@article{52700, abstract = {{We explore the polarization hysteretic behaviour and field-dependent permittivity of ferroelectric-dielectric 2D materials formed by random dispersions of low permittivity inclusions in a ferroelectric matrix, using finite element simulations. We show how the degree of impenetrability of dielectric inclusions plays a substantial role in controlling the coercive field, remnant and saturation polarizations of the homogenized materials. The results highlight the significance of the degree of impenetrability of inclusion in tuning the effective polarization properties of such ferroelectric composites: coercive field drops significantly as percolation threshold is attained and remnant polarization decreases faster than a linear decay.}}, author = {{Myroshnychenko, Viktor and Mulavarickal Jose, Pious Mathews and Farheen, Henna and Ejaz, Shafaq and Brosseau, Christian and Förstner, Jens}}, issn = {{0031-8949}}, journal = {{Physica Scripta}}, keywords = {{tet_topic_ferro}}, number = {{4}}, pages = {{045952}}, publisher = {{IOP Publishing}}, title = {{{From Swiss-cheese to discrete ferroelectric composites: assessing the ferroelectric butterfly shape in polarization loops}}}, doi = {{10.1088/1402-4896/ad3172}}, volume = {{99}}, year = {{2024}}, } @article{43018, author = {{Alhaddad, Samer and Förstner, Jens and Grynko, Yevgen}}, issn = {{0022-4073}}, journal = {{Journal of Quantitative Spectroscopy and Radiative Transfer}}, keywords = {{tet_topic_scattering}}, publisher = {{Elsevier BV}}, title = {{{Numerical study of light backscattering from layers of absorbing irregular particles larger than the wavelength}}}, doi = {{10.1016/j.jqsrt.2023.108557}}, volume = {{302}}, year = {{2023}}, } @inproceedings{43051, abstract = {{We demonstrate the numerical and experimental realization of optimized optical traveling-wave antennas made of low-loss dielectric materials. These antennas exhibit highly directive radiation patterns and our studies reveal that this nature comes from two dominant guided TE modes excited in the waveguide-like director of the antenna, in addition to the leaky modes. The optimized antennas possess a broadband nature and have a nearunity radiation efficiency at an operational wavelength of 780 nm. Compared to the previously studied plasmonic antennas for photon emission, our all-dielectric approach demonstrates a new class of highly directional, low-loss, and broadband optical antennas.}}, author = {{Farheen, Henna and Yan, Lok-Yee and Leuteritz, Till and Qiao, Siqi and Spreyer, Florian and Schlickriede, Christian and Quiring, Viktor and Eigner, Christof and Silberhorn, Christine and Zentgraf, Thomas and Linden, Stefan and Myroshnychenko, Viktor and Förstner, Jens}}, booktitle = {{Integrated Optics: Devices, Materials, and Technologies XXVII}}, editor = {{García-Blanco, Sonia M. and Cheben, Pavel}}, keywords = {{tet_topic_opticalantenna}}, pages = {{124241E}}, publisher = {{SPIE}}, title = {{{Tailoring the directive nature of optical waveguide antennas}}}, doi = {{10.1117/12.2658921}}, year = {{2023}}, } @inproceedings{43052, abstract = {{We demonstrate a large-scale two dimensional silicon-based optical phased array (OPA) composed of nanoantennas with circular gratings that are balanced in power and aligned in phase, required for producing desired radiation patterns in the far-field. The OPAs are numerically optimized to have an upward efficiency of up to 90%, targeting radiation concentration mainly in the field of view. We envision that our OPAs have the ability of generating complex holographic images, rendering them an attractive candidate for a wide range of applications like LiDAR sensors, optical trapping, optogenetic stimulation and augmented-reality displays.}}, author = {{Farheen, Henna and Strauch, Andreas and Scheytt, J. Christoph and Myroshnychenko, Viktor and Förstner, Jens}}, booktitle = {{Integrated Optics: Devices, Materials, and Technologies XXVII}}, editor = {{García-Blanco, Sonia M. and Cheben, Pavel}}, keywords = {{tet_topic_opticalantenna}}, pages = {{124241D }}, publisher = {{SPIE}}, title = {{{Optimized silicon antennas for optical phased arrays}}}, doi = {{10.1117/12.2658716}}, year = {{2023}}, } @article{43245, abstract = {{High-contrast slab waveguide Bragg gratings with 1D periodicity are investigated. For specific oblique excitation by semi-guided waves at sufficiently high angles of incidence, the idealized structures do not exhibit any radiative losses, such that reflectance and transmittance for the single port mode add strictly up to one. We consider a series of symmetric, fully and partly etched finite gratings, for parameters found in integrated silicon photonics. These can act as spectral filters with a reasonably flattop response. Apodization can lead to more box shaped reflectance and transmittance spectra. Together with a narrowband Fabry–Perot filter, these configurations are characterized by reflection bands, or transmittance peaks, with widths that span three orders of magnitude.