@inbook{10748, author = {{Walker, James Alfred and Miller, Julian F. and Kaufmann, Paul and Platzner, Marco}}, booktitle = {{Cartesian Genetic Programming}}, pages = {{35--99}}, publisher = {{Springer Berlin Heidelberg}}, title = {{{Problem Decomposition in Cartesian Genetic Programming}}}, year = {{2011}}, } @misc{10750, author = {{Welp, Daniel}}, publisher = {{Paderborn University}}, title = {{{User Space Scheduling for Heterogeneous Systems}}}, year = {{2011}}, } @inproceedings{13643, author = {{Agne, Andreas and Platzner, Marco and Lübbers, Enno}}, booktitle = {{Proceedings of the International Conference on Field Programmable Logic and Applications (FPL)}}, isbn = {{9781457714849}}, pages = {{185--188}}, publisher = {{IEEE}}, title = {{{Memory Virtualization for Multithreaded Reconfigurable Hardware}}}, doi = {{10.1109/fpl.2011.42}}, year = {{2011}}, } @inproceedings{13644, author = {{Henkel, Jörg and Hedrich, Lars and Herkersdorf, Andreas and Kapitza, Rüdiger and Lohmann, Daniel and Marwedel, Peter and Platzner, Marco and Rosenstiel, Wolfgang and Schlichtmann, Ulf and Spinczyk, Olaf and Tahoori, Mehdi and Bauer, Lars and Teich, Jürgen and Wehn, Norbert and Wunderlich, Hans-Joachim and Becker, Joachim and Bringmann, Oliver and Brinkschulte, Uwe and Chakraborty, Samarjit and Engel, Michael and Ernst, Rolf and Härtig, Hermann}}, booktitle = {{Proceedings of the seventh IEEE/ACM/IFIP International Conference on Hardware/software Codesign and system synthesis - CODES+ISSS '11}}, isbn = {{9781450307154}}, title = {{{Design and architectures for dependable embedded systems}}}, doi = {{10.1145/2039370.2039384}}, year = {{2011}}, } @inproceedings{2194, author = {{Meyer, Björn and Plessl, Christian and Förstner, Jens}}, booktitle = {{Symp. on Application Accelerators in High Performance Computing (SAAHPC)}}, keywords = {{tet_topic_hpc}}, pages = {{60--63}}, publisher = {{IEEE Computer Society}}, title = {{{Transformation of scientific algorithms to parallel computing code: subdomain support in a MPI-multi-GPU backend}}}, doi = {{10.1109/SAAHPC.2011.12}}, year = {{2011}}, } @inproceedings{2193, author = {{Beisel, Tobias and Wiersema, Tobias and Plessl, Christian and Brinkmann, André}}, booktitle = {{Proc. Int. Conf. on Application-Specific Systems, Architectures, and Processors (ASAP)}}, pages = {{223--226}}, publisher = {{IEEE Computer Society}}, title = {{{Cooperative multitasking for heterogeneous accelerators in the Linux Completely Fair Scheduler}}}, doi = {{10.1109/ASAP.2011.6043273}}, year = {{2011}}, } @inproceedings{656, abstract = {{In the next decades, hybrid multi-cores will be the predominant architecture for reconfigurable FPGA-based systems. Temperature-aware thread mapping strategies are key for providing dependability in such systems. These strategies rely on measuring the temperature distribution and redicting the thermal behavior of the system when there are changes to the hardware and software running on the FPGA. While there are a number of tools that use thermal models to predict temperature distributions at design time, these tools lack the flexibility to autonomously adjust to changing FPGA configurations. To address this problem we propose a temperature-aware system that empowers FPGA-based reconfigurable multi-cores to autonomously predict the on-chip temperature distribution for pro-active thread remapping. Our system obtains temperature measurements through a self-calibrating grid of sensors and uses area constrained heat-generating circuits in order to generate spatial and temporal temperature gradients. The generated temperature variations are then used to learn the free parameters of the system's thermal model. The system thus acquires an understanding of its own thermal characteristics. We implemented an FPGA system containing a net of 144 temperature sensors on a Xilinx Virtex-6 LX240T FPGA that is aware of its thermal model. Finally, we show that the temperature predictions vary less than 0.72 degree C on average compared to the measured temperature distributions at run-time.}}, author = {{Happe, Markus and Agne, Andreas and Plessl, Christian}}, booktitle = {{Proceedings of the 2011 International Conference on Reconfigurable Computing and FPGAs (ReConFig)}}, pages = {{55--60}}, publisher = {{IEEE}}, title = {{{Measuring and Predicting Temperature Distributions on FPGAs at Run-Time}}}, doi = {{10.1109/ReConFig.2011.59}}, year = {{2011}}, } @inproceedings{2200, author = {{Kenter, Tobias and Platzner, Marco and Plessl, Christian and Kauschke, Michael}}, booktitle = {{Proc. Int. Symp. on Field-Programmable Gate Arrays (FPGA)}}, isbn = {{978-1-4503-0554-9}}, keywords = {{design space exploration, LLVM, partitioning, performance, estimation, funding-intel}}, pages = {{177--180}}, publisher = {{ACM}}, title = {{{Performance Estimation Framework for Automated Exploration of CPU-Accelerator Architectures}}}, doi = {{10.1145/1950413.1950448}}, year = {{2011}}, } @article{2201, author = {{Schumacher, Tobias and Süß, Tim and Plessl, Christian and Platzner, Marco}}, journal = {{Int. Journal of Recon- figurable Computing (IJRC)}}, keywords = {{funding-altera}}, publisher = {{Hindawi Publishing Corp.}}, title = {{{FPGA Acceleration of Communication-bound Streaming Applications: Architecture Modeling and a 3D Image Compositing Case Study}}}, doi = {{10.1155/2011/760954}}, year = {{2011}}, } @inproceedings{2198, author = {{Grad, Mariusz and Plessl, Christian}}, booktitle = {{Proc. Reconfigurable Architectures Workshop (RAW)}}, pages = {{278--285}}, publisher = {{IEEE Computer Society}}, title = {{{Just-in-time Instruction Set Extension – Feasibility and Limitations for an FPGA-based Reconfigurable ASIP Architecture}}}, doi = {{10.1109/IPDPS.2011.153}}, year = {{2011}}, }