@phdthesis{8080, abstract = {{This thesis investigates approximate pure Nash equilibria in different game-theoretic models. In such an outcome, no player can improve her objective by more than a given factor through a deviation to another strategy. In the first part, we investigate two variants of Congestion Games in which the existence of pure Nash equilibria is guaranteed through a potential function argument. However, the computation of such equilibria might be hard. We construct and analyze approximation algorithms that enable the computation of states with low approximation factors in polynomial time. To show their guarantees we use sub games among players, bound the potential function values of arbitrary states and exploit a connection between Shapley and proportional cost shares. Furthermore, we apply and analyze sampling techniques for the computation of approximate Shapley values in different settings. In the second part, we concentrate on the existence of approximate pure Nash equilibria in games in which no pure Nash equilibria exist in general. In the model of Coevolving Opinion Formation Games, we bound the approximation guarantees for natural states nearly independent of the specific definition of the players' neighborhoods by applying a concept of virtual costs. For the special case of only one influential neighbor, we even show lower approximation factors for a natural strategy. Then, we investigate a two-sided Facility Location Game among facilities and clients on a line with an objective function consisting of distance and load. We show tight bounds on the approximation factor for settings with three facilities and infinitely many clients. For the general scenario with an arbitrary number of facilities, we bound the approximation factor for two promising candidates, namely facilities that are uniformly distributed and which are paired.}}, author = {{Feldotto, Matthias}}, title = {{{Approximate Pure Nash Equilibria in Congestion, Opinion Formation and Facility Location Games}}}, doi = {{10.17619/UNIPB/1-588}}, year = {{2019}}, } @inproceedings{10281, abstract = {{Competing firms tend to select similar locations for their stores. This phenomenon, called the principle of minimum differentiation, was captured by Hotelling with a landmark model of spatial competition but is still the object of an ongoing scientific debate. Although consistently observed in practice, many more realistic variants of Hotelling's model fail to support minimum differentiation or do not have pure equilibria at all. In particular, it was recently proven for a generalized model which incorporates negative network externalities and which contains Hotelling's model and classical selfish load balancing as special cases, that the unique equilibria do not adhere to minimum differentiation. Furthermore, it was shown that for a significant parameter range pure equilibria do not exist. We derive a sharp contrast to these previous results by investigating Hotelling's model with negative network externalities from an entirely new angle: approximate pure subgame perfect equilibria. This approach allows us to prove analytically and via agent-based simulations that approximate equilibria having good approximation guarantees and that adhere to minimum differentiation exist for the full parameter range of the model. Moreover, we show that the obtained approximate equilibria have high social welfare.}}, author = {{Feldotto, Matthias and Lenzner, Pascal and Molitor, Louise and Skopalik, Alexander}}, booktitle = {{Proceedings of the 18th International Conference on Autonomous Agents and MultiAgent Systems}}, location = {{Montreal QC, Canada}}, pages = {{1949----1951}}, publisher = {{International Foundation for Autonomous Agents and Multiagent Systems}}, title = {{{ From Hotelling to Load Balancing: Approximation and the Principle of Minimum Differentiation}}}, year = {{2019}}, } @inproceedings{2484, abstract = {{We study the classic bin packing problem in a fully-dynamic setting, where new items can arrive and old items may depart. We want algorithms with low asymptotic competitive ratio while repacking items sparingly between updates. Formally, each item i has a movement cost c_i >= 0, and we want to use alpha * OPT bins and incur a movement cost gamma * c_i, either in the worst case, or in an amortized sense, for alpha, gamma as small as possible. We call gamma the recourse of the algorithm. This is motivated by cloud storage applications, where fully-dynamic bin packing models the problem of data backup to minimize the number of disks used, as well as communication incurred in moving file backups between disks. Since the set of files changes over time, we could recompute a solution periodically from scratch, but this would give a high number of disk rewrites, incurring a high energy cost and possible wear and tear of the disks. In this work, we present optimal tradeoffs between number of bins used and number of items repacked, as well as natural extensions of the latter measure.