}}, author = {{Hammer, Manfred and Farheen, Henna and Förstner, Jens}}, issn = {{0740-3224}}, journal = {{Journal of the Optical Society of America B}}, keywords = {{tet_topic_waveguide}}, number = {{4}}, pages = {{862}}, publisher = {{Optica Publishing Group}}, title = {{{How to suppress radiative losses in high-contrast integrated Bragg gratings}}}, doi = {{10.1364/josab.485725}}, volume = {{40}}, year = {{2023}}, } @article{44097, abstract = {{We present strong enhancement of third harmonic generation in an amorphous silicon metasurface consisting of elliptical nano resonators. We show that this enhancement originates from a new type of multi-mode Fano mechanism. These ‘Super-Fano’ resonances are investigated numerically in great detail using full-wave simulations. The theoretically predicted behavior of the metasurface is experimentally verified by linear and nonlinear transmission spectroscopy. Moreover, quantitative nonlinear measurements are performed, in which an absolute conversion efficiency as high as ηmax ≈ 2.8 × 10−7 a peak power intensity of 1.2 GW cm−2 is found. Compared to an unpatterned silicon film of the same thickness amplification factors of up to ~900 are demonstrated. Our results pave the way to exploiting a strong Fano-type multi-mode coupling in metasurfaces for high THG in potential applications.}}, author = {{Hähnel, David and Golla, Christian and Albert, Maximilian and Zentgraf, Thomas and Myroshnychenko, Viktor and Förstner, Jens and Meier, Cedrik}}, issn = {{2047-7538}}, journal = {{Light: Science & Applications}}, keywords = {{tet_topic_meta}}, number = {{1}}, pages = {{97}}, publisher = {{Springer Nature}}, title = {{{A multi-mode super-fano mechanism for enhanced third harmonic generation in silicon metasurfaces}}}, doi = {{https://doi.org/10.1038/s41377-023-01134-1}}, volume = {{12}}, year = {{2023}}, } @article{45596, abstract = {{Dielectric metasurfaces provide a unique platform for efficient harmonic generation and optical wavefront manipulation at the nanoscale. Tailoring phase and amplitude of a nonlinearly generated wave with a high emission efficiency using resonance-based metasurfaces is a challenging task that often requires state-of-the-art numerical methods. Here, we propose a simple yet effective approach combining a sampling method with a Monte Carlo approach to design the third-harmonic wavefront generated by all-dielectric metasurfaces composed of elliptical silicon nanodisks. Using this approach, we theoretically demonstrate the full nonlinear 2π phase control with a uniform and highest possible amplitude in the considered parameter space, allowing us to design metasurfaces operating as third harmonic beam deflectors capable of steering light into a desired direction with high emission efficiency. The TH beam deflection with a record calculated average conversion efficiency of 1.2 × 10–1 W–2 is achieved. We anticipate that the proposed approach will be widely applied as alternative to commonly used optimization algorithms with higher complexity and implementation effort for the design of metasurfaces with other holographic functionalities.}}, author = {{Hähnel, David and Förstner, Jens and Myroshnychenko, Viktor}}, issn = {{2330-4022}}, journal = {{ACS Photonics}}, keywords = {{tet_topic_meta}}, publisher = {{American Chemical Society (ACS)}}, title = {{{Efficient Modeling and Tailoring of Nonlinear Wavefronts in Dielectric Metasurfaces}}}, doi = {{10.1021/acsphotonics.2c01967}}, year = {{2023}}, } @article{50012, abstract = {{Silicon photonics, in conjunction with complementary metal-oxide-semiconductor (CMOS) fabrication, has greatly enhanced the development of integrated optical phased arrays. This facilitates a dynamic control of light in a compact form factor that enables the synthesis of arbitrary complex wavefronts in the infrared spectrum. We numerically demonstrate a large-scale two-dimensional silicon-based optical phased array (OPA) composed of nanoantennas with circular gratings that are balanced in power and aligned in phase, required for producing elegant radiation patterns in the far-field. For a wavelength of 1.55 μm, we optimize two antennas for the OPA exhibiting an upward radiation efficiency as high as 90%, with almost 6.8% of optical power concentrated in the field of view. Additionally, we believe that the proposed OPAs can be easily fabricated and would have the ability to generate complex holographic images, rendering them an attractive candidate for a wide range of applications like LiDAR sensors, optical trapping, optogenetic stimulation, and augmented-reality displays.