doi: 10.1016/j.jajp.2021.100084 intvolume: ' 5' language: - iso: eng page: '100084' project: - _id: '130' grant_number: '418701707' name: 'TRR 285: TRR 285' - _id: '133' name: 'TRR 285 - C: TRR 285 - Project Area C' - _id: '145' name: 'TRR 285 – C01: TRR 285 - Subproject C01' publication: Journal of Advanced Joining Processes status: public title: Joining of continuous fiber reinforced thermoplastic/steel hybrid parts via undercutting pin structures and infrared heating type: journal_article user_id: '14931' volume: 5 year: '2022' ... --- _id: '30624' abstract: - lang: eng text: In addition to brazing and welding processes, mechanical joining processes such as clinching are increasingly being used. Clinch joints offer an advantage over metallurgical joining processes by giving the possibility of joining different material combinations without typical drawbacks. Thereby clinching offers an enormous advantage for lightweight construction. An additional benefit is a great variability in the geometric shapes of the toolsets, which ensure optimum adaptation of the clinching process on variations of the joining elements such as e.g. the sheet thickness. However, the vast variability is also one of the major challenges regarding the prediction of the joint reliability. In the work presented, the effect of different toolset geometries was investigated with a particular focus on the interaction between geometrical features and deformation-induced microstructural changes. Light optical and electron microscopy techniques, as well as micro-hardness measurements, were performed. The results were evaluated and discussed concerning the material's deformation behavior, the change in geometrical shape and the microstructural evolution due to the different tool geometries. The findings point out the main influence factors regarding the mechanical properties in general and the fatigue behavior in particular. author: - first_name: L. full_name: Ewenz, L. last_name: Ewenz - first_name: M. full_name: Kuczyk, M. last_name: Kuczyk - first_name: M. full_name: Zimmermann, M. last_name: Zimmermann citation: ama: Ewenz L, Kuczyk M, Zimmermann M. Effect of the tool geometry on microstructure and geometrical features of clinched aluminum. Journal of Advanced Joining Processes. 2022;5. doi:10.1016/j.jajp.2021.100091 apa: Ewenz, L., Kuczyk, M., & Zimmermann, M. (2022). Effect of the tool geometry on microstructure and geometrical features of clinched aluminum. Journal of Advanced Joining Processes, 5. https://doi.org/10.1016/j.jajp.2021.100091 bibtex: '@article{Ewenz_Kuczyk_Zimmermann_2022, title={Effect of the tool geometry on microstructure and geometrical features of clinched aluminum}, volume={5}, DOI={10.1016/j.jajp.2021.100091}, journal={Journal of Advanced Joining Processes}, author={Ewenz, L. and Kuczyk, M. and Zimmermann, M.}, year={2022} }' chicago: Ewenz, L., M. Kuczyk, and M. Zimmermann. “Effect of the Tool Geometry on Microstructure and Geometrical Features of Clinched Aluminum.” Journal of Advanced Joining Processes 5 (2022). https://doi.org/10.1016/j.jajp.2021.100091. ieee: 'L. Ewenz, M. Kuczyk, and M. Zimmermann, “Effect of the tool geometry on microstructure and geometrical features of clinched aluminum,” Journal of Advanced Joining Processes, vol. 5, 2022, doi: 10.1016/j.jajp.2021.100091.' mla: Ewenz, L., et al. “Effect of the Tool Geometry on Microstructure and Geometrical Features of Clinched Aluminum.” Journal of Advanced Joining Processes, vol. 5, 2022, doi:10.1016/j.jajp.2021.100091. short: L. Ewenz, M. Kuczyk, M. Zimmermann, Journal of Advanced Joining Processes 5 (2022). date_created: 2022-03-28T10:24:28Z date_updated: 2023-01-02T10:54:16Z department: - _id: '630' doi: 10.1016/j.jajp.2021.100091 intvolume: ' 5' language: - iso: eng project: - _id: '130' grant_number: '418701707' name: 'TRR 285: TRR 285' - _id: '132' name: 'TRR 285 - B: TRR 285 - Project Area B' - _id: '141' name: 'TRR 285 – B02: TRR 285 - Subproject B02' publication: Journal of Advanced Joining Processes status: public title: Effect of the tool geometry on microstructure and geometrical features of clinched aluminum type: journal_article user_id: '14931' volume: 5 year: '2022' ... --- _id: '30622' author: - first_name: B. full_name: Gröger, B. last_name: Gröger - first_name: V. full_name: Würfel, V. last_name: Würfel - first_name: A. full_name: Hornig, A. last_name: Hornig - first_name: M. full_name: Gude, M. last_name: Gude citation: ama: Gröger B, Würfel V, Hornig A, Gude M. Forming process induced material structure of fibre-reinforced thermoplastics - Experimental and numerical investigation of a bladder-assisted moulding process. Journal of Advanced Joining Processes. 2022;5. doi:10.1016/j.jajp.2022.100100 apa: Gröger, B., Würfel, V., Hornig, A., & Gude, M. (2022). Forming process induced material structure of fibre-reinforced thermoplastics - Experimental and numerical investigation of a bladder-assisted moulding process. Journal of Advanced Joining Processes, 5. https://doi.org/10.1016/j.jajp.2022.100100 bibtex: '@article{Gröger_Würfel_Hornig_Gude_2022, title={Forming process induced material structure of fibre-reinforced thermoplastics - Experimental and numerical investigation of a bladder-assisted moulding process}, volume={5}, DOI={10.1016/j.jajp.2022.100100}, journal={Journal of Advanced Joining Processes}, author={Gröger, B. and Würfel, V. and Hornig, A. and Gude, M.