@phdthesis{20521, author = {{Gerking, Christopher}}, publisher = {{Paderborn University}}, title = {{{Model-Driven Information Flow Security Engineering for Cyber-Physical Systems}}}, doi = {{10.17619/UNIPB/1-1033}}, year = {{2020}}, } @techreport{20712, author = {{Schubert, Philipp and Bodden, Eric and Hermann, Ben}}, title = {{{Accelerating Static Call-Graph, Points-to and Data-Flow Analysis Through Persisted Summaries}}}, year = {{2020}}, } @inbook{20891, abstract = {{Today, software systems are rarely developed monolithically, but may be composed of numerous individually developed features. Their modularization facilitates independent development and verification. While feature-based strategies to verify features in isolation have existed for years, they cannot address interactions between features. The problem with feature interactions is that they are typically unknown and may involve any subset of the features. Contrary, a family-based verification strategy captures feature interactions, but does not scale well when features evolve frequently. To the best of our knowledge, there currently exists no approach with focus on evolving features that combines both strategies and aims at eliminating their respective drawbacks. To fill this gap, we introduce Fefalution, a feature-family-based verification approach based on abstract contracts to verify evolving features and their interactions. Fefalution builds partial proofs for each evolving feature and then reuses the resulting partial proofs in verifying feature interactions, yielding a full verification of the complete software system. Moreover, to investigate whether a combination of both strategies is fruitful, we present the first empirical study for the verification of evolving features implemented by means of feature-oriented programming and by comparing Fefalution with another five family-based approaches varying in a set of optimizations. Our results indicate that partial proofs based on abstract contracts exhibit huge reuse potential, but also come with a substantial overhead for smaller evolution scenarios. }}, author = {{Knüppel, Alexander and Krüger, Stefan and Thüm, Thomas and Bubel, Richard and Krieter, Sebastian and Bodden, Eric and Schaefer, Ina}}, booktitle = {{Lecture Notes in Computer Science}}, isbn = {{9783030643539}}, issn = {{0302-9743}}, title = {{{Using Abstract Contracts for Verifying Evolving Features and Their Interactions}}}, doi = {{10.1007/978-3-030-64354-6_5}}, year = {{2020}}, } @inproceedings{23376, author = {{Piskachev, Goran and Nguyen Quang Do, Lisa and Johnson, Oshando and Bodden, Eric}}, booktitle = {{2019 34th IEEE/ACM International Conference on Automated Software Engineering (ASE)}}, title = {{{SWAN_ASSIST: Semi-Automated Detection of Code-Specific, Security-Relevant Methods}}}, doi = {{10.1109/ase.2019.00110}}, year = {{2020}}, } @inbook{23377, author = {{Piskachev, Goran and Petrasch, Tobias and Späth, Johannes and Bodden, Eric}}, booktitle = {{Lecture Notes in Computer Science}}, issn = {{0302-9743}}, title = {{{AuthCheck: Program-State Analysis for Access-Control Vulnerabilities}}}, doi = {{10.1007/978-3-030-54997-8_34}}, year = {{2020}}, } @phdthesis{20522, author = {{Holzinger, Philipp}}, publisher = {{Universität Paderborn}}, title = {{{A Systematic Analysis and Hardening of the Java Security Architecture}}}, year = {{2019}}, } @phdthesis{20524, author = {{Nguyen Quang Do, Lisa}}, publisher = {{Universität Paderborn}}, title = {{{User-Centered Tool Design for Data-Flow Analysis}}}, year = {{2019}}, } @inproceedings{20525, author = {{Stockmann, Lars and Laux, Sven and Bodden, Eric}}, booktitle = {{2019 IEEE International