}}, author = {{Farheen, Henna and Strauch, Andreas and Scheytt, J. Christoph and Myroshnychenko, Viktor and Förstner, Jens}}, issn = {{1569-4410}}, journal = {{Photonics and Nanostructures - Fundamentals and Applications}}, keywords = {{tet_topic_opticalantenna}}, pages = {{101207}}, publisher = {{Elsevier BV}}, title = {{{Optimized, Highly Efficient Silicon Antennas for Optical Phased Arrays}}}, doi = {{10.1016/j.photonics.2023.101207}}, volume = {{58}}, year = {{2023}}, } @inproceedings{49890, abstract = {{In this paper, the influence of the environment on an inductive location system is analyzed. In the inductive location method, high frequency magnetic fields generated by planar coils lead to induction in other coils, which is used for localization analysis. Magnetic fields are not affected by changes in the dielectric properties of the environment, which is an advantage over other localization methods. However, electrical material parameters can still affect the localization results by indirect effects. For this reason, in this publication the influence will be investigated using real material parameters and their effects on the localization will be considered, so that the robustness and the limits of the inductive localization can be evaluated.}}, author = {{Lange, Sven and Hilleringmann, Ulrich and Hedayat, Christian and Kuhn, Harald and Förstner, Jens}}, booktitle = {{2023 IEEE Conference on Antenna Measurements and Applications (CAMA)}}, keywords = {{Planar coils, inductive locating, magnetic fields, environmental influences, eddy currents, tet_topic_hf}}, location = {{Genoa, Italy }}, publisher = {{IEEE}}, title = {{{Characterization of Various Environmental Influences on the Inductive Localization}}}, doi = {{10.1109/cama57522.2023.10352780}}, year = {{2023}}, } @article{48599, abstract = {{AbstractThe biexciton‐exciton emission cascade commonly used in quantum‐dot systems to generate polarization entanglement yields photons with intrinsically limited indistinguishability. In the present work, it focuses on the generation of pairs of photons with high degrees of polarization entanglement and simultaneously high indistinguishability. It achieves this goal by selectively reducing the biexciton lifetime with an optical resonator. It demonstrates that a suitably tailored circular Bragg reflector fulfills the requirements of sufficient selective Purcell enhancement of biexciton emission paired with spectrally broad photon extraction and twofold degenerate optical modes. The in‐depth theoretical study combines (i) the optimization of realistic photonic structures solving Maxwell's equations from which model parameters are extracted as input for (ii) microscopic simulations of quantum‐dot cavity excitation dynamics with full access to photon properties. It reports non‐trivial dependencies on system parameters and use the predictive power of the combined theoretical approach to determine the optimal range of Purcell enhancement that maximizes indistinguishability and entanglement to near unity values, here specifically for the telecom C‐band at 1550 nm.}}, author = {{Bauch, David and Siebert, Dustin and Jöns, Klaus and Förstner, Jens and Schumacher, Stefan}}, issn = {{2511-9044}}, journal = {{Advanced Quantum Technologies}}, keywords = {{tet_topic_qd}}, publisher = {{Wiley}}, title = {{{On‐Demand Indistinguishable and Entangled Photons Using Tailored Cavity Designs}}}, doi = {{10.1002/qute.202300142}}, year = {{2023}}, } @unpublished{43246, abstract = {{The biexciton-exciton emission cascade commonly used in quantum-dot systems to generate polarization entanglement yields photons with intrinsically limited indistinguishability. In the present work we focus on the generation of pairs of photons with high degrees of polarization entanglement and simultaneously high indistinguishibility. We achieve this goal by selectively reducing the biexciton lifetime with an optical resonator. We demonstrate that a suitably tailored circular Bragg reflector fulfills the requirements of sufficient selective Purcell enhancement of biexciton emission paired with spectrally broad photon extraction and two-fold degenerate optical modes. Our in-depth theoretical study combines (i) the optimization of realistic photonic structures solving Maxwell's equations from which model parameters are extracted as input for (ii) microscopic simulations of quantum-dot cavity excitation dynamics with full access to photon properties. We report non-trivial dependencies on system parameters and use the predictive power of our combined theoretical approach to determine the optimal range of Purcell enhancement that maximizes indistinguishability and entanglement to near unity values in the telecom C-band at $1550\,\mathrm{nm}$.