}, year={2022} }' chicago: Gröger, B., V. Würfel, A. Hornig, and M. Gude. “Forming Process Induced Material Structure of Fibre-Reinforced Thermoplastics - Experimental and Numerical Investigation of a Bladder-Assisted Moulding Process.” Journal of Advanced Joining Processes 5 (2022). https://doi.org/10.1016/j.jajp.2022.100100. ieee: 'B. Gröger, V. Würfel, A. Hornig, and M. Gude, “Forming process induced material structure of fibre-reinforced thermoplastics - Experimental and numerical investigation of a bladder-assisted moulding process,” Journal of Advanced Joining Processes, vol. 5, 2022, doi: 10.1016/j.jajp.2022.100100.' mla: Gröger, B., et al. “Forming Process Induced Material Structure of Fibre-Reinforced Thermoplastics - Experimental and Numerical Investigation of a Bladder-Assisted Moulding Process.” Journal of Advanced Joining Processes, vol. 5, 2022, doi:10.1016/j.jajp.2022.100100. short: B. Gröger, V. Würfel, A. Hornig, M. Gude, Journal of Advanced Joining Processes 5 (2022). date_created: 2022-03-28T08:23:50Z date_updated: 2023-01-02T10:53:51Z department: - _id: '630' doi: 10.1016/j.jajp.2022.100100 intvolume: ' 5' language: - iso: eng project: - _id: '130' grant_number: '418701707' name: 'TRR 285: TRR 285' - _id: '131' name: 'TRR 285 - A: TRR 285 - Project Area A' - _id: '137' name: 'TRR 285 – A03: TRR 285 - Subproject A03' publication: Journal of Advanced Joining Processes status: public title: Forming process induced material structure of fibre-reinforced thermoplastics - Experimental and numerical investigation of a bladder-assisted moulding process type: journal_article user_id: '14931' volume: 5 year: '2022' ... --- _id: '30717' abstract: - lang: eng text: To achieve the climate objectives, various measures are taken to increase the efficiency of raw materials and energies used. A sector with a large proportion of the global consumption of resources is the mobility sector. To increase the efficiency in this field, large efforts are made to reduce the weight of moving masses. One approach is the use of multi-material systems, which utilises different materials and their specific properties depending on the local requirements. Multi-material systems consist often of materials which differ in strength and density, for example, high-strength steels, aluminium alloys or polymers. Additionally, such a system can utilise different geometries of the components to be joined, characterised for example by varying sheet thicknesses. A central challenge of producing these systems is the joining of the individual components. This requires robust joining processes capable of covering the entire spectrum of possible variants and is feasible for different physical properties of the materials. Since conventional joining processes are rather rigid and have difficulty reacting to changing process and disturbance variables, new joining processes are necessary. With the objective of being able to react versatile to varying parameters, a process combination consisting of a semi-tubular self-piercing riveting process and orbital forming process with adjustable tumbling kinematic is introduced. Due to the process combination of tumbling and self-piercing riveting, mutual influences of the two process components are analysed in regard to material flow and process forces. Further, the investigations show the influence of a varying tumbling angle on the joining process itself and how the characteristic properties undercut, rivet head end position and residual sheet thickness of the joint are affected. The material used for the joining partners is an aluminium alloy EN AW-6014 typical for multi-material systems in the automotive industry and the rivets are from type Rivset C produced by the Böllhoff company. author: - first_name: S. full_name: Wituschek, S. last_name: Wituschek - first_name: M. full_name: Lechner, M. last_name: Lechner citation: ama: Wituschek S, Lechner M. Investigation of the influence of the tumbling angle on a tumbling self-piercing riveting process. Production Engineering. Published online 2022. doi:10.1177/14644207221080068 apa: Wituschek, S., & Lechner, M. (2022). Investigation of the influence of the tumbling angle on a tumbling self-piercing riveting process. Production Engineering. https://doi.org/10.1177/14644207221080068 bibtex: '@article{Wituschek_Lechner_2022, title={Investigation of the influence of the tumbling angle on a tumbling self-piercing riveting process}, DOI={10.1177/14644207221080068}, journal={Production Engineering}, author={Wituschek, S. and Lechner, M.}, year={2022} }' chicago: Wituschek, S., and M. Lechner. “Investigation of the Influence of the Tumbling Angle on a Tumbling Self-Piercing Riveting Process.” Production Engineering, 2022. https://doi.org/10.1177/14644207221080068. ieee: 'S. Wituschek and M. Lechner, “Investigation of the influence of the tumbling angle on a tumbling self-piercing riveting process,” Production Engineering, 2022, doi: 10.1177/14644207221080068.' mla: Wituschek, S., and M. Lechner. “Investigation of the Influence of the Tumbling Angle on a Tumbling Self-Piercing Riveting Process.” Production Engineering, 2022, doi:10.1177/14644207221080068. short: S. Wituschek, M. Lechner, Production Engineering (2022). date_created: 2022-03-29T10:33:15Z date_updated: 2023-01-02T10:56:48Z department: - _id: '630' doi: 10.1177/14644207221080068 language: - iso: eng project: - _id: '130' grant_number: '418701707' name: 'TRR 285: TRR 285' - _id: '133' name: 'TRR 285 - C: TRR 285 - Project Area C' - _id: '146' name: 'TRR 285 – C02: TRR 285 - Subproject C02' publication: Production Engineering status: public title: Investigation of the influence of the tumbling angle on a tumbling self-piercing riveting process type: journal_article user_id: '14931' year: '2022' ... --- _id: '30629' abstract: - lang: eng text: Clinching is a joining process that is becoming more and more important in industry due to the increasing use of multi-material designs. Despite the already widespread use of the process, there is still a need for research to understand the mechanisms and design of clinched joints. In contrast to the tool parameters, process and material disturbances have not yet been investigated to a relatively large extent. However, these also have a great influence on the properties and applicability of clinching. The effect of process disturbances on the clinched joint are investigated with numerical and experimental methods. The investigated process variations are the history of the sheets using the pre-hardening of the material, different sheet thicknesses, sheet arrangements and punch strokes. For the consideration of the material history, a specimen geometry for pre-stretching specimens in uniaxial tension is used, from which the pre-stretched secondary specimens are taken. A