Conference on Software Architecture Companion (ICSA-C)}}, pages = {{77--84}}, title = {{{Architectural Runtime Verification}}}, doi = {{10.1109/ICSA-C.2019.00021}}, year = {{2019}}, } @inproceedings{20527, author = {{Hazhirpasand, Mohammadreza and Ghafari, Mohammad and Krüger, Stefan and Bodden, Eric and Nierstrasz, Oskar}}, booktitle = {{2019 ACM/IEEE International Symposium on Empirical Software Engineering and Measurement (ESEM)}}, issn = {{1949-3770}}, pages = {{1--6}}, title = {{{The Impact of Developer Experience in Using Java Cryptography}}}, doi = {{10.1109/ESEM.2019.8870184}}, year = {{2019}}, } @inproceedings{20528, author = {{Piskachev, Goran and Petrasch, Tobias and Späth, Johannes and Bodden, Eric}}, booktitle = {{10th Workshop on Tools for Automatic Program Analysis (TAPAS)}}, title = {{{AuthCheck: Program-state Analysis for Access-control Vulnerabilities}}}, year = {{2019}}, } @inproceedings{20529, author = {{Nachtigall, Marcus and Nguyen Quang Do, Lisa and Bodden, Eric}}, booktitle = {{1st International Workshop on Explainable Software (EXPLAIN) at ASE}}, title = {{{Explaining Static Analysis -- A Perspective}}}, year = {{2019}}, } @inproceedings{20531, author = {{Luo, Linghui and Bodden, Eric and Späth, Johannes}}, booktitle = {{IEEE/ACM International Conference on Automated Software Engineering (ASE 2019)}}, title = {{{A Qualitative Analysis of Android Taint-Analysis Results}}}, year = {{2019}}, } @inproceedings{20532, author = {{Piskachev, Goran and Nguyen Quang Do, Lisa and Johnson, Oshando and Bodden, Eric}}, booktitle = {{IEEE/ACM International Conference on Automated Software Engineering (ASE 2019), Tool Demo Track}}, title = {{{SWAN_ASSIST: Semi-Automated Detection of Code-Specific, Security-Relevant Methods}}}, year = {{2019}}, } @article{20533, author = {{Krüger, Stefan and Späth, Johannes and Ali, Karim and Bodden, Eric and Mezini, Mira}}, issn = {{2326-3881}}, journal = {{IEEE Transactions on Software Engineering}}, keywords = {{Java, Encryption, Static analysis, Tools, Ciphers, Semantics, cryptography, domain-specific language, static analysis}}, pages = {{1--1}}, title = {{{CrySL: An Extensible Approach to Validating the Correct Usage of Cryptographic APIs}}}, doi = {{10.1109/TSE.2019.2948910}}, year = {{2019}}, } @inproceedings{20534, author = {{Piskachev, Goran and Nguyen Quang Do, Lisa and Bodden, Eric}}, booktitle = {{ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA)}}, title = {{{Codebase-Adaptive Detection of Security-Relevant Methods}}}, year = {{2019}}, } @inproceedings{20535, author = {{Luo, Linghui and Dolby, Julian and Bodden, Eric}}, booktitle = {{European Conference on Object-Oriented Programming (ECOOP)}}, title = {{{MagpieBridge: A General Approach to Integrating Static Analyses into IDEs and Editors}}}, year = {{2019}}, } @phdthesis{20536, author = {{Späth, Johannes}}, publisher = {{Universität Paderborn}}, title = {{{Synchronized Pushdown Systems for Pointer and Data-Flow Analysis}}}, year = {{2019}}, } @techreport{20537, author = {{Piskachev, Goran and Nguyen, Lisa and Bodden, Eric}}, title = {{{Codebase-Adaptive Detection of Security-Relevant Methods}}}, year = {{2019}}, } @inproceedings{20538, author = {{Albert Gorski Iii, Sigmund and Andow, Benjamin and Nadkarni, Adwait and Manandhar, Sunil and Enck, William and Bodden, Eric and Bartel, Alexandre}}, booktitle = {{ACM Conference on Data and Application Security and Privacy (CODASPY 2019)}}, keywords = {{ITSECWEBSITE, CROSSING}}, title = {{{ACMiner: Extraction and Analysis of Authorization Checks in Android's Middleware}}}, year = {{2019}}, } @article{20539, author = {{Späth, Johannes and Ali, Karim and