--- _id: '51122' article_number: '103993' article_type: original author: - first_name: Abbas J.S. full_name: Al-Lami, Abbas J.S. last_name: Al-Lami - first_name: Eugeny Y. full_name: Kenig, Eugeny Y. last_name: Kenig citation: ama: Al-Lami AJS, Kenig EY. New pressure drop and heat transfer correlations for turbulent forced convection in internally channeled tube heat exchanger ducts. Case Studies in Thermal Engineering. Published online 2024. doi:10.1016/j.csite.2024.103993 apa: Al-Lami, A. J. S., & Kenig, E. Y. (2024). New pressure drop and heat transfer correlations for turbulent forced convection in internally channeled tube heat exchanger ducts. Case Studies in Thermal Engineering, Article 103993. https://doi.org/10.1016/j.csite.2024.103993 bibtex: '@article{Al-Lami_Kenig_2024, title={New pressure drop and heat transfer correlations for turbulent forced convection in internally channeled tube heat exchanger ducts}, DOI={10.1016/j.csite.2024.103993}, number={103993}, journal={Case Studies in Thermal Engineering}, publisher={Elsevier BV}, author={Al-Lami, Abbas J.S. and Kenig, Eugeny Y.}, year={2024} }' chicago: Al-Lami, Abbas J.S., and Eugeny Y. Kenig. “New Pressure Drop and Heat Transfer Correlations for Turbulent Forced Convection in Internally Channeled Tube Heat Exchanger Ducts.” Case Studies in Thermal Engineering, 2024. https://doi.org/10.1016/j.csite.2024.103993. ieee: 'A. J. S. Al-Lami and E. Y. Kenig, “New pressure drop and heat transfer correlations for turbulent forced convection in internally channeled tube heat exchanger ducts,” Case Studies in Thermal Engineering, Art. no. 103993, 2024, doi: 10.1016/j.csite.2024.103993.' mla: Al-Lami, Abbas J. S., and Eugeny Y. Kenig. “New Pressure Drop and Heat Transfer Correlations for Turbulent Forced Convection in Internally Channeled Tube Heat Exchanger Ducts.” Case Studies in Thermal Engineering, 103993, Elsevier BV, 2024, doi:10.1016/j.csite.2024.103993. short: A.J.S. Al-Lami, E.Y. Kenig, Case Studies in Thermal Engineering (2024). date_created: 2024-02-04T17:36:04Z date_updated: 2024-03-09T08:33:11Z doi: 10.1016/j.csite.2024.103993 keyword: - Fluid Flow and Transfer Processes - Engineering (miscellaneous) language: - iso: eng main_file_link: - open_access: '1' oa: '1' publication: Case Studies in Thermal Engineering publication_identifier: issn: - 2214-157X publication_status: published publisher: Elsevier BV quality_controlled: '1' status: public title: New pressure drop and heat transfer correlations for turbulent forced convection in internally channeled tube heat exchanger ducts type: journal_article user_id: '81772' year: '2024' ... --- _id: '43457' abstract: - lang: eng text: The production of hydrogen and the utilization of biomass for sustainable concepts of energy conversion and storage require gas sensors that discriminate between hydrogen (H2) and carbon monoxide (CO). Mesoporous copper–ceria (Cu–CeO2) materials with large specific surface areas and uniform porosity are prepared by nanocasting, and their textural properties are characterized by N2 physisorption, powder XRD, scanning electron microscopy, transmission electron microscopy, and energy-dispersive X-ray spectroscopy. The oxidation states of copper (Cu+, Cu2+) and cerium (Ce3+, Ce4+) are investigated by XPS. The materials are used as resistive gas sensors for H2 and CO. The sensors show a stronger response to CO than to H2 and low cross-sensitivity to humidity. Copper turns out to be a necessary component; copper-free ceria materials prepared by the same method show only poor sensing performance. By measuring both gases (CO and H2) simultaneously, it is shown that this behavior can be utilized for selective sensing of CO in the presence of H2. author: - first_name: Dominik full_name: Baier, Dominik last_name: Baier - first_name: Tatiana full_name: Priamushko, Tatiana last_name: Priamushko - first_name: Christian full_name: Weinberger, Christian id: '11848' last_name: Weinberger - first_name: Freddy full_name: Kleitz, Freddy last_name: Kleitz - first_name: Michael full_name: Tiemann, Michael id: '23547' last_name: Tiemann orcid: 0000-0003-1711-2722 citation: ama: Baier D, Priamushko T, Weinberger C, Kleitz F, Tiemann M. Selective Discrimination between CO and H2 with Copper–Ceria-Resistive Gas Sensors. ACS Sensors. 