}}, author = {{Feldkord, Björn and Feldotto, Matthias and Gupta, Anupam and Guruganesh, Guru and Kumar, Amit and Riechers, Sören and Wajc, David}}, booktitle = {{45th International Colloquium on Automata, Languages, and Programming (ICALP 2018)}}, editor = {{Chatzigiannakis, Ioannis and Kaklamanis, Christos and Marx, Dániel and Sannella, Donald}}, isbn = {{978-3-95977-076-7}}, issn = {{1868-8969}}, location = {{Prag}}, pages = {{51:1--51:24}}, publisher = {{Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik}}, title = {{{Fully-Dynamic Bin Packing with Little Repacking}}}, doi = {{10.4230/LIPIcs.ICALP.2018.51}}, volume = {{107}}, year = {{2018}}, } @inproceedings{2831, abstract = {{We consider a market where final products or services are compositions of a number of basic services. Users are asked to evaluate the quality of the composed product after purchase. The quality of the basic service influences the performance of the composed services but cannot be observed directly. The question we pose is whether it is possible to use user evaluations on composed services to assess the quality of basic services. We discuss how to combine aggregation of evaluations across users and disaggregation of information on composed services to derive valuations for the single components. As a solution we propose to use the (weighted) average as aggregation device in connection with the Shapley value as disaggregation method, since this combination fulfills natural requirements in our context. In addition, we address some occurring computational issues: We give an approximate solution concept using only a limited number of evaluations which guarantees nearly optimal results with reduced running time. Lastly, we show that a slightly modified Shapley value and the weighted average are still applicable if the evaluation profiles are incomplete.}}, author = {{Feldotto, Matthias and Haake, Claus-Jochen and Skopalik, Alexander and Stroh-Maraun, Nadja}}, booktitle = {{Proceedings of the 13th Workshop on Economics of Networks, Systems and Computation (NetEcon 2018)}}, isbn = {{978-1-4503-5916-0}}, location = {{Irvine, California, USA}}, pages = {{5:1--5:6}}, title = {{{Disaggregating User Evaluations Using the Shapley Value}}}, doi = {{10.1145/3230654.3230659}}, year = {{2018}}, } @article{669, abstract = {{We study a new class of games which generalizes congestion games andits bottleneck variant. We introduce congestion games with mixed objectives to modelnetwork scenarios in which players seek to optimize for latency and bandwidths alike.We characterize the (non-)existence of pure Nash equilibria (PNE), the convergenceof improvement dynamics, the quality of equilibria and show the complexity of thedecision problem. For games that do not possess PNE we give bounds on the approx-imation ratio of approximate pure Nash equilibria.}}, author = {{Feldotto, Matthias and Leder, Lennart and Skopalik, Alexander}}, issn = {{1382-6905}}, journal = {{Journal of Combinatorial Optimization}}, number = {{4}}, pages = {{1145--1167}}, publisher = {{Springer Nature}}, title = {{{Congestion games with mixed objectives}}}, doi = {{10.1007/s10878-017-0189-y}}, volume = {{36}}, year = {{2018}}, } @article{1369, abstract = {{In budget games, players compete over resources with finite budgets. For every resource, a player has a specific demand and as a strategy, he chooses a subset of resources. If the total demand on a resource does not exceed its budget, the utility of each player who chose that resource equals his demand. Otherwise, the budget is shared proportionally. In the general case, pure Nash equilibria (NE) do not exist for such games. In this paper, we consider the natural classes of singleton and matroid budget games with additional constraints and show that for each, pure NE can be guaranteed. In addition, we introduce a lexicographical potential function to prove that every matroid budget game has an approximate pure NE which depends on the largest ratio between the different demands of each individual player.