@inproceedings{48790, abstract = {{To ensure uniform documentation of support structure information, a concept is presented that enables a standardized depiction of support structures in technical drawings based on ISO 128-3. To this end, requirements for a uniform depiction are defined and a procedure for drawing entry is presented. The drawing entry should contain all production-relevant support structure information. The standardized documentation of support structure information in technical drawings is intended to ensure a simple, clear and safe exchange of information between business units or different companies along the value chain. As a result a possible drawing entry of support structures was developed. To distinguish between different support structure types, a standardized depiction of geometrical information in a specification field is shown. The specification field gives a detailed description of the support structure type, the geometry as well as the connection to the part and the building platform. Also uncommon support types like lattice structures or CAD based support structures can be implemented. To ensure the usability the depictio is editable and extendable.}}, author = {{Lammers, Stefan and Koers, Thorsten and Magyar, Balázs and Zimmer, Detmar and Lieneke, Tobias}}, booktitle = {{Proceedings of the 34th Annual International Solid Freeform Fabrication Symposium 2023}}, editor = {{Beaman, Joseph}}, location = {{Austin, Texas, USA}}, title = {{{Depiction of support structures in technical drawings}}}, volume = {{34}}, year = {{2023}}, } @inproceedings{46745, abstract = {{To ensure uniform documentation of support structure information, a concept is presented that enables a standardized depiction of support structures in technical drawings based on ISO 128-3. To this end, requirements for a uniform depiction are defined and a procedure for drawing entry is presented. The drawing entry should contain all production-relevant support structure information. The standardized documentation of support structure information in technical drawings is intended to ensure a simple, clear and safe exchange of information between business units or different companies along the value chain. As a result a possible drawing entry of support structures was developed. To distinguish between different support structure types, a standardized depiction of geometrical information in a specification field is shown. The specification field gives a detailed description of the support structure type, the geometry as well as the connection to the part and the building platform. Also uncommon support types like lattice structures or CAD based support structures can be implemented. To ensure the usability the depiction is editable and extendable.}}, author = {{Lammers, Stefan and Koers, Thorsten and Magyar, Balázs and Zimmer, Detmar and Lieneke, Tobias}}, keywords = {{additive manufacturing, support structures}}, location = {{Austin, TExas, USA}}, title = {{{Depiction of support structures in technical drawings}}}, year = {{2023}}, } @inbook{23734, author = {{Lammers, Stefan and Kruse, Anne and Gierse, Jan and Tominski, Johannes and Lindemann, Christian-Friedrich}}, booktitle = {{Mehrzieloptimierte und durchgängig automatisierte Bauteilentwicklung für Additive Fertigungsverfahren im Produktentstehungsprozess}}, editor = {{Koch, Rainer and Zimmer, Detmar and Tröster, Thomas and Gräßler, Iris}}, isbn = {{978-3-8440-7932-6}}, title = {{{Konstruktionsrichtlinien in der Produktentwicklung}}}, year = {{2021}}, } @inproceedings{32799, abstract = {{The advantages of Additive Manufacturing (AM) highlight the capability to become an inherent part within the product development process. However, process specific challenges harm its further currency for industrial applications, for instance the high geometrical deviations. Different process factors influence the manufacturing accuracy and lead to large dimensional, form and positional deviations. Published research relative to deviations is difficult to compare, because it is based on several specimens that were manufactured with different processes, materials and machine settings. This fact emphasizes that reliable tolerance values for AM are hard to define in standards. Within this investigation, a universally applicable method was developed to examine geometrical deviations for AM processes. The main aim is the derivation of achievable tolerance values considering important influencing factors. Furthermore, due to the locally varying surface roughness of additively manufactured parts several tactile measurements were compared.