@article{9767, abstract = {{The paper presents the results of numerical and experimental investigation of cylindrical piezoelectric actuator used for achieving independent three degrees of freedom oscillations of the contact point. The design of actuator based on a hollow piezoelectric cylinder mounted on a metal rod. The piezoceramic cylinder has a radial polarization and special configuration of the electrodes that cover inner and outer surface of the cylinder. The main advantage of actuator's design is that solid metallic rod operates as a part of inner electrode of the cylinder and a stator of actuator. The geometry of piezoelectric actuator was adopted to reach resonance of oscillations for the first longitudinal mode and the third flexural mode at same frequency. The actuator is designed to move positioned object through contact point which is located on the top of the rod. The optimal topology of electrodes was found to achieve longitudinal and flexural oscillations of the actuator in two perpendicular planes. Three degrees of freedom of the positioning object can be achieved and control of the system can be implemented by applying different excitation schemes and regimes. The numerical simulation and experimental study of piezoelectric actuator was performed. Impedance of actuator was analyzed under different excitation regimes. The results of numerical modeling and experimental study were compared. Recommendations for the further development of this type of actuator are given.}}, author = {{Lucinskis, Raimundas and Mazeika, Dalius and Hemsel, Tobias and Bansevicius, Ramutis}}, journal = {{AIP Conference Proceedings}}, keywords = {{dielectric polarisation, piezoceramics, piezoelectric actuators}}, number = {{1}}, pages = {{693--696}}, publisher = {{AIP}}, title = {{{Multi-DOF cylindrical piezoelectric actuator with radial polarization}}}, doi = {{10.1063/1.3703277}}, volume = {{1433}}, year = {{2011}}, }