}}, author = {{Drees, Maximilian and Feldotto, Matthias and Riechers, Sören and Skopalik, Alexander}}, issn = {{1382-6905}}, journal = {{Journal of Combinatorial Optimization}}, publisher = {{Springer Nature}}, title = {{{Pure Nash equilibria in restricted budget games}}}, doi = {{10.1007/s10878-018-0269-7}}, year = {{2018}}, } @inproceedings{112, abstract = {{We study a model of selfish resource allocation that seeks to incorporate dependencies among resources as they exist in in modern networked environments. Our model is inspired by utility functions with constant elasticity of substitution (CES) which is a well-studied model in economics. We consider congestion games with different aggregation functions. In particular, we study $L_p$ norms and analyze the existence and complexity of (approximate) pure Nash equilibria. Additionally, we give an almost tight characterization based on monotonicity properties to describe the set of aggregation functions that guarantee the existence of pure Nash equilibria.}}, author = {{Feldotto, Matthias and Leder, Lennart and Skopalik, Alexander}}, booktitle = {{Proceedings of the 10th International Conference on Algorithms and Complexity (CIAC)}}, pages = {{222----233}}, title = {{{Congestion Games with Complementarities}}}, doi = {{10.1007/978-3-319-57586-5_19}}, year = {{2017}}, } @inproceedings{113, abstract = {{We study the computation of approximate pure Nash equilibria in Shapley value (SV) weighted congestion games, introduced in [19]. This class of games considers weighted congestion games in which Shapley values are used as an alternative (to proportional shares) for distributing the total cost of each resource among its users. We focus on the interesting subclass of such games with polynomial resource cost functions and present an algorithm that computes approximate pure Nash equilibria with a polynomial number of strategy updates. Since computing a single strategy update is hard, we apply sampling techniques which allow us to achieve polynomial running time. The algorithm builds on the algorithmic ideas of [7], however, to the best of our knowledge, this is the first algorithmic result on computation of approximate equilibria using other than proportional shares as player costs in this setting. We present a novel relation that approximates the Shapley value of a player by her proportional share and vice versa. As side results, we upper bound the approximate price of anarchy of such games and significantly improve the best known factor for computing approximate pure Nash equilibria in weighted congestion games of [7].}}, author = {{Feldotto, Matthias and Gairing, Martin and Kotsialou, Grammateia and Skopalik, Alexander}}, booktitle = {{Proceedings of the 13th International Conference on Web and Internet Economics (WINE)}}, title = {{{Computing Approximate Pure Nash Equilibria in Shapley Value Weighted Congestion Games}}}, doi = {{10.1007/978-3-319-71924-5_14}}, year = {{2017}}, } @inproceedings{66, abstract = {{In budget games, players compete over resources with finite budgets. For every resource, a player has a specific demand and as a strategy, he chooses a subset of resources. If the total demand on a resource does not exceed its budget, the utility of each player who chose that resource equals his demand. Otherwise, the budget is shared proportionally. In the general case, pure Nash equilibria (NE) do not exist for such games. In this paper, we consider the natural classes of singleton and matroid budget games with additional constraints and show that for each, pure NE can be guaranteed. In addition, we introduce a lexicographical potential function to prove that every matroid budget game has an approximate pure NE which depends on the largest ratio between the different demands of each individual player.}}, author = {{Drees, Maximilian and Feldotto, Matthias and Riechers, Sören and Skopalik, Alexander}}, booktitle = {{Proceedings of the 23rd International Computing and Combinatorics Conference (COCOON)}}, pages = {{175----187}}, title = {{{Pure Nash Equilibria in Restricted Budget Games}}}, doi = {{10.1007/978-3-319-62389-4_15}}, year = {{2017}}, } @inproceedings{1094, abstract = {{Many university students struggle with motivational problems, and gamification has the potential to address these problems. However, gamification is hardly used in education, because current approaches to gamification require instructors to engage in the time-consuming preparation of their course contents for use in quizzes, mini-games and the like. Drawing on research on limited attention and present bias, we propose a "lean" approach to gamification, which relies on gamifying learning activities (rather than learning contents) and increasing their salience. In this paper, we present the app StudyNow that implements such a lean gamification approach. With this app, we aim to enable more students and instructors to benefit from the advantages of gamification.