}}, author = {{Lieneke, Tobias and Lammers, Stefan and Zimmer, Detmar}}, booktitle = {{32nd Annual International Virtual Solid Freeform Fabrication (SFF) Symposium }}, location = {{Austin, Texas, USA}}, title = {{{Geometrical Deviations In Additive Manufacturing -- Influences On The Manufacturing Accuracy}}}, doi = {{http://dx.doi.org/10.26153/tsw/17565}}, year = {{2021}}, } @inproceedings{23880, author = {{Lammers, Stefan and Lieneke, Tobias and Zimmer, Detmar}}, title = {{{Development of a Method to Derive Design Guidelines for Production-suitable Support Structures in Metal Laser Powder Bed Fusion}}}, year = {{2021}}, } @inproceedings{22442, abstract = {{Laser Beam Melting (LBM) is an Additive Manufacturing (AM) process on the threshold of serial production. Therefore, LBM has to overcome different problems such as a low productivity and minor economic efficiency. Support structures are essential for LBM; however, these structures contribute to the mentioned topics, because their removal is time consuming and cost intensive. To enable design engineers and operators to increase the efficiency of LBM, design guidelinesfor support structures suitable for post-processing are developed. For this purpose, the effect of different design parameters on various evaluation criteria is considered. Suitability for post-processing can be evaluated in terms of cost, quality and time. Therefore, test specimens are built and parameter impacts on material consumption as well as the post-processing time is examined. Furthermore, the roughness of the parts is analyzed and used as an indicator for the removability of the support structure. In addition, warpage is measured and the impact of the parameters on this criterion is examined. Based on the results, suitable design guidelines and hints for support structures are developed in order to reduce time and costs during manufacturing and post-processing. }}, author = {{Künneke, Thomas and Lieneke, Tobias and Lammers, Stefan and Zimmer, Detmar}}, booktitle = {{Proceedings of the Special Interest Group meeting on Advancing Precision in Additive Manufacturing}}, pages = {{137--140}}, title = {{{Design guidelines for post-processing of laser beam melting in context of support structures}}}, doi = {{https://www.euspen.eu/knowledge-base/AM19127.pdf}}, year = {{2019}}, } @inproceedings{22441, abstract = {{According to ISO / ASTM 52900, additive manufacturing (AM) is defined as "the process of joining materials to make parts from 3D model data, usually layer upon layer, as opposed to conventional manufacturing including subtractive manufacturing technologies and formative manufacturing methodologies” [1]. This results in significant advantages over conventional manufacturing methodologies, such as the production of topologically optimized, complex structures, lower material consumption or shorter product development cycles. In order to be able to use these advantages, the possibilities and restrictions of the processes must be known. In particular, selective laser beam melting (SLM), in which a powdery metallic starting material is melted by means of a laser, requires a sound understanding of the process. For this purpose, design guidelines have been presented in various scientific papers. These design guidelines help to design a component in such a way that it can be manufactured successfully using additive manufacturing. These so-called “AMsuitable design guidelines” can be found among others at Adam, Kranz and Thomas [2,3,4,5]. In contrast to established manufacturing processes, the post-processing of additive components is divided into two steps. First, the AM immanent post processing, such as the removing of the component from the building platform or the removing of the remaining powder. These post-processing steps are in the following referred to “post-processing”. Secondly, the subsequent post-processing steps