@phdthesis{21209, abstract = {{Die additive Fertigung mittels Laser Powderbed Fusion Verfahren (L-PBF) von Metallen wird zunehmend genutzt, um Funktionsbauteile endkonturnah zu fertigen. Die in der vor-liegenden Arbeit untersuchte Parameter- und Prozessoptimierung liefert einen Beitrag zur wirtschaftlichen Nutzung des L-PBF und zeigt, dass höhere Aufbauraten bei der ganzheit-lichen Betrachtung des Prozesses realisierbar sind. Die Parameter- und Prozessoptimierung erfordert eine Untersuchung des Einflusses der Fertigungs- und Nachbearbeitungsparameter auf das erzeugte Volumen sowie auf die Mikrostruktur und die resultierenden Materialeigenschaften. Das Ziel der vorliegenden Arbeit ist die Entwicklung einer optimierten Prozessführung mit abschließender Bewer-tung der Wirtschaftlichkeit. Mit dem entwickelten Gesamtprozess wird eine um den Faktor 1,6 höhere Aufbaurate erzielt. Des Weiteren wird die Methodik zur Erarbeitung des opti-mierten Prozessfensters beschrieben, sodass die Herangehensweise auf weitere Werk-stoffe angewendet werden kann. Die mechanischen Eigenschaften werden für den stati-schen und dynamischen Lastfall untersucht und mit der Mikrostruktur korreliert. Abschlie-ßend wird die Prozessoptimierung zur Fertigung eines Demonstrators eingesetzt und wirtschaftlich validiert. Die Ergebnisse zeigen, dass durch das hier angewendete Vorge-hen eine Prozesszeitreduktion von 22,5% und eine Kostenreduktion von 11% realisiert werden kann.}}, author = {{Ahlers, Dominik}}, isbn = {{978-3844074246}}, keywords = {{Additive Manufacturing, SLM}}, pages = {{137}}, publisher = {{Shaker}}, title = {{{Parameter- und Prozessoptimierung für den additiven Fertigungsprozess im Pulverbett am Beispiel der Legierung Ti6Al4V }}}, volume = {{19}}, year = {{2020}}, } @phdthesis{26901, abstract = {{In der vorliegenden Arbeit wurden die mikrostrukturellen Eigenschaften und das dadurch resultierende mechanische Verhalten der im SLM-Verfahren (Selective Laser Melting) hergestellten Nickelbasis-Superlegierung Inconel 939 untersucht und einer Inconel 939 Gusslegierung gegenübergestellt. Die monotonen und mikrostrukturellen Untersuchungsergebnisse zeigen eine eindeutige Abhängigkeit der Herstellungsrichtung und deutliche Unterschiede zur Gusslegierung, insbesondere in der Mikrostruktur. Dehnungsgeregelte isotherme und thermomechanische Ermüdungsversuche in Kombination mit der Methode der digitalen Bildkorrelation (DIC) beschreiben das mechanische Verhalten sowie die kritischen Bereiche im Gefüge. Ob beim SLM- oder Gusswerkstoff eine höhere Lebensdauer bei der isothermen Ermüdung erreicht wird, ist von der Höhe der Beanspruchung abhängig. Im ausscheidungsgehärteten Zustand besitzt das SLM-Material bei niedrigen Belastungen und Temperaturen von Raumtemperatur bis 750 °C eine höhere Lebensdauer und zeigt somit ein besseres Ermüdungsverhalten als der Gusswerkstoff. Bei höheren Dehnungsamplituden werden vorhandene Poren aktiviert und ein schnelles Versagen tritt ein. Mit geeigneten HIP-Parametern konnte die Porosität allerdings deutlich reduziert werden.}}, author = {{Kanagarajah, Pirabagini}}, isbn = {{978-3-8440-4796-7}}, keywords = {{Nickelbasis-Superlegierung, Inconel 939, Laserschmelzverfahren, SLM, Ermüdung, Mikrostruktur}}, pages = {{182}}, title = {{{Ermüdungsverhalten und mikrostrukturelle Charakterisierung der im Laserschmelzverfahren hergestellten Nickelbasis-Superlegierung Inconel 939}}}, volume = {{6}}, year = {{2016}}, }