}}, author = {{Feldotto, Matthias and John, Thomas and Kundisch, Dennis and Hemsen, Paul and Klingsieck, Katrin and Skopalik, Alexander}}, booktitle = {{Proceedings of the 12th International Conference on Design Science Research in Information Systems and Technology (DESRIST)}}, pages = {{462--467}}, title = {{{Making Gamification Easy for the Professor: Decoupling Game and Content with the StudyNow Mobile App}}}, doi = {{10.1007/978-3-319-59144-5_32}}, year = {{2017}}, } @inproceedings{1095, abstract = {{Many university students struggle with motivational problems, and gamification has the potential to address these problems. However, using gamification currently is rather tedious and time-consuming for instructors because current approaches to gamification require instructors to engage in the time-consuming preparation of course contents (e.g., for quizzes or mini-games). In reply to this issue, we propose a “lean” approach to gamification, which relies on gamifying learning activities rather than learning contents. The learning activities that are gamified in the lean approach can typically be drawn from existing course syllabi (e.g., attend certain lectures, hand in assignments, read book chapters and articles). Hence, compared to existing approaches, lean gamification substantially lowers the time requirements posed on instructors for gamifying a given course. Drawing on research on limited attention and the present bias, we provide the theoretical foundation for the lean gamification approach. In addition, we present a mobile application that implements lean gamification and outline a mixed-methods study that is currently under way for evaluating whether lean gamification does indeed have the potential to increase students’ motivation. We thereby hope to allow more students and instructors to benefit from the advantages of gamification. }}, author = {{John, Thomas and Feldotto, Matthias and Hemsen, Paul and Klingsieck, Katrin and Kundisch, Dennis and Langendorf, Mike}}, booktitle = {{Proceedings of the 25th European Conference on Information Systems (ECIS)}}, pages = {{2970--2979}}, title = {{{Towards a Lean Approach for Gamifying Education}}}, year = {{2017}}, } @inproceedings{209, abstract = {{We study a new class of games which generalizes congestion games and its bottleneck variant. We introduce congestion games with mixed objectives to model network scenarios in which players seek to optimize for latency and bandwidths alike. We characterize the existence of pure Nash equilibria (PNE) and the convergence of improvement dynamics. For games that do not possess PNE we give bounds on the approximation ratio of approximate pure Nash equilibria.}}, author = {{Feldotto, Matthias and Leder, Lennart and Skopalik, Alexander}}, booktitle = {{Proceedings of the 10th Annual International Conference on Combinatorial Optimization and Applications (COCOA)}}, pages = {{655----669}}, title = {{{Congestion Games with Mixed Objectives}}}, doi = {{10.1007/978-3-319-48749-6_47}}, year = {{2016}}, } @article{145, abstract = {{Comparative evaluations of peer-to-peer protocols through simulations are a viable approach to judge the performance and costs of the individual protocols in large-scale networks. In order to support this work, we present the peer-to-peer system simulator PeerfactSim.KOM, which we extended over the last years. PeerfactSim.KOM comes with an extensive layer model to support various facets and protocols of peer-to-peer networking. In this article, we describe PeerfactSim.KOM and show how it can be used for detailed measurements of large-scale peer-to-peer networks. We enhanced PeerfactSim.KOM with a fine-grained analyzer concept, with exhaustive automated measurements and gnuplot generators as well as a coordination control to evaluate sets of experiment setups in parallel. Thus, by configuring all experiments and protocols only once and starting the simulator, all desired measurements are performed, analyzed, evaluated, and combined, resulting in a holistic environment for the comparative evaluation of peer-to-peer systems. An immediate comparison of different configurations and overlays under different aspects is possible directly