to improve the component properties, such as milling and turning or a stress-relief annealing. These are referred to as “finishing” and form the focus of this paper. With regard to a successful finishing of additively manufactured components, design guidelines must be taken into account that consider the finishing inherent restrictions and possibilities. In the following, these design guidelines are referred to “finishing suitable”. They can deviate significantly from those of conventionally manufactured components in the case of additively manufactured components. Although there are some investigations that deal with the post-processing of additively manufactured components [6,7], there are hardly any design guidelines that are suitable for finishing [8]. Therefore, knowledge about the finishing of additively manufactured components is based on experimental experience rather than on scientific knowledge. For this reason, design guidelines for a finishing suitable design must be methodically determined and quantified. These quantified design guidelines can be used for an automated design check on complex components like topology optimized geometries.}}, author = {{Lammers, Stefan and Tominski, Johannes and Zimmer, Detmar}}, booktitle = {{II International Conference on Simulation for Additive Manufacturing Sim-AM 2019 11-13 September, 2019}}, isbn = {{978-84-949194-8-0}}, pages = {{174--185}}, title = {{{Guidelines for post processing oriented design of additive manufactured parts for use in topology optimization}}}, doi = {{http://congress.cimne.com/sim-am2019/frontal/doc/EbookSim-AM2019.pdf}}, year = {{2019}}, } @inproceedings{24105, author = {{Urbanek, Stefan and Ponick, Bernd and Taube, Alexander and Hoyer, Kay-Peter and Schaper, Mirko and Lammers, Stefan and Lieneke, Tobias and Zimmer, Detmar}}, booktitle = {{2018 IEEE Transportation Electrification Conference and Expo (ITEC)}}, title = {{{Additive Manufacturing of a Soft Magnetic Rotor Active Part and Shaft for a Permanent Magnet Synchronous Machine}}}, doi = {{10.1109/itec.2018.8450250}}, year = {{2018}}, } @inproceedings{22430, author = {{Urbanek, Stefan and Ponick, Bernd and Taube, Alexander and Hoyer, Kay-Peter and Schaper, Mirko and Lammers, Stefan and Lieneke, Tobias and Zimmer, Detmar}}, booktitle = {{Conference paper, 2018 IEEE Transportation Electrification Conference and Expo (ITEC), Juni 2018, DOI: 10.1109/ITEC.2018.8450250}}, title = {{{Additive Manufacturing of a Soft Magnetic Rotor Active Part and Shaft for a Permanent Magnet Synchronous Machine}}}, year = {{2018}}, } @inproceedings{22433, author = {{Tominski, Johannes and Lammers, Stefan}}, booktitle = {{14th PERMAS Users' Conference}}, isbn = {{978-3-926494-18-4}}, title = {{{Software-assisted design check of additive manufactured components}}}, doi = {{https://www.semanticscholar.org/paper/METHOD-FOR-A-SOFTWARE-BASED-DESIGN-CHECK-OF-Tominski-Lammers/83e141f55b33041ade5e661958b449047d6f026e#extracted}}, volume = {{14}}, year = {{2018}}, } @inproceedings{22434, abstract = {{This paper reports on the experimental development and the theoretical analysis of the scanning laser epitaxy (SLE) process that is currently being investigated and developed at the Georgia Institute of Technology. SLE is a laser-based manufacturing process for deposition of equiaxed, directionally solidified and single-crystal nickel superalloys onto superalloy substrates through the selective melting and re-solidification of superalloy powders. The thermal modeling of the system, done in a commercial CFD software package, simulates a heat source moving over a powder bed and considers the approximate change in the property values for consolidating CMSX-4 nickel superalloy powder. The theoretical melt depth is obtained from the melting temperature criteria and the resulting plots are presented alongside matching experimental micrographs obtained through cross-sectional metallography. The influence of the processing parameters on the microstructural evolution, as evidenced through observations made from the micrographs, is discussed. This work is sponsored by the Office of Naval Research, through grants N00173-07-1-G031 and N00014-10-1-0526.