finite element model is set up for the numerical investigations. Suitable clinching tools are selected. With the simulation, selected process influences can be examined. The effort of the numerical investigations is considerably reduced with the help of a statistical experimental design according to Taguchi. To confirm the simulation results, experimental investigations of the clinch point geometry by using micrographs and the shear strength of the clinched joint are performed. The analysis of the influence of difference disturbance factors on the clinching process demonstrate the importance of the holistic view of the clinching process. author: - first_name: C. full_name: Steinfelder, C. last_name: Steinfelder - first_name: J. full_name: Acksteiner, J. last_name: Acksteiner - first_name: C. full_name: Guilleaume, C. last_name: Guilleaume - first_name: A. full_name: Brosius, A. last_name: Brosius citation: ama: Steinfelder C, Acksteiner J, Guilleaume C, Brosius A. Analysis of the interactions between joint and component properties during clinching. Production Engineering. Published online 2022. doi:10.1007/s11740-021-01102-x apa: Steinfelder, C., Acksteiner, J., Guilleaume, C., & Brosius, A. (2022). Analysis of the interactions between joint and component properties during clinching. Production Engineering. https://doi.org/10.1007/s11740-021-01102-x bibtex: '@article{Steinfelder_Acksteiner_Guilleaume_Brosius_2022, title={Analysis of the interactions between joint and component properties during clinching}, DOI={10.1007/s11740-021-01102-x}, journal={Production Engineering}, author={Steinfelder, C. and Acksteiner, J. and Guilleaume, C. and Brosius, A.}, year={2022} }' chicago: Steinfelder, C., J. Acksteiner, C. Guilleaume, and A. Brosius. “Analysis of the Interactions between Joint and Component Properties during Clinching.” Production Engineering, 2022. https://doi.org/10.1007/s11740-021-01102-x. ieee: 'C. Steinfelder, J. Acksteiner, C. Guilleaume, and A. Brosius, “Analysis of the interactions between joint and component properties during clinching,” Production Engineering, 2022, doi: 10.1007/s11740-021-01102-x.' mla: Steinfelder, C., et al. “Analysis of the Interactions between Joint and Component Properties during Clinching.” Production Engineering, 2022, doi:10.1007/s11740-021-01102-x. short: C. Steinfelder, J. Acksteiner, C. Guilleaume, A. Brosius, Production Engineering (2022). date_created: 2022-03-28T10:32:25Z date_updated: 2023-01-02T10:55:50Z department: - _id: '630' doi: 10.1007/s11740-021-01102-x language: - iso: eng project: - _id: '130' grant_number: '418701707' name: 'TRR 285: TRR 285' - _id: '132' name: 'TRR 285 - B: TRR 285 - Project Area B' - _id: '140' name: 'TRR 285 – B01: TRR 285 - Subproject B01' publication: Production Engineering status: public title: Analysis of the interactions between joint and component properties during clinching type: journal_article user_id: '14931' year: '2022' ... --- _id: '30640' abstract: - lang: eng text: Surface determination is an essential step of the measurement process in industrial X-ray computed tomography (XCT). The starting point of the surface determination process step is a single grey value threshold within a voxel volume in conventional surface determination methods. However, this value is not always found in the reconstructed volume in the local environment of the surface of the measurement object due to various artefacts, so that none or incorrect surfaces are determined. In order to find surfaces independently of a single grey value, a three-dimensional approach of the initial contour determination based on a Prewitt edge detection algorithm is presented in this work. This method is applied to different test specimens and specimen compositions which, due to their material or material constellation, their geometric properties with regard to surfaces and interfaces as well as their calibrated size and length dimensions, embody relevant properties in the examination of joining connections. It is shown that by using the surface determination method in the measurement process, both a higher metrological structure resolution and interface structure resolution can be achieved. Surface artefacts can be reduced by the application and it is also an approach to improved surface finding for the multi-material components that are challenging for XCT. author: - first_name: M. full_name: Busch, M. last_name: Busch - first_name: T. full_name: Hausotte, T. last_name: Hausotte citation: ama: Busch M, Hausotte T. Application of an edge detection algorithm for surface determination in industrial X-ray computed tomography. Production Engineering. Published online 2022. doi:10.1007/s11740-021-01100-z apa: Busch, M., & Hausotte, T. (2022). Application of an edge detection algorithm for surface determination in industrial X-ray computed tomography. Production Engineering. https://doi.org/10.1007/s11740-021-01100-z bibtex: '@article{Busch_Hausotte_2022, title={Application of an edge detection algorithm for surface determination in industrial X-ray computed tomography}, DOI={10.1007/s11740-021-01100-z}, journal={Production Engineering}, author={Busch, M. and Hausotte, T.}, year={2022} }' chicago: Busch, M., and T. Hausotte. “Application of an Edge Detection Algorithm for Surface Determination in Industrial X-Ray Computed Tomography.” Production Engineering, 2022. https://doi.org/10.1007/s11740-021-01100-z. ieee: 'M. Busch and T. Hausotte, “Application of an edge detection algorithm for surface determination in industrial X-ray computed tomography,” Production Engineering, 2022, doi: 10.1007/s11740-021-01100-z.' mla: Busch, M., and T. Hausotte. “Application of an Edge Detection Algorithm for Surface Determination in Industrial X-Ray Computed Tomography.” Production Engineering, 2022, doi:10.1007/s11740-021-01100-z. short: M. Busch, T. Hausotte, Production Engineering (2022). date_created: 2022-03-28T12:15:58Z date_updated: 2023-01-02T10:57:15Z department: - _id: '630' doi: 10.1007/s11740-021-01100-z language: - iso: eng project: - _id: '130' grant_number: '418701707' name: 'TRR 285: TRR 