2023;8(4):1616-1623. doi:10.1021/acssensors.2c02739 apa: Baier, D., Priamushko, T., Weinberger, C., Kleitz, F., & Tiemann, M. (2023). Selective Discrimination between CO and H2 with Copper–Ceria-Resistive Gas Sensors. ACS Sensors, 8(4), 1616–1623. https://doi.org/10.1021/acssensors.2c02739 bibtex: '@article{Baier_Priamushko_Weinberger_Kleitz_Tiemann_2023, title={Selective Discrimination between CO and H2 with Copper–Ceria-Resistive Gas Sensors}, volume={8}, DOI={10.1021/acssensors.2c02739}, number={4}, journal={ACS Sensors}, publisher={American Chemical Society (ACS)}, author={Baier, Dominik and Priamushko, Tatiana and Weinberger, Christian and Kleitz, Freddy and Tiemann, Michael}, year={2023}, pages={1616–1623} }' chicago: 'Baier, Dominik, Tatiana Priamushko, Christian Weinberger, Freddy Kleitz, and Michael Tiemann. “Selective Discrimination between CO and H2 with Copper–Ceria-Resistive Gas Sensors.” ACS Sensors 8, no. 4 (2023): 1616–23. https://doi.org/10.1021/acssensors.2c02739.' ieee: 'D. Baier, T. Priamushko, C. Weinberger, F. Kleitz, and M. Tiemann, “Selective Discrimination between CO and H2 with Copper–Ceria-Resistive Gas Sensors,” ACS Sensors, vol. 8, no. 4, pp. 1616–1623, 2023, doi: 10.1021/acssensors.2c02739.' mla: Baier, Dominik, et al. “Selective Discrimination between CO and H2 with Copper–Ceria-Resistive Gas Sensors.” ACS Sensors, vol. 8, no. 4, American Chemical Society (ACS), 2023, pp. 1616–23, doi:10.1021/acssensors.2c02739. short: D. Baier, T. Priamushko, C. Weinberger, F. Kleitz, M. Tiemann, ACS Sensors 8 (2023) 1616–1623. date_created: 2023-04-12T06:52:34Z date_updated: 2023-05-01T05:47:53Z department: - _id: '35' - _id: '2' - _id: '307' doi: 10.1021/acssensors.2c02739 intvolume: ' 8' issue: '4' keyword: - Fluid Flow and Transfer Processes - Process Chemistry and Technology - Instrumentation - Bioengineering language: - iso: eng page: 1616 - 1623 publication: ACS Sensors publication_identifier: issn: - 2379-3694 - 2379-3694 publication_status: published publisher: American Chemical Society (ACS) quality_controlled: '1' status: public title: Selective Discrimination between CO and H2 with Copper–Ceria-Resistive Gas Sensors type: journal_article user_id: '23547' volume: 8 year: '2023' ... --- _id: '34223' abstract: - lang: eng text: In this study, quasi-unidirectional continuous fiber reinforced thermoplastics (CFRTs) are joined with metal sheets via cold formed cylindrical, elliptical and polygonal pin structures which are directly pressed into the CFRT component after local infrared heating. In comparison to already available studies, the unique novelty is the use of non-rotational symmetric pin structures for the CFRT/metal hybrid joining. Thus, a variation in the fiber orientation in the CFRT component as well as a variation in the non-rotational symmetric pins’ orientation in relation to the sample orientation is conducted. The created samples are consequently mechanically tested via single lap shear experiments in a quasi-static state. Finally, the failure behavior of the single lap shear samples is investigated with the help of microscopic images and detailed photographs. In the single lap shear tests, it could be shown that non-rotational symmetric pin structures lead to an increase in maximum testing forces of up to 74% when compared to cylindrical pins. However, when normalized to the