@inproceedings{1787, author = {{Suess, Tim and Schoenrock, Andrew and Meisner, Sebastian and Plessl, Christian}}, booktitle = {{Proc. Int. Symp. on Parallel and Distributed Processing Workshops (IPDPSW)}}, isbn = {{978-0-7695-4979-8}}, pages = {{64--73}}, publisher = {{IEEE Computer Society}}, title = {{{Parallel Macro Pipelining on the Intel SCC Many-Core Computer}}}, doi = {{10.1109/IPDPSW.2013.136}}, year = {{2013}}, } @inproceedings{2097, author = {{Kasap, Server and Redif, Soydan}}, booktitle = {{Proc. Int. Conf. on Field Programmable Technology (ICFPT)}}, pages = {{135--140}}, publisher = {{IEEE Computer Society}}, title = {{{FPGA-based design and implementation of an approximate polynomial matrix EVD algorithm}}}, doi = {{10.1109/FPT.2012.6412125}}, year = {{2012}}, } @inproceedings{2100, author = {{Kasap, Server and Redif, Soydan}}, booktitle = {{Int. Architecture and Engineering Symp. (ARCHENG)}}, title = {{{FPGA implementation of a second-order convolutive blind signal separation algorithm}}}, year = {{2012}}, } @inproceedings{2103, author = {{Wistuba, Martin and Schaefers, Lars and Platzner, Marco}}, booktitle = {{Proc. IEEE Conf. on Computational Intelligence and Games (CIG)}}, pages = {{91--99}}, publisher = {{IEEE}}, title = {{{Comparison of Bayesian Move Prediction Systems for Computer Go}}}, doi = {{10.1109/CIG.2012.6374143}}, year = {{2012}}, } @article{2172, author = {{Thielemans, Kris and Tsoumpas, Charalampos and Mustafovic, Sanida and Beisel, Tobias and Aguiar, Pablo and Dikaios, Nikolaos and W Jacobson, Matthew}}, journal = {{Physics in Medicine and Biology}}, number = {{4}}, pages = {{867--883}}, publisher = {{IOP Publishing}}, title = {{{STIR: Software for Tomographic Image Reconstruction Release 2}}}, doi = {{10.1088/0031-9155/57/4/867}}, volume = {{57}}, year = {{2012}}, } @article{2173, author = {{Redif, Soydan and Kasap, Server}}, journal = {{Int. Journal of Electronics}}, number = {{12}}, pages = {{1646--1651}}, publisher = {{Taylor & Francis}}, title = {{{Parallel algorithm for computation of second-order sequential best rotations}}}, doi = {{10.1080/00207217.2012.751343}}, volume = {{100}}, year = {{2012}}, } @article{2174, author = {{Kasap, Server and Benkrid, Khaled}}, journal = {{Journal of Computers}}, number = {{6}}, pages = {{1312--1328}}, publisher = {{Academy Publishers}}, title = {{{Parallel Processor Design and Implementation for Molecular Dynamics Simulations on a FPGA Parallel Computer}}}, volume = {{7}}, year = {{2012}}, } @phdthesis{586, abstract = {{FPGAs, systems on chip and embedded systems are nowadays irreplaceable. They combine the computational power of application specific hardware with software-like flexibility. At runtime, they can adjust their functionality by downloading new hardware modules and integrating their functionality. Due to their growing capabilities, the demands made to reconfigurable hardware grow. Their deployment in increasingly security critical scenarios requires new ways of enforcing security since a failure in security has severe consequences. Aside from financial losses, a loss of human life and risks to national security are possible. With this work I present the novel and groundbreaking concept of proof-carrying hardware. It is a method for the verification of properties of hardware modules to guarantee security for a target platform at runtime. The producer of a hardware module delivers based on the consumer's safety policy a safety proof in combination with the reconfiguration bitstream. The extensive computation of a proof is a contrast to the comparatively undemanding checking of the proof. I present a prototype based on open-source tools and an abstract FPGA architecture and bitstream format. The proof of the usability of proof-carrying hardware provides the evaluation of the prototype with the exemplary application of securing combinational and bounded sequential equivalence of reference monitor modules for memory safety.}}, author = {{Drzevitzky, Stephanie}}, pages = {{114}}, publisher = {{Universität Paderborn}}, title = {{{Proof-Carrying Hardware: A Novel Approach to Reconfigurable Hardware Security}}}, year = {{2012}}, } @misc{587, author = {{Plessl, Christian and Platzner, Marco and Agne, Andreas and Happe, Markus and Lübbers, Enno}}, publisher = {{Awareness Magazine}}, title = {{{Programming models for reconfigurable heterogeneous multi-cores}}}, year = {{2012}}, } @inproceedings{10636, author = {{Boschmann, Alexander and Platzner, Marco}}, booktitle = {{Proc. IEEE Int. Conf. Eng. Med. Biolog. (EMBC)}}, title = {{{Reducing classification accuracy degradation of pattern recognition based myoelectric control caused by electrode shift using a high density electrode array}}}, year = {{2012}}, }