285' - _id: '133' name: 'TRR 285 - C: TRR 285 - Project Area C' - _id: '149' name: 'TRR 285 – C05: TRR 285 - Subproject C05' publication: Production Engineering status: public title: Application of an edge detection algorithm for surface determination in industrial X-ray computed tomography type: journal_article user_id: '14931' year: '2022' ... --- _id: '30628' abstract: - lang: eng text: The work carried out is based on the thesis properties of clinched joints are determined by the proportions of binding mechanisms form-closure, force-closure and material-closure. To describe the acting binding mechanisms and thus to derive the joint properties, detailed knowledge of the local effect of the individual binding mechanisms is necessary to ensure their targeted adjustment by the joining process. The targeted setting of different proportions of the binding mechanisms is achieved firstly via tool geometry and secondly via surface condition of the joined parts. An introduced form-closure component can be quantified by metallographic cross section with subsequent measurement of the quality-determining parameters such as undercut, penetration depth and neck thickness. To qualify the force-closure component, a torsional load can be applied mechanically at rotationally symmetrical clinch joints. This also allows the influence of different surface conditions on the tribological system to be quantified. Measurement of electrical resistance can reveal the binding mechanisms of force- and material-closure. These investigations are carried out on an aluminum joining part combination of the same type. As a result of these investigations, the clinched joints can be designed according to the load occurring in the later life cycle in the form of an optimum and compromise variant with regard to minimum loads to be transmitted mechanically, electrically with regard to low resistance or manufacturing with minimum energy input. author: - first_name: J. full_name: Kalich, J. last_name: Kalich - first_name: U. full_name: Füssel, U. last_name: Füssel citation: ama: Kalich J, Füssel U. Design of clinched joints on the basis of binding mechanisms. Production Engineering. Published online 2022. doi:10.1007/s11740-022-01108-z apa: Kalich, J., & Füssel, U. (2022). Design of clinched joints on the basis of binding mechanisms. Production Engineering. https://doi.org/10.1007/s11740-022-01108-z bibtex: '@article{Kalich_Füssel_2022, title={Design of clinched joints on the basis of binding mechanisms}, DOI={10.1007/s11740-022-01108-z}, journal={Production Engineering}, author={Kalich, J. and Füssel, U.}, year={2022} }' chicago: Kalich, J., and U. Füssel. “Design of Clinched Joints on the Basis of Binding Mechanisms.” Production Engineering, 2022. https://doi.org/10.1007/s11740-022-01108-z. ieee: 'J. Kalich and U. Füssel, “Design of clinched joints on the basis of binding mechanisms,” Production Engineering, 2022, doi: 10.1007/s11740-022-01108-z.' mla: Kalich, J., and U. Füssel. “Design of Clinched Joints on the Basis of Binding Mechanisms.” Production Engineering, 2022, doi:10.1007/s11740-022-01108-z. short: J. Kalich, U. Füssel, Production Engineering (2022). date_created: 2022-03-28T10:30:59Z date_updated: 2023-01-02T10:56:10Z department: - _id: '630' doi: 10.1007/s11740-022-01108-z language: - iso: eng project: - _id: '130' grant_number: '418701707' name: 'TRR 285: TRR 285' - _id: '131' name: 'TRR 285 - A: TRR 285 - Project Area A' - _id: '138' name: 'TRR 285 – A04: TRR 285 - Subproject A04' publication: Production Engineering status: public title: Design of clinched joints on the basis of binding mechanisms type: journal_article user_id: '14931' year: '2022' ... --- _id: '30627' abstract: - lang: eng text: Additive plasticity in the logarithmic strain space is compared to multiplicative plasticity for various loading cases including coaxial and non-coaxial plastic deformations. Even though both finite plasticity approaches are based on total Lagrangian descriptions, the former is popular due to its inherent similarity to the infinitesimal theory and its easy extensibility. However, since its introduction several limitations of additive plasticity in the logarithmic strain space have been discovered. In this study, these problems such as stress rotation and softening are considered, revealing that fundamental differences compared to multiplicative plasticity occur for non-coaxial plastic deformations. We focus in particular on the observed softer response of the additive based approach, which is analysed in depth using three numerical examples including two well-known benchmarks for finite plasticity. By means of these finite element simulations the softer and possibly even localising response of additive plasticity in the logarithmic strain space is confirmed. author: - first_name: J. full_name: Friedlein, J. last_name: Friedlein - first_name: J. full_name: Mergheim, J. last_name: Mergheim - first_name: P. full_name: Steinmann, P. last_name: Steinmann citation: ama: Friedlein J, Mergheim J, Steinmann P. Observations on additive plasticity in the logarithmic strain space at excessive strains. International Journal of Solids and Structures. 2022;239-240:111416. doi:10.1016/j.ijsolstr.2021.111416 apa: Friedlein, J., Mergheim, J., & Steinmann, P. (2022). Observations on additive plasticity in the logarithmic strain space at excessive strains. International Journal of Solids and Structures, 239–240, 111416. https://doi.org/10.1016/j.ijsolstr.2021.111416 bibtex: '@article{Friedlein_Mergheim_Steinmann_2022, title={Observations on additive plasticity in the logarithmic strain space at excessive strains}, volume={239–240}, DOI={10.1016/j.ijsolstr.2021.111416}, journal={International Journal of Solids and Structures}, author={Friedlein, J. and Mergheim, J. and Steinmann, P.