pin foot print related joint strength, only one polygonal pin variation showed increased joint strength in comparison to cylindrical pin structures. The investigation of the failure behavior showed two distinct failure modes. The first failure mode was failure of the CFRT component due to an exceedance of the maximum bearing strength of the pin-hole leading to significant damage in the CFRT component. The second failure mode was pin-deflection due to the applied testing load and a subsequent pin extraction from the CFRT component resulting in significantly less visible damage in the CFRT component. Generally, CFRT failure is more likely with a fiber orientation of 0° in relation to the load direction while pin extraction typically occurs with a fiber orientation of 90°. It is assumed that for future investigations, pin structures with an undercutting shape that creates an interlocking joint could counteract the tendency for pin-extraction and consequently lead to increased maximum joint strengths. article_number: '4962' author: - first_name: Julian full_name: Popp, Julian last_name: Popp - first_name: David full_name: Römisch, David last_name: Römisch - first_name: Marion full_name: Merklein, Marion last_name: Merklein - first_name: Dietmar full_name: Drummer, Dietmar last_name: Drummer citation: ama: Popp J, Römisch D, Merklein M, Drummer D. Joining of CFRT/Steel Hybrid Parts via Direct Pressing of Cold Formed Non-Rotational Symmetric Pin Structures. Applied Sciences. 2022;12(10). doi:10.3390/app12104962 apa: Popp, J., Römisch, D., Merklein, M., & Drummer, D. (2022). Joining of CFRT/Steel Hybrid Parts via Direct Pressing of Cold Formed Non-Rotational Symmetric Pin Structures. Applied Sciences, 12(10), Article 4962. https://doi.org/10.3390/app12104962 bibtex: '@article{Popp_Römisch_Merklein_Drummer_2022, title={Joining of CFRT/Steel Hybrid Parts via Direct Pressing of Cold Formed Non-Rotational Symmetric Pin Structures}, volume={12}, DOI={10.3390/app12104962}, number={104962}, journal={Applied Sciences}, publisher={MDPI AG}, author={Popp, Julian and Römisch, David and Merklein, Marion and Drummer, Dietmar}, year={2022} }' chicago: Popp, Julian, David Römisch, Marion Merklein, and Dietmar Drummer. “Joining of CFRT/Steel Hybrid Parts via Direct Pressing of Cold Formed Non-Rotational Symmetric Pin Structures.” Applied Sciences 12, no. 10 (2022). https://doi.org/10.3390/app12104962. ieee: 'J. Popp, D. Römisch, M. Merklein, and D. Drummer, “Joining of CFRT/Steel Hybrid Parts via Direct Pressing of Cold Formed Non-Rotational Symmetric Pin Structures,” Applied Sciences, vol. 12, no. 10, Art. no. 4962, 2022, doi: 10.3390/app12104962.' mla: Popp, Julian, et al. “Joining of CFRT/Steel Hybrid Parts via Direct Pressing of Cold Formed Non-Rotational Symmetric Pin Structures.” Applied Sciences, vol. 12, no. 10, 4962, MDPI AG, 2022, doi:10.3390/app12104962. short: J. Popp, D. Römisch, M. Merklein, D. Drummer, Applied Sciences 12 (2022). date_created: 2022-12-05T21:48:01Z date_updated: 2022-12-05T21:49:30Z doi: 10.3390/app12104962 intvolume: ' 12' issue: '10' keyword: - Fluid Flow and Transfer Processes - Computer Science Applications - Process Chemistry and Technology - General Engineering - Instrumentation - General Materials Science language: - iso: eng project: - _id: '130' grant_number: '418701707' name: 'TRR 285: TRR 285' - _id: '133' name: 'TRR 285 - C: TRR 285 - Project Area C' - _id: '145' name: 'TRR 285 – C01: TRR 285 - Subproject C01' publication: Applied Sciences publication_identifier: issn: - 2076-3417 publication_status: published publisher: MDPI AG status: public title: Joining of CFRT/Steel Hybrid Parts via Direct Pressing of Cold Formed Non-Rotational Symmetric Pin Structures type: journal_article user_id: '7850' volume: 12 year: '2022' ... --- _id: '34224' abstract: - lang: eng text: Crack growth in structures depends on the cyclic loads applied on it, such as mechanical, thermal and contact, as well as residual stresses, etc. To provide an accurate simulation of crack growth in structures, it is of high importance to integrate all kinds of loading situations in the simulations. Adapcrack3D is a simulation program that can accurately predict the propagation of cracks in real structures. However, until now, this three-dimensional program has only considered mechanical loads and static thermal loads. Therefore, the features of Adapcrack3D have been extended by including contact loading in crack growth simulations. The numerical simulation of crack propagation with Adapcrack3D is generally carried out using FE models of structures provided by the user. For simulating models with contact loading situations, Adapcrack3D has been updated to work with FE models containing multiple parts and necessary features such as coupling and surface interactions. Because Adapcrack3D uses the submodel technique for fracture mechanical evaluations, the architecture of the submodel is also modified to simulate models with contact definitions between the crack surfaces. This paper discusses the newly implemented attribute of the program with the help of illustrative examples. The results confirm that the contact simulation in Adapcrack3D is a major step in improving the functionality of the program. article_number: '7557' author: - first_name: Tintu David full_name: Joy, Tintu David id: '30821' last_name: Joy - first_name: Deborah full_name: Weiß, Deborah id: '45673' last_name: Weiß - first_name: Britta full_name: Schramm, Britta id: '4668' last_name: Schramm - first_name: Gunter full_name: Kullmer, Gunter id: '291' last_name: Kullmer citation: ama: Joy TD, Weiß D, Schramm B, Kullmer G. Further Development of 3D Crack Growth Simulation Program to Include Contact Loading Situations. Applied Sciences. 2022;12(15). doi:10.3390/app12157557 apa: Joy, T. D., Weiß, D., Schramm, B., & Kullmer, G. (2022). Further Development of 3D Crack Growth Simulation Program to Include Contact Loading Situations. Applied Sciences, 12(15), Article 7557. https://doi.org/10.3390/app12157557 bibtex: '@article{Joy_Weiß_Schramm_Kullmer_2022, title={Further Development of 3D Crack Growth Simulation Program to Include Contact Loading Situations}, volume={12}, DOI={10.3390/app12157557}, number={157557}, journal={Applied Sciences}, publisher={MDPI AG}, author={Joy, Tintu David and Weiß, Deborah and Schramm, Britta and Kullmer, Gunter}, year={2022} }' chicago: Joy, Tintu David, Deborah Weiß, Britta Schramm, and Gunter Kullmer. “Further Development of 3D Crack Growth Simulation Program to Include Contact Loading Situations.” Applied Sciences 12, no. 15 (2022). https://doi.org/10.3390/app12157557. ieee: 'T. D. Joy, D. Weiß, B. Schramm, and G. Kullmer, “Further Development of 3D Crack Growth Simulation Program to Include Contact Loading Situations,” Applied Sciences, vol. 12, no. 15, Art. no. 7557, 2022, doi: 10.3390/app12157557.' mla: Joy, Tintu David, et al. “Further Development of 3D Crack Growth Simulation Program to Include Contact Loading Situations.” Applied Sciences, vol. 12, no. 15, 7557, MDPI AG, 2022, doi:10.3390/app12157557. short: T.D. Joy, D. Weiß, B. Schramm, G. Kullmer, Applied Sciences 12 (2022). date_created: 2022-12-05T21:49:48Z date_updated: 2023-04-27T10:13:44Z department: - _id: '143' doi: 10.3390/app12157557 intvolume: ' 12' issue: '15' keyword: - Fluid Flow and Transfer Processes - Computer Science Applications - Process Chemistry and Technology - General Engineering - Instrumentation - General Materials Science language: - iso: eng project: - _id: '130' grant_number: '418701707' name: 'TRR 285: TRR 285' - _id: '132' name: 'TRR 285 - B: TRR 285 - Project Area B' - _id: '143' name: 