Bodden, Eric}}, issn = {{2475-1421}}, journal = {{Proceedings of the ACM SIGPLAN Symposium on Principles of Programming Languages}}, keywords = {{ATTRACT, ITSECWEBSITE, CROSSING}}, number = {{POPL}}, pages = {{48:1--48:29}}, publisher = {{ACM}}, title = {{{Context-, Flow-, and Field-sensitive Data-flow Analysis Using Synchronized Pushdown Systems}}}, doi = {{10.1145/3290361}}, volume = {{3}}, year = {{2019}}, } @inproceedings{20759, author = {{Gerking, Christopher and Schubert, David}}, booktitle = {{International Conference on Software Architecture (ICSA 2019)}}, title = {{{Component-Based Refinement and Verification of Information-Flow Security Policies for Cyber-Physical Microservice Architectures}}}, year = {{2019}}, } @inproceedings{23378, author = {{Piskachev, Goran and Do, Lisa Nguyen Quang and Bodden, Eric}}, booktitle = {{Proceedings of the 28th ACM SIGSOFT International Symposium on Software Testing and Analysis}}, title = {{{Codebase-adaptive detection of security-relevant methods}}}, doi = {{10.1145/3293882.3330556}}, year = {{2019}}, } @misc{7628, author = {{Selbach, Nils}}, publisher = {{Universität Paderborn}}, title = {{{Modeling Crypto API usages in OpenSSL's EVP library}}}, year = {{2019}}, } @article{14896, author = {{Dann, Andreas and Hermann, Ben and Bodden, Eric}}, issn = {{0098-5589}}, journal = {{IEEE Transactions on Software Engineering}}, pages = {{1--1}}, title = {{{ModGuard: Identifying Integrity &Confidentiality Violations in Java Modules}}}, doi = {{10.1109/tse.2019.2931331}}, year = {{2019}}, } @inproceedings{14897, author = {{Dann, Andreas and Hermann, Ben and Bodden, Eric}}, booktitle = {{Proceedings of the 8th ACM SIGPLAN International Workshop on State Of the Art in Program Analysis - SOAP 2019}}, isbn = {{9781450367202}}, title = {{{SootDiff: bytecode comparison across different Java compilers}}}, doi = {{10.1145/3315568.3329966}}, year = {{2019}}, } @inproceedings{14899, author = {{Kruger, Stefan and Hermann, Ben}}, booktitle = {{2019 IEEE/ACM 2nd International Workshop on Gender Equality in Software Engineering (GE)}}, isbn = {{9781728122458}}, title = {{{Can an Online Service Predict Gender? On the State-of-the-Art in Gender Identification from Texts}}}, doi = {{10.1109/ge.2019.00012}}, year = {{2019}}, } @inproceedings{7626, author = {{Schubert, Philipp and Hermann, Ben and Bodden, Eric}}, booktitle = {{Proceedings of the 25th International Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS 2019), Held as Part of the European Joint Conferences on Theory and Practice of Software (ETAPS 2019)}}, location = {{Prague, Czech Republic}}, pages = {{393--410}}, title = {{{PhASAR: An Inter-Procedural Static Analysis Framework for C/C++}}}, doi = {{10.1007/978-3-030-17465-1_22}}, volume = {{II}}, year = {{2019}}, } @inproceedings{14898, author = {{Schubert, Philipp and Leer, Richard and Hermann, Ben and Bodden, Eric}}, booktitle = {{Proceedings of the 8th ACM SIGPLAN International Workshop on State Of the Art in Program Analysis - SOAP 2019}}, isbn = {{9781450367202}}, title = {{{Know your analysis: how instrumentation aids understanding static analysis}}}, doi = {{10.1145/3315568.3329965}}, year = {{2019}}, } @unpublished{2711, abstract = {{In recent years, researchers have developed a number of tools to conduct taint analysis of Android applications. While all the respective papers aim at providing a thorough empirical evaluation, comparability is hindered by varying or unclear evaluation targets. Sometimes, the apps used for evaluation are not precisely described. In other cases, authors use an established benchmark but cover it only partially. In yet other cases, the evaluations differ in