}}, author = {{Bauch, David and Siebert, Dustin and Jöns, Klaus and Förstner, Jens and Schumacher, Stefan}}, keywords = {{tet_topic_phc, tet_topic_qd}}, title = {{{On-demand indistinguishable and entangled photons at telecom frequencies using tailored cavity designs}}}, year = {{2023}}, } @article{28413, abstract = {{Optical traveling wave antennas offer unique opportunities to control and selectively guide light into a specific direction, which renders them excellent candidates for optical communication and sensing. These applications require state-of-the-art engineering to reach optimized functionalities such as high directivity and radiation efficiency, low sidelobe levels, broadband and tunable capabilities, and compact design. In this work, we report on the numerical optimization of the directivity of optical traveling wave antennas made from low-loss dielectric materials using full-wave numerical simulations in conjunction with the particle swarm optimization algorithm. The antennas are composed of a reflector and a director deposited on a glass substrate, and an emitter placed in the feed gap between them serves as an internal source of excitation. In particular, we analyze antennas with rectangular- and horn-shaped directors made of either hafnium dioxide or silicon. The optimized antennas produce highly directional emissions due to the presence of two dominant guided TE modes in the director in addition to leaky modes. These guided modes dominate the far-field emission pattern and govern the direction of the main lobe emission, which predominately originates from the end facet of the director. Our work also provides a comprehensive analysis of the modes, radiation patterns, parametric influences, and bandwidths of the antennas, which highlights their robust nature.}}, author = {{Farheen, Henna and Leuteritz, Till and Linden, Stefan and Myroshnychenko, Viktor and Förstner, Jens}}, issn = {{0740-3224}}, journal = {{Journal of the Optical Society of America B}}, keywords = {{tet_topic_opticalantenna}}, number = {{1}}, pages = {{83}}, title = {{{Optimization of optical waveguide antennas for directive emission of light}}}, doi = {{10.1364/josab.438514}}, volume = {{39}}, year = {{2022}}, } @article{29075, abstract = {{We study a double-scattering coherent mechanism of negative polarization (NP) near opposition that is observed for powder-like surfaces. The problem is solved numerically for absorbing structures with irregular constituents, cubes, spheres, and ellipsoids larger than the wavelength of incident light. Our simulations show that double scattering between two random irregular particles shows weak NP. Adding one more particle significantly increases the relative contribution of double scattering which enhances NP. Simulations with regular shapes and controlled geometric parameters show that the interference mechanism is sensitive to the geometry of the scattering system and can also result in no polarization or even strong enhancement of positive polarization at backscattering.}}, author = {{Alhaddad, Samer and Grynko, Yevgen and Farheen, Henna and Förstner, Jens}}, issn = {{0146-9592}}, journal = {{Optics Letters}}, keywords = {{tet_topic_scattering}}, number = {{1}}, pages = {{58}}, title = {{{Numerical analysis of the coherent mechanism producing negative polarization at backscattering from systems of absorbing particles}}}, doi = {{10.1364/ol.444953}}, volume = {{47}}, year = {{2022}}, } @inproceedings{30387, abstract = {{Resonant evanescent coupling can be utilized to selectively excite orbital angular momentum (OAM) modes of high angular order supported by a thin circular dielectric rod. Our 2.5-D hybrid-analytical coupled mode model combines the vectorial fields associated with the fundamental TE- and TM-modes of a standard silicon photonics slab waveguide, propagating at oblique angles with respect to the rod axis, and the hybrid modes supported by the rod. One observes an efficient resonant interaction in cases where the common axial wavenumber of the waves in the slab matches the propagation constant of one or more modes of the rod. For certain modes of high angular order, the incident wave is able to transfer its directionality to the field in the fiber, exciting effectively only one of a pair of degenerate OAM modes}}, author = {{Hammer, Manfred and Ebers, Lena and Förstner, Jens}}, booktitle = {{Complex Light and Optical Forces XVI}}, editor = {{Andrews, David L. and Galvez, Enrique J. and Rubinsztein-Dunlop, Halina}}, keywords = {{tet_topic_waveguide}}, pages = {{120170F}}, publisher = {{SPIE}}, title = {{{Resonant evanescent excitation of OAM modes in a high-contrast circular step-index fiber}}}, doi = {{10.1117/12.2612179}}, year = {{2022}}, } @inproceedings{34136, author = {{Grynko, Yevgen and Shkuratov, Yuriy and Alhaddad, Samer and Förstner, Jens}}, keywords = {{tet_topic_scattering}}, location = {{Granada, Spain}}, publisher = {{Copernicus GmbH}}, title = {{{Light backscattering from numerical analog of planetary regoliths}}}, doi = {{ 10.5194/epsc2022-151}}, year = {{2022}}, } @article{31329, abstract = {{Highly directive antennas with the ability of shaping radiation patterns in desired directions are essential for efficient on-chip optical communication with reduced cross talk. In this paper, we design and optimize three distinct broadband traveling-wave tantalum pentoxide antennas exhibiting highly directional characteristics. Our antennas contain a director and reflector deposited on a glass substrate, which are excited by a dipole emitter placed in the feed gap between the two elements. Full-wave simulations in conjunction with global optimization provide structures with an enhanced linear directivity as high as 119 radiating in the substrate. The high directivity is a result of the interplay between two dominant TE modes and the leaky modes present in the antenna director. Furthermore, these low-loss dielectric antennas exhibit a near-unity radiation efficiency at the operational wavelength of 780 nm and maintain a broad bandwidth. Our numerical results are in good agreement with experimental measurements from the optimized antennas fabricated using a two-step electron-beam lithography, revealing the highly directive nature of our structures. We envision that our antenna designs can be conveniently adapted to other dielectric materials and prove instrumental for inter-chip optical communications and other on-chip applications.}}, author = {{Farheen, Henna and Yan, Lok-Yee and Quiring, Viktor and Eigner, Christof and Zentgraf, Thomas and Linden, Stefan and Förstner, Jens and Myroshnychenko, Viktor}}, issn = {{1094-4087}}, journal = {{Optics Express}}, keywords = {{tet_topic_opticalantenna}}, number = {{11}}, pages = {{19288}}, publisher = {{Optica Publishing Group}}, title = {{{Broadband optical Ta2O5 antennas for directional emission of light}}}, doi = {{10.1364/oe.455815}}, volume = {{30}}, year = {{2022}}, } @article{31574, abstract = {{We model negative polarization, which is observed for planetary regoliths at backscattering, solving a full wave problem of light scattering with a numerically exact Discontinuous Galerkin Time Domain (DGTD) method. Pieces of layers with the bulk packing density of particles close to 0.5 are used. The model particles are highly absorbing and have irregular shapes and sizes larger than the wavelength of light. This represents a realistic analog of low-albedo planetary regoliths. Our simulations confirm coherent backscattering mechanism of the origin of negative polarization. We show that angular profiles of polarization are stabilized if the number of particles in a layer piece becomes larger than ten. This allows application of our approach to the negative polarization modeling for planetary regoliths.}}, author = {{Grynko, Yevgen and Shkuratov, Yuriy and Alhaddad, Samer and Förstner, Jens}}, issn = {{0019-1035}}, journal = {{Icarus}}, keywords = {{tet_topic_scattering}}, pages = {{115099}}, publisher = {{Elsevier BV}}, title = {{{Negative polarization of light at backscattering from a numerical analog of planetary regoliths}}}, doi = {{10.1016/j.icarus.2022.115099}}, volume = {{384}}, year = {{2022}}, } @article{35128, abstract = {{Here we demonstrate a new, to the best of our knowledge, type of 3-dB coupler that has an ultra-broadband operational range from 1300 to 1600 nm with low fabrication sensitivity. The overall device size is 800 µm including in/out S-bend waveguides. The coupler is an asymmetric non-uniform directional coupler that consists of two tapered waveguides. One of the coupler arms is shifted by 100 µm in the propagation direction, which results in a more wavelength-insensitive 3-dB response compared to a standard (not shifted) coupler. Moreover, compared to a long adiabatic coupler, we achieved a similar wavelength response at a 16-times-smaller device length. The couplers were fabricated using the silicon nitride platform of Lionix International. We also experimentally demonstrated an optical switch that is made by using two of these couplers in a Mach–Zehnder interferometer configuration. According to experimental results, this optical switch exhibits –10 dB of extinction ratio over the 1500–1600 nm wavelength range. Our results indicate that this new type of coupler holds great promise for various applications, including optical imaging, telecommunications, and reconfigurable photonic processors where compact, fabrication-tolerant, and wavelength-insensitive couplers are essential.