'TRR 285 – B04: TRR 285 - Subproject B04' publication: Applied Sciences publication_identifier: issn: - 2076-3417 publication_status: published publisher: MDPI AG quality_controlled: '1' status: public title: Further Development of 3D Crack Growth Simulation Program to Include Contact Loading Situations type: journal_article user_id: '45673' volume: 12 year: '2022' ... --- _id: '44041' article_number: '1075' author: - first_name: A. I. full_name: Ahmadov, A. I. last_name: Ahmadov - first_name: Sh. M. full_name: Nagiyev, Sh. M. last_name: Nagiyev - first_name: C. full_name: Aydin, C. last_name: Aydin - first_name: V. A. full_name: Tarverdiyeva, V. A. last_name: Tarverdiyeva - first_name: M. Sh. full_name: Orujova, M. Sh. last_name: Orujova - first_name: S. V. full_name: Badalov, S. V. last_name: Badalov citation: ama: 'Ahmadov AI, Nagiyev ShM, Aydin C, Tarverdiyeva VA, Orujova MSh, Badalov SV. Bound state solutions of Dirac equation: spin and pseudo-spin symmetry in the presence of the combined Manning–Rosen and Yukawa tensor potentials. The European Physical Journal Plus. 2022;137(9). doi:10.1140/epjp/s13360-022-03255-9' apa: 'Ahmadov, A. I., Nagiyev, Sh. M., Aydin, C., Tarverdiyeva, V. A., Orujova, M. Sh., & Badalov, S. V. (2022). Bound state solutions of Dirac equation: spin and pseudo-spin symmetry in the presence of the combined Manning–Rosen and Yukawa tensor potentials. The European Physical Journal Plus, 137(9), Article 1075. https://doi.org/10.1140/epjp/s13360-022-03255-9' bibtex: '@article{Ahmadov_Nagiyev_Aydin_Tarverdiyeva_Orujova_Badalov_2022, title={Bound state solutions of Dirac equation: spin and pseudo-spin symmetry in the presence of the combined Manning–Rosen and Yukawa tensor potentials}, volume={137}, DOI={10.1140/epjp/s13360-022-03255-9}, number={91075}, journal={The European Physical Journal Plus}, publisher={Springer Science and Business Media LLC}, author={Ahmadov, A. I. and Nagiyev, Sh. M. and Aydin, C. and Tarverdiyeva, V. A. and Orujova, M. Sh. and Badalov, S. V.}, year={2022} }' chicago: 'Ahmadov, A. I., Sh. M. Nagiyev, C. Aydin, V. A. Tarverdiyeva, M. Sh. Orujova, and S. V. Badalov. “Bound State Solutions of Dirac Equation: Spin and Pseudo-Spin Symmetry in the Presence of the Combined Manning–Rosen and Yukawa Tensor Potentials.” The European Physical Journal Plus 137, no. 9 (2022). https://doi.org/10.1140/epjp/s13360-022-03255-9.' ieee: 'A. I. Ahmadov, Sh. M. Nagiyev, C. Aydin, V. A. Tarverdiyeva, M. Sh. Orujova, and S. V. Badalov, “Bound state solutions of Dirac equation: spin and pseudo-spin symmetry in the presence of the combined Manning–Rosen and Yukawa tensor potentials,” The European Physical Journal Plus, vol. 137, no. 9, Art. no. 1075, 2022, doi: 10.1140/epjp/s13360-022-03255-9.' mla: 'Ahmadov, A. I., et al. “Bound State Solutions of Dirac Equation: Spin and Pseudo-Spin Symmetry in the Presence of the Combined Manning–Rosen and Yukawa Tensor Potentials.” The European Physical Journal Plus, vol. 137, no. 9, 1075, Springer Science and Business Media LLC, 2022, doi:10.1140/epjp/s13360-022-03255-9.' short: A.I. Ahmadov, Sh.M. Nagiyev, C. Aydin, V.A. Tarverdiyeva, M.Sh. Orujova, S.V. Badalov, The European Physical Journal Plus 137 (2022). date_created: 2023-04-17T23:03:14Z date_updated: 2023-04-17T23:12:48Z doi: 10.1140/epjp/s13360-022-03255-9 intvolume: ' 137' issue: '9' keyword: - General Physics and Astronomy - Fluid Flow and Transfer Processes language: - iso: eng publication: The European Physical Journal Plus publication_identifier: issn: - 2190-5444 publication_status: published publisher: Springer Science and Business Media LLC status: public title: 'Bound state solutions of Dirac equation: spin and pseudo-spin symmetry in the presence of the combined Manning–Rosen and Yukawa tensor potentials' type: journal_article user_id: '78800' volume: 