terms of the data leaks searched for, or lack a ground truth to compare against. All those limitations make it impossible to truly compare the tools based on those published evaluations. We thus present ReproDroid, a framework allowing the accurate comparison of Android taint analysis tools. ReproDroid supports researchers in inferring the ground truth for data leaks in apps, in automatically applying tools to benchmarks, and in evaluating the obtained results. We use ReproDroid to comparatively evaluate on equal grounds the six prominent taint analysis tools Amandroid, DIALDroid, DidFail, DroidSafe, FlowDroid and IccTA. The results are largely positive although four tools violate some promises concerning features and accuracy. Finally, we contribute to the area of unbiased benchmarking with a new and improved version of the open test suite DroidBench.}}, author = {{Pauck, Felix and Bodden, Eric and Wehrheim, Heike}}, booktitle = {{arXiv:1804.02903}}, title = {{{Do Android Taint Analysis Tools Keep their Promises?}}}, year = {{2018}}, } @inproceedings{20530, author = {{Bodden, Eric and Nguyen Quang Do, Lisa}}, booktitle = {{Software Engineering und Software Management 2018, Fachtagung des GI-Fachbereichs Softwaretechnik, {SE} 2018, 5.-9. M{\"{a}}rz 2018, Ulm, Germany.}}, isbn = {{978-3-88579-673-2}}, pages = {{205--208}}, title = {{{Explainable Static Analysis}}}, year = {{2018}}, } @article{20543, author = {{Nguyen Quang Do, Lisa and Krüger, Stefan and Hill, Patrick and Ali, Karim and Bodden, Eric}}, issn = {{2326-3881}}, journal = {{IEEE Transactions on Software Engineering}}, keywords = {{Debugging, Static analysis, Tools, Computer bugs, Standards, Writing, Encoding, Testing and Debugging, Program analysis, Development tools, Integrated environments, Graphical environments, Usability testing}}, pages = {{1--1}}, title = {{{Debugging Static Analysis}}}, doi = {{10.1109/TSE.2018.2868349}}, year = {{2018}}, } @proceedings{20544, editor = {{Tichy, Matthias and Bodden, Eric and Kuhrmann, Marco and Wagner, Stefan and Steghöfer, Jan-Philipp}}, isbn = {{978-3-88579-673-2}}, publisher = {{Gesellschaft für Informatik}}, title = {{{Software Engineering und Software Management 2018, Fachtagung des GI-Fachbereichs Softwaretechnik, SE 2018, 5.-9. März 2018, Ulm, Germany}}}, volume = {{{P-279}}}, year = {{2018}}, } @proceedings{20545, editor = {{Tip, Frank and Bodden, Eric}}, publisher = {{ACM}}, title = {{{Proceedings of the 27th ACM SIGSOFT International Symposium on Software Testing and Analysis, ISSTA 2018, Amsterdam, The Netherlands, July 16-21, 2018}}}, year = {{2018}}, } @inproceedings{20546, author = {{Gerking, Christopher and Schubert, David and Bodden, Eric}}, booktitle = {{Engineering Secure Software and Systems}}, editor = {{Payer, Mathias and Rashid, Awais and Such, Jose M.}}, pages = {{27--43}}, publisher = {{Springer International Publishing}}, title = {{{Model Checking the Information Flow Security of Real-Time Systems}}}, year = {{2018}}, } @inproceedings{20547, author = {{Nguyen Quang Do, Lisa and Bodden, Eric}}, booktitle = {{Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering}}, isbn = {{978-1-4503-5573-5}}, keywords = {{Gamification, Integrated Environments, Program analysis}}, pages = {{714--718}}, publisher = {{ACM}}, title = {{{Gamifying Static Analysis}}}, doi = {{10.1145/3236024.3264830}}, year = {{2018}}, } @inproceedings{20548, author = {{Bodden, Eric}}, booktitle = {{ACM SIGPLAN International Workshop on the State Of the Art in Java Program Analysis (SOAP 2018)}}, isbn = {{978-1-4503-5939-9}}, keywords = {{ATTRACT, ITSECWEBSITE}}, pages = {{85--93}}, publisher = {{ACM}}, title = {{{The Secret