}, year={2022}, pages={111416} }' chicago: 'Friedlein, J., J. Mergheim, and P. Steinmann. “Observations on Additive Plasticity in the Logarithmic Strain Space at Excessive Strains.” International Journal of Solids and Structures 239–240 (2022): 111416. https://doi.org/10.1016/j.ijsolstr.2021.111416.' ieee: 'J. Friedlein, J. Mergheim, and P. Steinmann, “Observations on additive plasticity in the logarithmic strain space at excessive strains,” International Journal of Solids and Structures, vol. 239–240, p. 111416, 2022, doi: 10.1016/j.ijsolstr.2021.111416.' mla: Friedlein, J., et al. “Observations on Additive Plasticity in the Logarithmic Strain Space at Excessive Strains.” International Journal of Solids and Structures, vol. 239–240, 2022, p. 111416, doi:10.1016/j.ijsolstr.2021.111416. short: J. Friedlein, J. Mergheim, P. Steinmann, International Journal of Solids and Structures 239–240 (2022) 111416. date_created: 2022-03-28T10:29:47Z date_updated: 2023-01-02T10:56:30Z department: - _id: '630' doi: 10.1016/j.ijsolstr.2021.111416 language: - iso: eng page: '111416' project: - _id: '130' grant_number: '418701707' name: 'TRR 285: TRR 285' - _id: '131' name: 'TRR 285 - A: TRR 285 - Project Area A' - _id: '139' name: 'TRR 285 – A05: TRR 285 - Subproject A05' publication: International Journal of Solids and Structures status: public title: Observations on additive plasticity in the logarithmic strain space at excessive strains type: journal_article user_id: '14931' volume: 239-240 year: '2022' ... --- _id: '34253' abstract: - lang: eng text: "Lightweight construction has increasingly become the focus of scientific research in recent years, not least due to\r\nthe constantly increasing fuel price, which is a key factor in the economic viability of many companies. In this\r\nrespect, the use of hybrid structures, made of dissimilar materials offers many advantages. However, such hybrid\r\nstructures often have undesirable side effects. For example, brittle intermetallic phases are formed when\r\naluminum and steel are welded. Clinching as a mechanical joining process does not produce such intermetallic\r\nphases since the connection is realized through form and force closure. In this process, a punch passes through\r\ntwo or more sheets and forms them into a permanent joint in a die. In the present work, the corrosion phenomena\r\nof an aluminum-steel clinched joint have been investigated by both experiments and numerical simulations in\r\norder to explain the superior fatigue behavior of pre-corroded joints. Therefore, the clinched joints have been\r\ncorroded by a three-week salt-spray test. In addition, the electric potential and the von Mises stress are calculated\r\nunder the assumption of a static loading. The results of both experiments and numerical simulations can explain\r\nthe improvement in the fatigue behavior of the corroded specimens. This phenomenon can be attributed to the\r\naccumulation of corrosion products in small gaps between the joined metal sheets." article_number: '100130' author: - first_name: Sven full_name: Harzheim, Sven last_name: Harzheim - first_name: Lars full_name: Ewenz, Lars last_name: Ewenz - first_name: Martina full_name: Zimmermann, Martina last_name: Zimmermann - first_name: Thomas full_name: Wallmersperger, Thomas last_name: Wallmersperger citation: ama: 'Harzheim S, Ewenz L, Zimmermann M, Wallmersperger T. Corrosion Phenomena and Fatigue Behavior of Clinched Joints: Numerical and Experimental Investigations. Journal of Advanced Joining Processes. 2022;6. doi:10.1016/j.jajp.2022.100130' apa: 'Harzheim, S., Ewenz, L., Zimmermann, M., & Wallmersperger, T. (2022). Corrosion Phenomena and Fatigue Behavior of Clinched Joints: Numerical and Experimental Investigations. Journal of Advanced Joining Processes, 6, Article 100130. https://doi.org/10.1016/j.jajp.2022.100130' bibtex: '@article{Harzheim_Ewenz_Zimmermann_Wallmersperger_2022, title={Corrosion Phenomena and Fatigue Behavior of Clinched Joints: Numerical and Experimental Investigations}, volume={6}, DOI={10.1016/j.jajp.2022.100130}, number={100130}, journal={Journal of Advanced Joining Processes}, publisher={Elsevier BV}, author={Harzheim, Sven and Ewenz, Lars and Zimmermann, Martina and Wallmersperger, Thomas}, year={2022} }' chicago: 'Harzheim, Sven, Lars Ewenz, Martina Zimmermann, and Thomas Wallmersperger. “Corrosion Phenomena and Fatigue Behavior of Clinched Joints: Numerical and Experimental Investigations.” Journal of Advanced Joining Processes 6 (2022). https://doi.org/10.1016/j.jajp.2022.100130.' ieee: 'S. Harzheim, L. Ewenz, M. Zimmermann, and T. Wallmersperger, “Corrosion Phenomena and Fatigue Behavior of Clinched Joints: Numerical and Experimental Investigations,” Journal of Advanced Joining Processes, vol. 6, Art. no. 100130, 2022, doi: 10.1016/j.jajp.2022.100130.' mla: 'Harzheim, Sven, et al. “Corrosion Phenomena and Fatigue Behavior of Clinched Joints: Numerical and Experimental Investigations.” Journal of Advanced Joining Processes, vol. 6, 100130, Elsevier BV, 2022, doi:10.1016/j.jajp.2022.100130.' short: S. Harzheim, L. Ewenz, M. Zimmermann, T. Wallmersperger, Journal of Advanced Joining Processes 6 (2022). date_created: 2022-12-06T19:29:59Z date_updated: 2023-01-02T11:04:06Z department: - _id: '630' doi: 10.1016/j.jajp.2022.100130 intvolume: ' 6' keyword: - Mechanical Engineering - Mechanics of Materials - Engineering (miscellaneous) - Chemical Engineering (miscellaneous) language: - iso: eng main_file_link: - open_access: '1' url: https://www.sciencedirect.com/science/article/pii/S2666330922000346?via%3Dihub oa: '1' project: - _id: '130' grant_number: '418701707' name: 'TRR 285: TRR 285' - _id: '132' name: 'TRR 285 - B: TRR 285 - Project Area B' - _id: '141' name: 'TRR 285 – B02: TRR 285 - Subproject B02' - _id: '142' name: 'TRR 285 – B03: TRR 285 - Subproject B03' publication: Journal of Advanced Joining Processes publication_identifier: issn: - 2666-3309 publication_status: published publisher: Elsevier BV status: public title: 'Corrosion Phenomena and Fatigue Behavior of Clinched Joints: Numerical and Experimental Investigations' type: journal_article user_id: '14931' volume: 6 year: '2022' ... --- _id: '34252' abstract: - lang: eng text: Clinching is the manufacturing process of joining two or more metal sheets under high plastic deformation by form and force closure without thermal support and auxiliary parts. Clinch