TY - GEN AB - Long-range quantum communication requires the development of in-out light-matter interfaces to achieve a quantum advantage in entanglement distribution. Ideally, these quantum interconnections should be as fast as possible to achieve high-rate entangled qubits distribution. Here, we demonstrate the coherent quanta exchange between single photons generated on-demand from a GaAs quantum dot and atomic ensemble in a $^{87}$Rb vapor quantum memory. Through an open quantum system analysis, we demonstrate the mapping between the quantized electric field of photons and the coherence of the atomic ensemble. Our results play a pivotal role in understanding quantum light-matter interactions at the short time scales required to build fast hybrid quantum networks. AU - Cui, Guo-Dong AU - Schweickert, Lucas AU - Jöns, Klaus D. AU - Namazi, Mehdi AU - Lettner, Thomas AU - Zeuner, Katharina D. AU - Montaña, Lara Scavuzzo AU - Silva, Saimon Filipe Covre da AU - Reindl, Marcus AU - Huang, Huiying AU - Trotta, Rinaldo AU - Rastelli, Armando AU - Zwiller, Val AU - Figueroa, Eden ID - 42049 T2 - arXiv:2301.10326 TI - Coherent Quantum Interconnection between On-Demand Quantum Dot Single Photons and a Resonant Atomic Quantum Memory ER - TY - DATA AU - Jonas, Björn AU - Heinze, Dirk Florian AU - Schöll, Eva AU - Kallert, Patricia AU - Langer, Timo AU - Krehs, Sebastian AU - Widhalm, Alex AU - Jöns, Klaus AU - Reuter, Dirk AU - Zrenner, Artur ID - 40428 TI - Nonlinear down-conversion in a single quantum dot ER - TY - GEN AB - Long range quantum communication and quantum information processing require the development of light-matter interfaces for distributed quantum networks. Even though photons are ideal candidates for network links to transfer quantum information, the system of choice for the realization of quantum nodes has not been identified yet. Ideally, one strives for a hybrid network architecture, which will consist of different quantum systems, combining the strengths of each system. However, interfacing different quantum systems via photonic channels remains a major challenge because a detailed understanding of the underlying light-matter interaction is missing. Here, we show the coherent manipulation of single photons generated on-demand from a semiconductor quantum dot using a rubidium vapor quantum memory, forming a hybrid quantum network. We demonstrate the engineering of the photons' temporal wave function using four-level atoms and the creation of a new type of electromagnetic induced transparency for quantum dot photons on resonance with rubidium transitions. Given the short lifetime of our quantum dot transition the observed dynamics cannot be explained in the established steady-state picture. Our results play a pivotal role in understanding quantum light-matter interactions at short time scales. These findings demonstrate a fundamental active node to construct future large-scale hybrid quantum networks. AU - Schweickert, Lucas AU - Jöns, Klaus D. AU - Namazi, Mehdi AU - Cui, Guodong AU - Lettner, Thomas AU - Zeuner, Katharina D. AU - Montaña, Lara Scavuzzo AU - Silva, Saimon Filipe Covre da AU - Reindl, Marcus AU - Huang, Huiying AU - Trotta, Rinaldo AU - Rastelli, Armando AU - Zwiller, Val AU - Figueroa, Eden ID - 42048 T2 - arXiv:1808.05921 TI - Electromagnetically Induced Transparency of On-demand Single Photons in a Hybrid Quantum Network ER -