Sauce in Efficient and Precise Static Analysis: The Beauty of Distributive, Summary-based Static Analyses (and How to Master Them)}}}, doi = {{10.1145/3236454.3236500}}, year = {{2018}}, } @inproceedings{20549, author = {{Geismann, Johannes and Gerking, Christopher and Bodden, Eric}}, booktitle = {{International Conference on Software and System Processes (ICSSP)}}, keywords = {{ITSECWEBSITE}}, title = {{{Towards Ensuring Security by Design in Cyber-Physical Systems Engineering Processes}}}, year = {{2018}}, } @inproceedings{20550, author = {{Bodden, Eric}}, booktitle = {{Proceedings of the 40th International Conference on Software Engineering: New Ideas and Emerging Results}}, isbn = {{978-1-4503-5662-6}}, keywords = {{ATTRACT, ITSECWEBSITE}}, pages = {{45--48}}, publisher = {{ACM}}, title = {{{Self-adaptive Static Analysis}}}, doi = {{10.1145/3183399.3183401}}, year = {{2018}}, } @inproceedings{20551, author = {{Nguyen Quang Do, Lisa and Krüger, Stefan and Hill, Patrick and Ali, Karim and Bodden, Eric}}, booktitle = {{International Conference for Software Engineering (ICSE), Tool Demonstrations Track}}, keywords = {{ATTRACT, ITSECWEBSITE}}, title = {{{VISUFLOW, a Debugging Environment for Static Analyses}}}, year = {{2018}}, } @phdthesis{20779, abstract = {{Der hohe Grad an Innovation in mechatronischen Systemen führt zu sogenannten Cyber-Physical Systems (CPS). Diese haben eine komplexe Funktionalität und Kommunikation. Wie sicherheitskritisch solche Systeme sind, wird durch sogenannte Sicherheits-Integritätslevel (SIL) kategorisiert, die durch Normen wie der ISO 26262 definiert werden. Ein bestimmter SIL beschreibt nicht nur die Höhe des Gefährdungsrisikos, sondern diktiert auch den erforderlichen Grad an Sorgfalt bei der Entwicklung des Systems. Ein hoher SIL erfordert die Anwendung von Safety-Maßnahmen mit einem hohen Sorgfaltsgrad in allen Phasen der Entwicklung und impliziert daher einen hohen Safety-Aufwand. SIL-Tailoring ist ein Mittel um den Safety-Aufwand zu reduzieren, indem man Subsystemen geringere SILs zuordnet, falls sie von kritischeren Subsystemen getrennt sind oder redundante Safety-Anforderungen erfüllen. Um den nötigen Safety-Aufwand zu planen, sollten Möglichkeiten für SIL-Tailoring so früh wie möglich identifiziert werden - d.h. bereits in der Anforderungsanalyse. Durch die Komplexität von CPS, ist es schwierig valide SIL-Tailorings zu finden. Die Validität von SIL-Tailorings muss durch Analyse von Fehlerpropagierungspfaden geprüft und durch Argumente im Safety Case begründet werden. Der Beitrag dieser Dissertation ist ein systematischer, tool-unterstützter SIL-Tailoring-Prozess, der im Safety Requirements Engineering angewendet wird. Der Prozess nutzt eine modell-basierte, formale Anforderungsspezifikation und stellt einen Katalog von Anforderungsmustern bereit. Basierend auf diesen Anforderungen werden Fehlerpropagierungsmodelle generiert und Subsystemen automatisch SILs zugeordnet. Das minimiert den Sicherheitsanalyseaufwand. Aus den generierten Ergebnissen wird automatisch ein Safety Case mit Argumenten für die SIL-Tailoring-Validität abgeleitet.}}, author = {{Fockel, Markus}}, publisher = {{Fakultät für Elektrotechnik, Informatik und Mathematik, Universität Paderborn}}, title = {{{Safety Requirements Engineering for Early SIL Tailoring}}}, doi = {{10.17619/UNIPB/1-490}}, year = {{2018}}, } @inproceedings{20781, author = {{Gerking, Christopher and Schubert, David}}, booktitle = {{European Conference on Software Architecture (ECSA 2018)}}, number = {{11048}}, pages = {{147--155}}, publisher = {{Springer}}, title = {{{Towards Preserving Information Flow Security on Architectural Composition