connections are applicable to difficult-to-join hybrid material combinations, such as steel and aluminum. Therefore, this technology is interesting for the application of AISI 304 components, as this material is widely used as a highly formable sheet material. A characteristic feature of AISI 304 is its metastability, i.e., the face-centered cubic (fcc) γ-austenite can transform into a significantly stronger body-centered cubic (bcc) α’-martensite under plastic deformation. This work investigates the effect of heat treatment—a process that involves the formation of an oxidation layer on the sheet surface—on the forming process during joining and the resulting mechanical properties of clinch joints made from AISI 304. For this purpose, different joints made from non-heat treated and heat-treated sheets were examined using classical metallography and advanced SEM techniques, accompanied by further investigations, such as hardness and feritscope measurements. The shear tensile strength was determined, and the fracture behavior of the samples was investigated. Clear influences of heat-treatment-induced surface roughness on the joint geometry and strength were observed. article_number: '1514' author: - first_name: André Till full_name: Zeuner, André Till last_name: Zeuner - first_name: Lars full_name: Ewenz, Lars last_name: Ewenz - first_name: Jan full_name: Kalich, Jan last_name: Kalich - first_name: Sebastian full_name: Schöne, Sebastian last_name: Schöne - first_name: Uwe full_name: Füssel, Uwe last_name: Füssel - first_name: Martina full_name: Zimmermann, Martina last_name: Zimmermann citation: ama: Zeuner AT, Ewenz L, Kalich J, Schöne S, Füssel U, Zimmermann M. The Influence of Heat Treatment on the Microstructure, Surface Roughness and Shear Tensile Strength of AISI 304 Clinch Joints. Metals. 2022;12(9). doi:10.3390/met12091514 apa: Zeuner, A. T., Ewenz, L., Kalich, J., Schöne, S., Füssel, U., & Zimmermann, M. (2022). The Influence of Heat Treatment on the Microstructure, Surface Roughness and Shear Tensile Strength of AISI 304 Clinch Joints. Metals, 12(9), Article 1514. https://doi.org/10.3390/met12091514 bibtex: '@article{Zeuner_Ewenz_Kalich_Schöne_Füssel_Zimmermann_2022, title={The Influence of Heat Treatment on the Microstructure, Surface Roughness and Shear Tensile Strength of AISI 304 Clinch Joints}, volume={12}, DOI={10.3390/met12091514}, number={91514}, journal={Metals}, publisher={MDPI AG}, author={Zeuner, André Till and Ewenz, Lars and Kalich, Jan and Schöne, Sebastian and Füssel, Uwe and Zimmermann, Martina}, year={2022} }' chicago: Zeuner, André Till, Lars Ewenz, Jan Kalich, Sebastian Schöne, Uwe Füssel, and Martina Zimmermann. “The Influence of Heat Treatment on the Microstructure, Surface Roughness and Shear Tensile Strength of AISI 304 Clinch Joints.” Metals 12, no. 9 (2022). https://doi.org/10.3390/met12091514. ieee: 'A. T. Zeuner, L. Ewenz, J. Kalich, S. Schöne, U. Füssel, and M. Zimmermann, “The Influence of Heat Treatment on the Microstructure, Surface Roughness and Shear Tensile Strength of AISI 304 Clinch Joints,” Metals, vol. 12, no. 9, Art. no. 1514, 2022, doi: 10.3390/met12091514.' mla: Zeuner, André Till, et al. “The Influence of Heat Treatment on the Microstructure, Surface Roughness and Shear Tensile Strength of AISI 304 Clinch Joints.” Metals, vol. 12, no. 9, 1514, MDPI AG, 2022, doi:10.3390/met12091514. short: A.T. Zeuner, L. Ewenz, J. Kalich, S. Schöne, U. Füssel, M. Zimmermann, Metals 12 (2022). date_created: 2022-12-06T19:25:49Z date_updated: 2023-01-02T11:04:26Z department: - _id: '630' doi: 10.3390/met12091514 intvolume: ' 12' issue: '9' keyword: - General Materials Science - Metals and Alloys language: - iso: eng main_file_link: - open_access: '1' url: https://www.mdpi.com/2075-4701/12/9/1514 oa: '1' project: - _id: '130' grant_number: '418701707' name: 'TRR 285: TRR 285' - _id: '131' name: 'TRR 285 - A: TRR 285 - Project Area A' - _id: '138' name: 'TRR 285 – A04: TRR 285 - Subproject A04' - _id: '132' name: 'TRR 285 - B: TRR 285 - Project Area B' - _id: '141' name: 'TRR 285 – B02: TRR 285 - Subproject B02' publication: Metals publication_identifier: issn: - 2075-4701 publication_status: published publisher: MDPI AG status: public title: The Influence of Heat Treatment on the Microstructure, Surface Roughness and Shear Tensile Strength of AISI 304 Clinch Joints type: journal_article user_id: '14931' volume: 12 year: '2022' ... --- _id: '34249' abstract: - lang: eng text: The trend towards lightweight design, driven by increasingly stringent emission targets, poses challenges to conventional joining processes due to the different mechanical properties of the joining partners used to manufacture multi-material systems. For this reason, new versatile joining processes are in demand for joining dissimilar materials. In this regard, pin joining with cold extruded pin structures is a relatively new, two-stage joining process for joining materials such as high-strength steel and aluminium as well as steel and fibre-reinforced plastic to multi-material systems, without the need for auxiliary elements. Due to the novelty of the process, there are currently only a few studies on the robustness of this joining process available. Thus, limited statements on the stability of the joining process considering uncertain process conditions, such as varying material properties or friction values, can be provided. Motivated by this, the presented work investigates the influence of different uncertain process parameters on the pin extrusion as well as on the joining process itself, carrying out a systematic robustness analysis. Therefore, the methodical approach covers the complete process chain of pin joining, including the load-bearing capacity of the joint by means of numerical simulation and data-driven methods. Thereby, a deeper understanding of the pin joining process is generated and the versatility of the novel joining process is increased. Additionally, the provision of manufacturing recommendations for the forming of pin joints leads to a significant decrease in the failure probability caused by ploughing or buckling effects. article_number: '122' author: - first_name: David full_name: Römisch, David last_name: Römisch - first_name: Christoph full_name: Zirngibl, Christoph last_name: Zirngibl - first_name: Benjamin full_name: Schleich, Benjamin last_name: Schleich - first_name: Sandro full_name: Wartzack, Sandro last_name: Wartzack - first_name: Marion full_name: Merklein, Marion last_name: Merklein citation: ama: Römisch D, Zirngibl C, Schleich B, Wartzack S, Merklein M. Robustness Analysis of Pin Joining. Journal of Manufacturing and Materials Processing. 