137 year: '2022' ... --- _id: '30213' abstract: - lang: eng text: Requirement changes and cascading effects of change propagation are major sources of inefficiencies in product development and increase the risk of project failure. Proactive change management of requirement changes yields the potential to handle such changes efficiently. A systematic approach is required for proactive change management to assess and reduce the risk of a requirement change with appropriate effort in industrial application. Within the paper at hand, a novel method for Proactive Management of Requirement Changes (ProMaRC) is presented. It is developed in close collaboration with industry experts and evaluated based on workshops, pilot users’ feedback, three industrial case studies from the automotive industry and five development projects from research. To limit the application effort, an automated approach for dependency analysis based on the machine learning technique BERT and semi-automated assessment of change likelihood and impact using a modified PageRank algorithm is developed. Applying the method, the risks of requirement changes are assessed systematically and reduced by means of proactive change measures. Evaluation shows high performance of dependency analysis and confirms the applicability and usefulness of the method. This contribution opens up the research space of proactive risk management for requirement changes which is currently almost unexploited. It enables more efficient product development. article_number: '1874' author: - first_name: Iris full_name: Gräßler, Iris id: '47565' last_name: Gräßler orcid: 0000-0001-5765-971X - first_name: Christian full_name: Oleff, Christian id: '41188' last_name: Oleff orcid: 0000-0002-0983-1850 - first_name: Daniel full_name: Preuß, Daniel id: '40253' last_name: Preuß citation: ama: Gräßler I, Oleff C, Preuß D. Proactive Management of Requirement Changes in the Development of Complex Technical Systems. Applied Sciences. 2022;12(4). doi:10.3390/app12041874 apa: Gräßler, I., Oleff, C., & Preuß, D. (2022). Proactive Management of Requirement Changes in the Development of Complex Technical Systems. Applied Sciences, 12(4), Article 1874. https://doi.org/10.3390/app12041874 bibtex: '@article{Gräßler_Oleff_Preuß_2022, title={Proactive Management of Requirement Changes in the Development of Complex Technical Systems}, volume={12}, DOI={10.3390/app12041874}, number={41874}, journal={Applied Sciences}, publisher={MDPI AG}, author={Gräßler, Iris and Oleff, Christian and Preuß, Daniel}, year={2022} }' chicago: Gräßler, Iris, Christian Oleff, and Daniel Preuß. “Proactive Management of Requirement Changes in the Development of Complex Technical Systems.” Applied Sciences 12, no. 4 (2022). https://doi.org/10.3390/app12041874. ieee: 'I. Gräßler, C. Oleff, and D. Preuß, “Proactive Management of Requirement Changes in the Development of Complex Technical Systems,” Applied Sciences, vol. 12, no. 4, Art. no. 1874, 2022, doi: 10.3390/app12041874.' mla: Gräßler, Iris, et al. “Proactive Management of Requirement Changes in the Development of Complex Technical Systems.” Applied Sciences, vol. 12, no. 4, 1874, MDPI AG, 2022, doi:10.3390/app12041874. short: I. Gräßler, C. Oleff, D. Preuß, Applied Sciences 12 (2022). date_created: 2022-03-08T12:37:42Z date_updated: 2023-05-03T08:40:30Z department: - _id: '152' doi: 10.3390/app12041874 intvolume: ' 12' issue: '4' keyword: - Fluid Flow and Transfer Processes - Computer Science Applications - Process Chemistry and Technology - General Engineering - Instrumentation - General Materials Science language: - iso: eng publication: Applied Sciences publication_identifier: issn: - 2076-3417 publication_status: published publisher: MDPI AG quality_controlled: '1' status: public title: Proactive Management of Requirement Changes