after the execution without any manual post-processing. }}, author = {{Feldotto, Matthias and Graffi, Kalman}}, journal = {{Concurrency and Computation: Practice and Experience}}, number = {{5}}, pages = {{1655--1677}}, publisher = {{Wiley Online Library}}, title = {{{Systematic evaluation of peer-to-peer systems using PeerfactSim.KOM}}}, doi = {{10.1002/cpe.3716}}, volume = {{28}}, year = {{2016}}, } @inproceedings{271, abstract = {{In \emph{bandwidth allocation games} (BAGs), the strategy of a player consists of various demands on different resources. The player's utility is at most the sum of these demands, provided they are fully satisfied. Every resource has a limited capacity and if it is exceeded by the total demand, it has to be split between the players. Since these games generally do not have pure Nash equilibria, we consider approximate pure Nash equilibria, in which no player can improve her utility by more than some fixed factor $\alpha$ through unilateral strategy changes. There is a threshold $\alpha_\delta$ (where $\delta$ is a parameter that limits the demand of each player on a specific resource) such that $\alpha$-approximate pure Nash equilibria always exist for $\alpha \geq \alpha_\delta$, but not for $\alpha < \alpha_\delta$. We give both upper and lower bounds on this threshold $\alpha_\delta$ and show that the corresponding decision problem is ${\sf NP}$-hard. We also show that the $\alpha$-approximate price of anarchy for BAGs is $\alpha+1$. For a restricted version of the game, where demands of players only differ slightly from each other (e.g. symmetric games), we show that approximate Nash equilibria can be reached (and thus also be computed) in polynomial time using the best-response dynamic. Finally, we show that a broader class of utility-maximization games (which includes BAGs) converges quickly towards states whose social welfare is close to the optimum.}}, author = {{Drees, Maximilian and Feldotto, Matthias and Riechers, Sören and Skopalik, Alexander}}, booktitle = {{Proceedings of the 8th International Symposium on Algorithmic Game Theory (SAGT)}}, pages = {{178--189}}, title = {{{On Existence and Properties of Approximate Pure Nash Equilibria in Bandwidth Allocation Games}}}, doi = {{10.1007/978-3-662-48433-3_14}}, year = {{2015}}, } @inproceedings{453, abstract = {{In this paper we study the potential function in congestion games. We consider both games with non-decreasing cost functions as well as games with non-increasing utility functions. We show that the value of the potential function $\Phi(\sf s)$ of any outcome $\sf s$ of a congestion game approximates the optimum potential value $\Phi(\sf s^*)$ by a factor $\Psi_{\mathcal{F}}$ which only depends on the set of cost/utility functions $\mathcal{F}$, and an additive term which is bounded by the sum of the total possible improvements of the players in the outcome $\sf s$. The significance of this result is twofold. On the one hand it provides \emph{Price-of-Anarchy}-like results with respect to the potential function. On the other hand, we show that these approximations can be used to compute $(1+\varepsilon)\cdot\Psi_{\mathcal{F}}$-approximate pure Nash equilibria for congestion games with non-decreasing cost functions. For the special case of polynomial cost functions, this significantly improves the guarantees from Caragiannis et al. [FOCS 2011]. Moreover, our machinery provides the first guarantees for general latency functions.}}, author = {{Feldotto, Matthias and Gairing, Martin and Skopalik, Alexander}}, booktitle = {{Proceedings of the 10th International Conference on Web and Internet Economics (WINE)}}, pages = {{30--43}}, title = {{{Bounding the Potential Function in Congestion Games and Approximate Pure Nash Equilibria}}}, doi = {{10.1007/978-3-319-13129-0_3}}, year = {{2014}}, } @inproceedings{462, abstract = {{We discuss a technique to analyze complex infinitely repeated games using techniques from the fields of game theory and simulations. Our research is motivated by the analysis of electronic markets with thousands of participants and possibly complex strategic behavior. We consider an example of a global market of composed IT services to demonstrate the use of our simulation technique. We present our current work in this area and we want to discuss further approaches for the future.