of Cyber-Physical Systems}}}, doi = {{10.1007/978-3-030-00761-4_10}}, year = {{2018}}, } @inproceedings{20784, author = {{Geismann, Johannes}}, booktitle = {{IEEE International Conference on Software Architecture Companion (ICSA-C 2018) }}, pages = {{41--42}}, publisher = {{IEEE}}, title = {{{Traceable Threat Modeling for Safety-critical Systems}}}, doi = {{10.1109/ICSA-C.2018.00017}}, year = {{2018}}, } @inproceedings{20785, abstract = {{Cyber-physical Systems are distributed, embedded systems that interact with their physical environment. Typically, these systems consist of several Electronic Control Units using multiple processing cores for the execution. Many systems are applied in safety-critical contexts and have to fulfill hard real-time requirements. The model-driven engineering paradigm enables system developers to consider all requirements in a systematical manner. In the software design phase, they prove the fulfillment of the requirements using model checking. When deploying the software to the executing platform, one important task is to ensure that the runtime scheduling does not violate the verified requirements by neglecting the model checking assumptions. Current model-driven approaches do not consider the problem of deriving feasible execution schedules for embedded multi-core platforms respecting hard real-time requirements. This paper extends the previous work on providing an approach for a semi-automatic synthesis of behavioral models into a deterministic real-time scheduling. We add an approach for the partitioning and mapping development tasks. This extended approach enables the utilization of parallel resources within a single ECU considering the verification assumptions by extending the open tool platform App4mc. We evaluate our approach using an example of a distributed automotive system with hard real-time requirements specified with the MechatronicUML method. }}, author = {{Geismann, Johannes and Höttger, Robert and Krawczyk, Lukas and Pohlmann, Uwe and Schmelter, David}}, booktitle = {{Model-Driven Engineering and Software Development}}, editor = {{Pires, Luís Ferreira and Hammoudi, Slimane and Selic, Bran}}, pages = {{72--93}}, publisher = {{Springer International Publishing}}, title = {{{Automated Synthesis of a Real-Time Scheduling for Cyber-Physical Multi-core Systems}}}, doi = {{10.1007/978-3-319-94764-8_4}}, volume = {{1}}, year = {{2018}}, } @phdthesis{20789, author = {{Pohlmann, Uwe}}, publisher = {{Universität Paderborn, Heinz Nixdorf Institut, Softwaretechnik}}, title = {{{A Model-driven Software Construction Approach for Cyber-physical Systems}}}, year = {{2018}}, } @inproceedings{4999, author = {{Pauck, Felix and Bodden, Eric and Wehrheim, Heike}}, booktitle = {{Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering - ESEC/FSE 2018}}, isbn = {{9781450355735}}, publisher = {{ACM Press}}, title = {{{Do Android taint analysis tools keep their promises?}}}, doi = {{10.1145/3236024.3236029}}, year = {{2018}}, } @inproceedings{5203, author = {{Krüger, Stefan and Späth, Johannes and Ali, Karim and Bodden, Eric and Mezini, Mira}}, booktitle = {{European Conference on Object-Oriented Programming (ECOOP)}}, keywords = {{ITSECWEBSITE, CROSSING}}, pages = {{10:1--10:27}}, title = {{{CrySL: An Extensible Approach to Validating the Correct Usage of Cryptographic APIs}}}, year = {{2018}}, } @misc{1044, author = {{Leer, Richard}}, publisher = {{Universität Paderborn}}, title = {{{Measuring Performance of a Static Analysis Framework with an application to Immutability Analysis}}}, year = {{2018}}, } @misc{1045, author = {{Strüwer, Jan Niclas}}, publisher = {{Universität Paderborn}}, title = {{{Interactive Data Visualization for Exploded Supergraphs}}}, year = {{2018}}, } @inbook{20552, abstract = {{Das Zukunftsszenario der Industrie 4.0 ist gepr{\"a}gt durch einen massiven Anstieg der unternehmens{\"u}bergreifenden Vernetzung. Um einer Bedrohung durch unautorisierte Weitergabe oder Sabotage vertraulicher Daten entgegenzuwirken, muss der Informationssicherheit bereits im Entwurf der cyber-physischen Produktionssysteme ein hoher Stellenwert einger{\"a}umt werden. Dieses Paradigma wird als Security by Design bezeichnet. {\"U}ber den gesamten Entstehungsprozess hinweg muss nachverfolgt werden k{\"o}nnen, ob die Systeme spezifische Anforderungen an die Informationssicherheit erf{\"u}llen und damit die Eigenschaft der Industrial Security gew{\"a}hrleisten. Dieser Beitrag stellt einen Entwurfsansatz zur Nachverfolgung der Informationssicherheit vor, der durch Integration softwaretechnischer Methoden in das Systems Engineering eine Entwicklung nach dem Paradigma Security by Design erm{\"o}glicht.}}, author = {{Gerking, Christopher and Bodden, Eric and Schäfer, Wilhelm}}, booktitle = {{Handbuch Gestaltung digitaler und vernetzter Arbeitswelten}}, editor = {{Maier, Günter W. and Engels, Gregor and Steffen, Eckhard}}, isbn = {{978-3-662-52903-4}}, keywords = {{ITSECWEBSITE}}, pages = {{1--24}}, publisher = {{Springer Berlin Heidelberg}}, title = {{{Industrial Security by Design}}}, doi = {{10.1007/978-3-662-52903-4_8-1}}, year = {{2017}}, } @article{20553, abstract = {{Finding and fixing software vulnerabilities have become a major struggle for most software development companies. While generally without alternative, such fixing efforts are a major cost factor, which is why companies have a vital interest in focusing their secure software development activities such that they obtain an optimal return on this investment. We investigate, in this paper, quantitatively the major factors that impact the time it takes to fix a given security issue based on data collected automatically within SAP's secure development process, and we show how the issue fix time could be used to monitor the fixing process. We use three machine learning methods and evaluate their predictive power in predicting the time to fix issues. Interestingly, the models indicate that vulnerability type has less dominant impact on issue fix time than previously believed. The time it takes to fix an issue instead seems much more related to the component in which the potential vulnerability resides, the project related to the issue, the development groups that address the issue, and the closeness of the software release date. This indicates that the software structure, the fixing processes, and the development groups are the dominant factors that impact the time spent to address security issues. SAP can use the models to implement a continuous improvement of its secure software development process and to measure the impact of individual improvements. The development teams at SAP develop different types of software, adopt different internal development processes, use different programming languages and platforms, and are located in different cities and countries. Other organizations, may use the results---with precaution---and be learning organizations.}}, author = {{Ben Othmane, Lotfi and Chehrazi, Golriz and Bodden, Eric and Tsalovski, Petar and Brucker, Achim D.}}, issn = {{2364-1541}}, journal = {{Data Science and Engineering}}, number = {{2}}, pages = {{107--124}}, title = {{{Time for Addressing Software Security Issues: Prediction Models and Impacting Factors}}}, doi = {{https://doi.org/10.1007/s41019-016-0019-8}}, volume = {{2}}, year = {{2017}}, }