@inproceedings{9879, abstract = {{Application of prognostics and health management (PHM) in the field of Proton Exchange Membrane (PEM) fuel cells is emerging as an important tool in increasing the reliability and availability of these systems. Though a lot of work is currently being conducted to develop PHM systems for fuel cells, various challenges have been encountered including the self-healing effect after characterization as well as accelerated degradation due to dynamic loading, all which make RUL predictions a difficult task. In this study, a prognostic approach based on adaptive particle filter algorithm is proposed. The novelty of the proposed method lies in the introduction of a self-healing factor after each characterization and the adaption of the degradation model parameters to fit to the changing degradation trend. An ensemble of five different state models based on weighted mean is then developed. The results show that the method is effective in estimating the remaining useful life of PEM fuel cells, with majority of the predictions falling within 5\% error. The method was employed in the IEEE 2014 PHM Data Challenge and led to our team emerging the winner of the RUL category of the challenge.}}, author = {{Kimotho, James Kuria and Meyer, Tobias and Sextro, Walter}}, booktitle = {{Prognostics and Health Management (PHM), 2014 IEEE Conference on}}, keywords = {{ageing, particle filtering (numerical methods), proton exchange membrane fuel cells, remaining life assessment, PEM fuel cell prognostics, PHM, RUL predictions, accelerated degradation, adaptive particle filter algorithm, dynamic loading, model parameter adaptation, prognostics and health management, proton exchange membrane fuel cells, remaining useful life estimation, self-healing effect, Adaptation models, Data models, Degradation, Estimation, Fuel cells, Mathematical model, Prognostics and health management}}, pages = {{1--6}}, title = {{{PEM fuel cell prognostics using particle filter with model parameter adaptation}}}, doi = {{10.1109/ICPHM.2014.7036406}}, year = {{2014}}, } @inproceedings{11753, abstract = {{This contribution describes a step-wise source counting algorithm to determine the number of speakers in an offline scenario. Each speaker is identified by a variational expectation maximization (VEM) algorithm for complex Watson mixture models and therefore directly yields beamforming vectors for a subsequent speech separation process. An observation selection criterion is proposed which improves the robustness of the source counting in noise. The algorithm is compared to an alternative VEM approach with Gaussian mixture models based on directions of arrival and shown to deliver improved source counting accuracy. The article concludes by extending the offline algorithm towards a low-latency online estimation of the number of active sources from the streaming input data.}}, author = {{Drude, Lukas and Chinaev, Aleksej and Tran Vu, Dang Hai and Haeb-Umbach, Reinhold}}, booktitle = {{14th International Workshop on Acoustic Signal Enhancement (IWAENC 2014)}}, keywords = {{Accuracy, Acoustics, Estimation, Mathematical model, Soruce separation, Speech, Vectors, Bayes methods, Blind source separation, Directional statistics, Number of speakers, Speaker diarization}}, pages = {{213--217}}, title = {{{Towards Online Source Counting in Speech Mixtures Applying a Variational EM for Complex Watson Mixture Models}}}, year = {{2014}}, } @inproceedings{37037, abstract = {{Today we can identify a big gap between requirement specification and the generation of test environments. This article extends the Classification Tree Method for Embedded Systems (CTM/ES) to fill this gap by new concepts for the precise specification of stimuli for operational ranges of continuous control systems. It introduces novel means for continuous acceptance criteria definition and for functional coverage definition.}}, author = {{Krupp, Alexander and Müller, Wolfgang}}, booktitle = {{Proceedings of DATE’10}}, keywords = {{System testing, Automatic testing, Object oriented modeling, Classification tree analysis, Automotive engineering, Mathematical model, Embedded system, Control systems, Electronic equipment testing, Software testing}}, location = {{Dresden}}, publisher = {{IEEE}}, title = {{{A Systematic Approach to Combined HW/SW System Test}}}, doi = {{10.1109/DATE.2010.5457186}}, year = {{2010}}, }