}}, author = {{Feldotto, Matthias and Skopalik, Alexander}}, booktitle = {{Proceedings of the 4th International Conference on Simulation and Modeling Methodologies, Technologies and Applications (SIMULTECH 2014)}}, pages = {{625--630}}, title = {{{A Simulation Framework for Analyzing Complex Infinitely Repeated Games}}}, doi = {{10.5220/0005110406250630}}, year = {{2014}}, } @inproceedings{412, abstract = {{In this paper we present and analyze HSkip+, a self-stabilizing overlay network for nodes with arbitrary heterogeneous bandwidths. HSkip+ has the same topology as the Skip+ graph proposed by Jacob et al. [PODC 2009] but its self-stabilization mechanism significantly outperforms the self-stabilization mechanism proposed for Skip+. Also, the nodes are now ordered according to their bandwidths and not according to their identifiers. Various other solutions have already been proposed for overlay networks with heterogeneous bandwidths, but they are not self-stabilizing. In addition to HSkip+ being self-stabilizing, its performance is on par with the best previous bounds on the time and work for joining or leaving a network of peers of logarithmic diameter and degree and arbitrary bandwidths. Also, the dilation and congestion for routing messages is on par with the best previous bounds for such networks, so that HSkip+ combines the advantages of both worlds. Our theoretical investigations are backed by simulations demonstrating that HSkip+ is indeed performing much better than Skip+ and working correctly under high churn rates.}}, author = {{Feldotto, Matthias and Scheideler, Christian and Graffi, Kalman}}, booktitle = {{Proceedings of the 14th IEEE International Conference on Peer-to-Peer Computing (P2P)}}, pages = {{1--10}}, title = {{{HSkip+: A Self-Stabilizing Overlay Network for Nodes with Heterogeneous Bandwidths}}}, doi = {{10.1109/P2P.2014.6934300}}, year = {{2014}}, } @misc{522, author = {{Feldotto, Matthias}}, publisher = {{Universität Paderborn}}, title = {{{HSkip+: A Self-Stabilizing Overlay Network for Nodes with Heterogeneous Bandwidths}}}, year = {{2013}}, } @inproceedings{544, abstract = {{Comparative evaluations of peer-to-peer protocols through simulations are a viable approach to judge the performance and costs of the individual protocols in large-scale networks. In order to support this work, we enhanced the peer-to-peer systems simulator PeerfactSim.KOM with a fine-grained analyzer concept, with exhaustive automated measurements and gnuplot generators as well as a coordination control to evaluate a set of experiment setups in parallel. Thus, by configuring all experiments and protocols only once and starting the simulator, all desired measurements are performed, analyzed, evaluated and combined, resulting in a holistic environment for the comparative evaluation of peer-to-peer systems.}}, author = {{Feldotto, Matthias and Graffi, Kalman}}, booktitle = {{Proceedings of the International Conference on High Performance Computing and Simulation (HPCS'13)}}, pages = {{99--106}}, title = {{{Comparative Evaluation of Peer-to-Peer Systems Using PeerfactSim.KOM}}}, doi = {{10.1109/HPCSim.2013.6641399}}, year = {{2013}}, } @inproceedings{1093, abstract = {{Whenever huge amounts of XML data have to be transferred from a web server to multiple clients, the transferred data volumes can be reduced significantly by sending compressed XML instead of plain XML. Whenever applications require querying a compressed XML format and XML compression or decompression time is a bottleneck, parallel XML compression and parallel decompression may be of significant advantage. We choose the XML compressor XSDS as starting point for our new approach to parallel compression and parallel decompression of XML documents for the following reasons. First, XSDS generally reaches stronger compression ratios than other compressors like gzip, bzip2, and XMill. Second, in contrast to these compressors, XSDS not only supports XPath queries on compressed XML data, but also XPath queries can be evaluated on XSDS compressed data even faster than on uncompressed XML. We propose a String-search-based parsing approach to parallelize XML compression with XSDS, and we show that we can speed-up the compression of XML documents by a factor of 1.4 and that we can speed-up the decompression time even by a factor of up to 7 on a quad-core processor.}}, author = {{Böttcher, Stefan and Feldotto, Matthias and Hartel, Rita}}, booktitle = {{WEBIST 2013 - Proceedings of the 9th International Conference on Web Information Systems and Technologies, Aachen, Germany, 8-10 May, 2013}}, pages = {{77--86}}, title = {{{Schema-based Parallel Compression and Decompression of XML Data}}}, doi = {{10.5220/0004366300770086}}, year = {{2013}}, }