}}, author = {{Tominski, Johannes and Lammers, Stefan and Wulf, Christian and Zimmer, Detmar}}, booktitle = {{29th Annual International Solid Freeform Fabrication Symposium}}, title = {{{Method for a Software-based Design Check of Additively Manufactured Components}}}, doi = {{http://utw10945.utweb.utexas.edu/sites/default/files/2018/006%20MethodforaSoftwareBasedDesignCheckofAdditi.pdf}}, volume = {{29}}, year = {{2018}}, } @inproceedings{22438, abstract = {{Neue Konstruktionsabläufe und Potentiale bei der Gestaltung additiv hergestellter Bauteile verlangen insbesondere im Konstruktionsprozess ein Umdenken. Fehlende Kenntnisse über die additive Fertigungstechnologie hemmen zusätzlich dieses Umdenken [HHD06, WC15]. Um die verhältnismäßig neue Fertigungstechnologie zugänglicher zu machen, wurden in den letzten Jahren verschiedene Konstruktionsempfehlungen erarbeitet. Die Vielzahl an Empfehlungen erschwert dem Konstrukteur allerdings einen entsprechenden Überblick zu behalten und für ihn relevante von nicht relevanten Empfehlungen zu sondieren. Aus diesem Grund wurden öffentlich zugängliche Empfehlungen für das Laser-Strahlschmelzen zusammengetragen und einer Priorisierung unterzogen. Das Ergebnis beinhaltet Konstruktionsempfehlungen, die einen relevanten Einfluss auf die Bauteilfertigung, die Bauteilqualität und -funktion haben. Durch Abstraktion dieser Empfehlungen konnten Richtlinien erarbeitet werden, die für eine softwareseitige Gestaltprüfung verwendet werden können. Durch diese Gestaltprüfung können Bauteile beliebiger Komplexität, zum Beispiel feine Gitter oder topologieoptimierte Strukturen, bereits vor der Fertigung hinsichtlich der Einhaltung relevanter Konstruktionsrichtlinien überprüft werden. Der Gestaltprüfer greift dabei auf eine Datenbank zurück, die zulässige, quantitative Grenzwerte von Konstruktionsrichtlinien enthält. Diese Grenzwerte werden im Folgenden Attributsausprägungen genannt und können experimentell ermittelt werden. Hierfür wurden standardisierte Prüfkörperbaujobs entwickelt, die alle notwendigen Prüfkörper zur Ermittlung der Attributsausprägungen enthalten und deren Auswertung eine Erweiterung der Datenbank hinsichtlich}}, author = {{Lammers, Stefan and Tominski, Johannes and Magerkohl, Sebastian and Künneke, Thomas and Lieneke, Tobias and Zimmer, Detmar}}, booktitle = {{Proceedings of the 15th Rapid.Tech Conference}}, isbn = {{978-3-446-45812-3}}, pages = {{81--94}}, title = {{{Konstruktionsrichtlinien für eine softwaregestützte Anpassung von additiv gefertigten Bauteilen im Hinblick auf eine robuste Fertigung}}}, doi = {{https://doi.org/10.3139/9783446458123.005}}, year = {{2018}}, } @inproceedings{22431, abstract = {{The design of additively manufactured components requires a rethinking in the design process. This is inhibited by a lack of knowledge about additive manufacturing technologies. For this reason, a large number of design guidelines have been developed in recent years. In their present form the design guidelines are not suitable for processing in a software algorithm, since the guidelines have a certain redundancy and partly influence each other. This paper describes several steps to consolidate the existing guidelines and to prepare them in a way that they can be used in a software algorithm for a design check. Therefore, existing guidelines are collected, prioritized and quantified with regard to their relevance for a robust production. To quantify the guidelines, test specimens are developed, produced and evaluated in order to obtain a limit value for the geometric properties. With these limit values, quantifiable design guidelines can be applied to designers and software tools.}}, author = {{Lammers, Stefan and Tominski, Johannes and Magerkohl, Sebastian and Lieneke, Tobias and Künneke, Thomas and Zimmer, Detmar}}, booktitle = {{29th Annual International Solid Freeform Fabrication Symposium}}, title = {{{Design Guidelines for a Software-supported Adaptation of Additively Manufactured Components with Regard to a Robust Production}}}, doi = {{http://utw10945.utweb.utexas.edu/sites/default/files/2018/046%20DesignGuidelinesforaSoftwareSupportedAdaptat.pdf}}, volume = {{29}}, year = {{2018}}, } @inproceedings{41526, author = {{Urbanek, Stefan and Ponick, Bernd and Taube, Alexander and Hoyer, Kay-Peter and Schaper, Mirko and