in the Development of Complex Technical Systems type: journal_article user_id: '5905' volume: 12 year: '2022' ... --- _id: '35327' article_number: '121536' article_type: original author: - first_name: Martin full_name: Wortmann, Martin last_name: Wortmann - first_name: Klaus full_name: Viertel, Klaus last_name: Viertel - first_name: Alexander full_name: Welle, Alexander last_name: Welle - first_name: Waldemar full_name: Keil, Waldemar last_name: Keil - first_name: Natalie full_name: Frese, Natalie last_name: Frese - first_name: Wiebke full_name: Hachmann, Wiebke last_name: Hachmann - first_name: Philipp full_name: Krieger, Philipp last_name: Krieger - first_name: Johannes full_name: Brikmann, Johannes last_name: Brikmann - first_name: Claudia full_name: Schmidt, Claudia id: '466' last_name: Schmidt orcid: 0000-0003-3179-9997 - first_name: Elmar full_name: Moritzer, Elmar id: '20531' last_name: Moritzer - first_name: Bruno full_name: Hüsgen, Bruno last_name: Hüsgen citation: ama: Wortmann M, Viertel K, Welle A, et al. Anomalous bulk diffusion of methylene diphenyl diisocyanate in silicone elastomer. International Journal of Heat and Mass Transfer. 2021;177. doi:10.1016/j.ijheatmasstransfer.2021.121536 apa: Wortmann, M., Viertel, K., Welle, A., Keil, W., Frese, N., Hachmann, W., Krieger, P., Brikmann, J., Schmidt, C., Moritzer, E., & Hüsgen, B. (2021). Anomalous bulk diffusion of methylene diphenyl diisocyanate in silicone elastomer. International Journal of Heat and Mass Transfer, 177, Article 121536. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121536 bibtex: '@article{Wortmann_Viertel_Welle_Keil_Frese_Hachmann_Krieger_Brikmann_Schmidt_Moritzer_et al._2021, title={Anomalous bulk diffusion of methylene diphenyl diisocyanate in silicone elastomer}, volume={177}, DOI={10.1016/j.ijheatmasstransfer.2021.121536}, number={121536}, journal={International Journal of Heat and Mass Transfer}, publisher={Elsevier BV}, author={Wortmann, Martin and Viertel, Klaus and Welle, Alexander and Keil, Waldemar and Frese, Natalie and Hachmann, Wiebke and Krieger, Philipp and Brikmann, Johannes and Schmidt, Claudia and Moritzer, Elmar and et al.}, year={2021} }' chicago: Wortmann, Martin, Klaus Viertel, Alexander Welle, Waldemar Keil, Natalie Frese, Wiebke Hachmann, Philipp Krieger, et al. “Anomalous Bulk Diffusion of Methylene Diphenyl Diisocyanate in Silicone Elastomer.” International Journal of Heat and Mass Transfer 177 (2021). https://doi.org/10.1016/j.ijheatmasstransfer.2021.121536. ieee: 'M. Wortmann et al., “Anomalous bulk diffusion of methylene diphenyl diisocyanate in silicone elastomer,” International Journal of Heat and Mass Transfer, vol. 177, Art. no. 121536, 2021, doi: 10.1016/j.ijheatmasstransfer.2021.121536.' mla: Wortmann, Martin, et al. “Anomalous Bulk Diffusion of Methylene Diphenyl Diisocyanate in Silicone Elastomer.” International Journal of Heat and Mass Transfer, vol. 177, 121536, Elsevier BV, 2021, doi:10.1016/j.ijheatmasstransfer.2021.121536. short: M. Wortmann, K. Viertel, A. Welle, W. Keil, N. Frese, W. Hachmann, P. Krieger, J. Brikmann, C. Schmidt, E. Moritzer, B. Hüsgen, International Journal of Heat and Mass Transfer 177 (2021). date_created: 2023-01-06T12:20:46Z date_updated: 2023-01-07T10:25:55Z department: - _id: '2' - _id: '9' - _id: '315' doi: 10.1016/j.ijheatmasstransfer.2021.121536 intvolume: ' 177' keyword: - Fluid Flow and Transfer Processes - Mechanical Engineering - Condensed Matter Physics language: - iso: eng publication: International Journal of Heat and Mass Transfer publication_identifier: issn: - 0017-9310 publication_status: published publisher: Elsevier BV quality_controlled: '1' status: public title: Anomalous bulk diffusion of methylene diphenyl diisocyanate in silicone elastomer type: journal_article user_id: '466' volume: 177 year: '2021' ...