2022;6(5). doi:10.3390/jmmp6050122 apa: Römisch, D., Zirngibl, C., Schleich, B., Wartzack, S., & Merklein, M. (2022). Robustness Analysis of Pin Joining. Journal of Manufacturing and Materials Processing, 6(5), Article 122. https://doi.org/10.3390/jmmp6050122 bibtex: '@article{Römisch_Zirngibl_Schleich_Wartzack_Merklein_2022, title={Robustness Analysis of Pin Joining}, volume={6}, DOI={10.3390/jmmp6050122}, number={5122}, journal={Journal of Manufacturing and Materials Processing}, publisher={MDPI AG}, author={Römisch, David and Zirngibl, Christoph and Schleich, Benjamin and Wartzack, Sandro and Merklein, Marion}, year={2022} }' chicago: Römisch, David, Christoph Zirngibl, Benjamin Schleich, Sandro Wartzack, and Marion Merklein. “Robustness Analysis of Pin Joining.” Journal of Manufacturing and Materials Processing 6, no. 5 (2022). https://doi.org/10.3390/jmmp6050122. ieee: 'D. Römisch, C. Zirngibl, B. Schleich, S. Wartzack, and M. Merklein, “Robustness Analysis of Pin Joining,” Journal of Manufacturing and Materials Processing, vol. 6, no. 5, Art. no. 122, 2022, doi: 10.3390/jmmp6050122.' mla: Römisch, David, et al. “Robustness Analysis of Pin Joining.” Journal of Manufacturing and Materials Processing, vol. 6, no. 5, 122, MDPI AG, 2022, doi:10.3390/jmmp6050122. short: D. Römisch, C. Zirngibl, B. Schleich, S. Wartzack, M. Merklein, Journal of Manufacturing and Materials Processing 6 (2022). date_created: 2022-12-06T19:03:30Z date_updated: 2023-01-02T11:01:05Z department: - _id: '630' doi: 10.3390/jmmp6050122 intvolume: ' 6' issue: '5' keyword: - Industrial and Manufacturing Engineering - Mechanical Engineering - Mechanics of Materials language: - iso: eng main_file_link: - open_access: '1' url: https://www.mdpi.com/2504-4494/6/5/122 oa: '1' project: - _id: '130' grant_number: '418701707' name: 'TRR 285: TRR 285' - _id: '132' name: 'TRR 285 - B: TRR 285 - Project Area B' - _id: '144' name: 'TRR 285 – B05: TRR 285 - Subproject B05' - _id: '133' name: 'TRR 285 - C: TRR 285 - Project Area C' - _id: '145' name: 'TRR 285 – C01: TRR 285 - Subproject C01' publication: Journal of Manufacturing and Materials Processing publication_identifier: issn: - 2504-4494 publication_status: published publisher: MDPI AG status: public title: Robustness Analysis of Pin Joining type: journal_article user_id: '14931' volume: 6 year: '2022' ... --- _id: '34255' abstract: - lang: eng text: Deformation of continuous fibre reinforced plastics during thermally-assisted forming or joining processes leads to a change of the initial material structure. The load behaviour of composite parts strongly depends on the resultant material structure. The prediction of this material structure is a challenging task and requires a deep knowledge of the material behaviour above melting temperature and the occurring complex forming phenomena. Through this knowledge, the optimisation of manufacturing parameters for a more efficient and reproducible process can be enabled and are in the focus of many investigations. In the present paper, a simplified pultrusion test rig is developed and presented to investigate the deformation behaviour of a thermoplastic semi-finished fiber product in a forming element. Therefore, different process parameters, like forming element temperature, pulling velocity as well as the forming element geometry, are varied. The deformation behaviour in the forming zone of the thermoplastic preimpregnated continuous glass fibre-reinforced material is investigated by computed tomography and the resultant pulling forces are measured. The results clearly show the correlation between the forming element temperature and the resulting forces due to a change in the viscosity of the thermoplastic matrix and the resulting fiber matrix interaction. In addition, the evaluation of the measurement data shows which forming forces are required to change the shape of the thermoplastic unidirectional material with a rectangular cross-section to a round one. article_number: '146' author: - first_name: Andreas full_name: Borowski, Andreas last_name: Borowski - first_name: Benjamin full_name: Gröger, Benjamin last_name: Gröger - first_name: René full_name: Füßel, René last_name: Füßel - first_name: Maik full_name: Gude, Maik last_name: Gude citation: ama: Borowski A, Gröger B, Füßel R, Gude M. Characterisation of Fibre Bundle Deformation Behaviour—Test Rig, Results and Conclusions. Journal of Manufacturing and Materials Processing. 2022;6(6). doi:10.3390/jmmp6060146 apa: Borowski, A., Gröger, B., Füßel, R., & Gude, M. (2022). Characterisation of Fibre Bundle Deformation Behaviour—Test Rig, Results and Conclusions. Journal of Manufacturing and Materials Processing, 6(6), Article 146. https://doi.org/10.3390/jmmp6060146 bibtex: '@article{Borowski_Gröger_Füßel_Gude_2022, title={Characterisation of Fibre Bundle Deformation Behaviour—Test Rig, Results and Conclusions}, volume={6}, DOI={10.3390/jmmp6060146}, number={6146}, journal={Journal of Manufacturing and Materials Processing}, publisher={MDPI AG}, author={Borowski, Andreas and Gröger, Benjamin and Füßel, René and Gude, Maik}, year={2022} }' chicago: Borowski, Andreas, Benjamin Gröger, René Füßel, and Maik Gude. “Characterisation of Fibre Bundle Deformation Behaviour—Test Rig, Results and Conclusions.” Journal of Manufacturing and Materials Processing 6, no. 6 (2022). https://doi.org/10.3390/jmmp6060146. ieee: 'A. Borowski, B. Gröger, R. Füßel, and M. Gude, “Characterisation of Fibre Bundle Deformation Behaviour—Test Rig, Results and Conclusions,” Journal of Manufacturing and