Lammers, Stefan and Lieneke, Tobias and Zimmer, Detmar}}, booktitle = {{2018 IEEE Transportation Electrification Conference and Expo (ITEC)}}, publisher = {{IEEE}}, title = {{{Additive Manufacturing of a Soft Magnetic Rotor Active Part and Shaft for a Permanent Magnet Synchronous Machine}}}, doi = {{10.1109/itec.2018.8450250}}, year = {{2018}}, } @inproceedings{22420, abstract = {{Additive Fertigungsverfahren (engl.: Additive Manufacturing, kurz: AM) ermöglichen die werkzeuglose Herstellung von Komponenten und kompletten Baugruppen direkt aus dem 3D-CAD-Modell. Insbesondere additiv hergestellte Leichtbaukonstruktionen weisen ein hohes Potential für den Elektromaschinenbau auf. In diesem Paper werden erste Ansätze zur additiven Fertigung einer Rotorwelle für eine permanentmagneterregte Synchronmaschine (PMSM) aufgezeigt. Die Verbesserung einer ausgeprägten Leichtbaukonstruktion der Rotorwelle sowie die Charakterisierung des additiv verarbeiteten Werkstoffs werden aufgeführt. Hierzu wurden Prüfkörper aus dem Werkstoffs H13 (1.2344) hergestellt. Des Weiteren wurden Prüfkörper additiv gefertigter Gitterstrukturen entwickelt und untersucht. Zur Werkstoffcharakterisierung wurden sowohl mechanische Eigenschaften ermittelt, wie die Streckgrenze, die Zugfestigkeit und die Härte als auch elektromagnetische Eigenschaften, wie die Koerzitivfeldstärke, die elektrische Leitfähigkeit und die Permeabilität. Die Ergebnisse zeigen, dass die magnetischen Eigenschaften von H13 durch eine angeschlossene Wärmebehandlung deutlich verbessert werden konnten. Im Anschluss an die Werkstoffcharakterisierung wurde ein innovatives Leichtbau-Rotorwellenkonzept mit internen Gitterstrukturen entwickelt. Verglichen mit einem konventionell gefertigten Rotor konnte die Rotormasse um 25% reduziert werden sowie das Massenträgheitsmoment um 23% reduziert werden bei einer Testdrehzahl von 3000 U/min und einem Drehmoment von 71,98 Nm.}}, author = {{Lammers, Stefan and Quattrone, Francesco and Mrozek, Rafael and Zimmer, Detmar and Schmid, Hans-Joachim and Ponick, Bernd and Hoffmann, Michael}}, booktitle = {{Proceedings of the 14th Rapid.Tech Conference}}, isbn = {{978-3-446-45459-0}}, pages = {{80--93}}, publisher = {{Hanser Verlag}}, title = {{{Entwicklung und additive Herstellung einer Leichtbau-Rotorwelle für eine permanentmagneterregte Synchronmaschine}}}, doi = {{10.3139/9783446454606.006}}, year = {{2017}}, } @techreport{23737, author = {{Lammers, Stefan and Quattrone, Francesco and Mrozek, Rafael}}, publisher = {{Forschungsvereinigung Antriebstechnik e.V.}}, title = {{{Machbarkeitsstudie 3D Druck Elektromotoren}}}, volume = {{Nr. 1189}}, year = {{2016}}, } @inproceedings{22404, abstract = {{Additive Manufacturing (AM), also known as 3D printing, is a relatively new technology which enables the toolless production of components and entire assemblies directly from a CAD file. Today, the technology is still not widely used in industrial production. It is mainly limited to special applications, although it shows great potential. In this paper, first approaches are shown to apply AM to the production of rotors for permanent magnet synchronous machines (PMSM). The possibilities of a lightweight design with a low moment of inertia as well as the influence on the magnetic anisotropy for an improved sensorless control of PMSM are pointed out. The results clearly demonstrate the great potential of additive manufacturing in electrical engineering applications.}}, author = {{Lammers, Stefan and Adam, Guido and Schmid, Hans-Joachim and Mrozek, Rafael and Oberacker, Rainer and Hoffmann, Michael and Quattrone, Francesco and Ponick, Bernd}}, booktitle = {{EDPC 2016}}, isbn = {{978-1-5090-2908-2}}, title = {{{Additive Manufacturing of a Lightweight Rotor for a Permanent Magnet Synchronous Machine}}}, doi = {{10.1109/EDPC.2016.7851312}}, year = {{2016}}, } @article{15965, abstract = {{Abstract}}, author = {{Leuders, Stefan and Lieneke, Tobias and Lammers, Stefan and Tröster, Thomas and Niendorf, Thomas}}, issn = {{0884-2914}}, journal = {{Journal of Materials Research}}, pages = {{1911--1919}}, title = {{{On the fatigue properties of metals manufactured by selective laser melting – The role of ductility}}}, doi = {{10.1557/jmr.2014.157}}, year = {{2014}}, }