}}, author = {{Nikbakht, Hamed and Khoshmehr, Mohammad Talebi and van Someren, Bob and Teichrib, Dieter and Hammer, Manfred and Förstner, Jens and Akca, B. Imran}}, issn = {{0146-9592}}, journal = {{Optics Letters}}, keywords = {{tet_topic_waveguide}}, number = {{2}}, pages = {{207}}, publisher = {{Optica Publishing Group}}, title = {{{Asymmetric, non-uniform 3-dB directional coupler with 300-nm bandwidth and a small footprint}}}, doi = {{10.1364/ol.476537}}, volume = {{48}}, year = {{2022}}, } @inbook{33466, abstract = {{We review our results of numerical simulations of light scattering from different systems of densely packed irregular particles. We consider spherical clusters, thick layers and monolayers with realistic topologies and dimensions much larger than the wavelength of light. The maximum bulk packing density of clusters is 0.5. A numerically exact solution of the electromagnetic problem is obtained using the Discontinuous Galerkin Time Domain method and with application of high- performance computing. We show that high packing density causes light localization in such structures which makes an impact on the opposition phenomena: backscattering intensity surge and negative linear polarization feature. Diffuse multiple scattering is significantly reduced in the case of non-absorbing particles and near-field interaction results in a percolation-like light transport determined by the topology of the medium. With this the negative polarization feature caused by single scattering gets enhanced if compared to lower density samples. We also confirm coherent double scattering mechanism of negative polarization for light scattered from dense absorbing slabs. In this case convergent result for the scattering angle polarization dependency at backscattering can be obtained for a layer of just a few tens of particles if they are larger than the wavelength.}}, author = {{Grynko, Yevgen and Shkuratov, Yuriy and Alhaddad, Samer and Förstner, Jens}}, booktitle = {{Springer Series in Light Scattering - Volume 8: Light Polarization and Multiple Scattering in Turbid Media}}, editor = {{Kokhanovsky, Alexander}}, isbn = {{9783031102974}}, issn = {{2509-2790}}, keywords = {{tet_topic_scattering}}, publisher = {{Springer International Publishing}}, title = {{{Light Scattering by Large Densely Packed Clusters of Particles}}}, doi = {{10.1007/978-3-031-10298-1_4}}, volume = {{8}}, year = {{2022}}, } @article{30210, abstract = {{Lithium niobate on insulator (LNOI) has a great potential for photonic integrated circuits, providing substantial versatility in design of various integrated components. To properly use these components in the implementation of different quantum protocols, photons with different properties are required. In this paper, we theoretically demonstrate a flexible source of correlated photons built on the LNOI waveguide of a special geometry. This source is based on the parametric down-conversion (PDC) process, in which the signal and idler photons are generated at the telecom wavelength and have different spatial profiles and polarizations, but the same group velocities. Distinguishability in polarizations and spatial profiles facilitates the routing and manipulating individual photons, while the equality of their group velocities leads to the absence of temporal walk-off between photons. We show how the spectral properties of the generated photons and the number of their frequency modes can be controlled depending on the pump characteristics and the waveguide length. Finally, we discuss special regimes, in which narrowband light with strong frequency correlations and polarization-entangled Bell states are generated at the telecom wavelength.}}, author = {{Ebers, Lena and Ferreri, Alessandro and Hammer, Manfred and Albert, Maximilian and Meier, Cedrik and Förstner, Jens and Sharapova, Polina R.}}, issn = {{2515-7647}}, journal = {{Journal of Physics: Photonics}}, keywords = {{tet_topic_waveguide}}, pages = {{025001}}, publisher = {{IOP Publishing}}, title = {{{Flexible source of correlated photons based on LNOI rib waveguides}}}, doi = {{10.1088/2515-7647/ac5a5b}}, volume = {{4}}, year = {{2022}}, }