Materials Processing, vol. 6, no. 6, Art. no. 146, 2022, doi: 10.3390/jmmp6060146.' mla: Borowski, Andreas, et al. “Characterisation of Fibre Bundle Deformation Behaviour—Test Rig, Results and Conclusions.” Journal of Manufacturing and Materials Processing, vol. 6, no. 6, 146, MDPI AG, 2022, doi:10.3390/jmmp6060146. short: A. Borowski, B. Gröger, R. Füßel, M. Gude, Journal of Manufacturing and Materials Processing 6 (2022). date_created: 2022-12-06T20:38:11Z date_updated: 2023-01-02T11:05:02Z department: - _id: '630' doi: 10.3390/jmmp6060146 intvolume: ' 6' issue: '6' keyword: - Industrial and Manufacturing Engineering - Mechanical Engineering - Mechanics of Materials language: - iso: eng main_file_link: - open_access: '1' url: https://www.mdpi.com/2504-4494/6/6/146 oa: '1' project: - _id: '130' grant_number: '418701707' name: 'TRR 285: TRR 285' - _id: '131' name: 'TRR 285 - A: TRR 285 - Project Area A' - _id: '137' name: 'TRR 285 – A03: TRR 285 - Subproject A03' publication: Journal of Manufacturing and Materials Processing publication_identifier: issn: - 2504-4494 publication_status: published publisher: MDPI AG status: public title: Characterisation of Fibre Bundle Deformation Behaviour—Test Rig, Results and Conclusions type: journal_article user_id: '14931' volume: 6 year: '2022' ... --- _id: '34248' abstract: - lang: eng text: Pin extrusion is a common process to realise pin structures in different geometrical dimensions for a subsequent joining operation. Nevertheless, the process of pin extrusion offers process limits regarding sheet thinning as a consequence of the punch penetration depth into the sheet. Thereby, cracks at the residual sheet thickness can occur during strength tests, resulting in a failure of the complete joint due to severe thinning. Therefore, measures have to be taken into account to reduce the thinning. One possibility is the application of orbital formed tailored blanks with a local material pre-distribution, which allows a higher sheet thickness in the desired area. Within this contribution, the novel approach of a process combination of orbital forming and pin extrusion is investigated. To reveal the potential of a local material pre-distribution, conventional specimens are compared with previously orbital formed components. Relevant parameters such as the residual sheet thickness, the pin height as well as the average hardness values are compared. The results show a significant positive influence of a local material pre-distribution on the residual sheet thickness as well as the resulting pin height. Furthermore, the strain hardening during orbital forming can be seen as an additional advantage. To conclude the results, the process limits of conventional pin extrusion can be expanded significantly by the application of specimens with a local material pre-distribution. article_number: '127' author: - first_name: David full_name: Römisch, David last_name: Römisch - first_name: Andreas full_name: Hetzel, Andreas last_name: Hetzel - first_name: Simon full_name: Wituschek, Simon last_name: Wituschek - first_name: Michael full_name: Lechner, Michael last_name: Lechner - first_name: Marion full_name: Merklein, Marion last_name: Merklein citation: ama: Römisch D, Hetzel A, Wituschek S, Lechner M, Merklein M. Pin Extrusion for Mechanical Joining from Orbital Formed Tailored Blanks with Local Material Pre-Distribution. Journal of Manufacturing and Materials Processing. 2022;6(6). doi:10.3390/jmmp6060127 apa: Römisch, D., Hetzel, A., Wituschek, S., Lechner, M., & Merklein, M. (2022). Pin Extrusion for Mechanical Joining from Orbital Formed Tailored Blanks with Local Material Pre-Distribution. Journal of Manufacturing and Materials Processing, 6(6), Article 127. https://doi.org/10.3390/jmmp6060127 bibtex: '@article{Römisch_Hetzel_Wituschek_Lechner_Merklein_2022, title={Pin Extrusion for Mechanical Joining from Orbital Formed Tailored Blanks with Local Material Pre-Distribution}, volume={6}, DOI={10.3390/jmmp6060127}, number={6127}, journal={Journal of Manufacturing and Materials Processing}, publisher={MDPI AG}, author={Römisch, David and Hetzel, Andreas and Wituschek, Simon and Lechner, Michael and Merklein, Marion}, year={2022} }' chicago: Römisch, David, Andreas Hetzel, Simon Wituschek, Michael Lechner, and Marion Merklein. “Pin Extrusion for Mechanical Joining from Orbital Formed Tailored Blanks with Local Material Pre-Distribution.” Journal of Manufacturing and Materials Processing 6, no. 6 (2022). https://doi.org/10.3390/jmmp6060127. ieee: 'D. Römisch, A. Hetzel, S. Wituschek, M. Lechner, and M. Merklein, “Pin Extrusion for Mechanical Joining from Orbital Formed Tailored Blanks with Local Material Pre-Distribution,” Journal of Manufacturing and Materials Processing, vol. 6, no. 6, Art. no. 127, 2022, doi: 10.3390/jmmp6060127.' mla: Römisch, David, et al. “Pin Extrusion for Mechanical Joining from Orbital Formed Tailored Blanks with Local Material Pre-Distribution.” Journal of Manufacturing and Materials Processing, vol. 6, no. 6, 127, MDPI AG, 2022, doi:10.3390/jmmp6060127. short: D. Römisch, A. Hetzel, S. Wituschek, M. Lechner, M. Merklein, Journal of Manufacturing and Materials Processing 6 (2022). date_created: 2022-12-06T18:56:24Z date_updated: 2023-01-02T11:01:34Z department: - _id: '630' doi: 10.3390/jmmp6060127 intvolume: ' 6' issue: '6' keyword: - Industrial and Manufacturing Engineering - Mechanical Engineering - Mechanics of Materials language: - iso: eng main_file_link: - open_access: '1' oa: '1' project: - _id: '130' grant_number: '418701707' name: 'TRR 285: TRR 285' - _id: '133' name: 'TRR 285 - C: TRR 285 - Project Area C' - _id: '145' name: 'TRR 285 – C01: TRR 285 - Subproject C01' - _id: '146' name: 'TRR 285 – C02: TRR 285 - Subproject C02' publication: Journal of Manufacturing and Materials Processing publication_identifier: issn: - 2504-4494 publication_status: published publisher: MDPI AG status: public title: Pin Extrusion for Mechanical Joining from Orbital Formed Tailored Blanks with Local Material Pre-Distribution type: journal_article user_id: '14931' volume: 6 year: '2022' ...