--- _id: '52738' abstract: - lang: eng text: Through tailoring the geometry and design of biomaterials, additive manufacturing is revolutionizing the production of metallic patient-specific implants, e.g., the Ti-6Al-7Nb alloy. Unfortunately, studies investigating this alloy showed that additively produced samples exhibit anisotropic microstructures. This anisotropy compromises the mechanical properties and complicates the loading state in the implant. Moreover, the minimum requirements as specified per designated standards such as ISO 5832-11 are not met. The remedy to this problem is performing a conventional heat treatment. As this route requires energy, infrastructure, labor, and expertise, which in turn mean time and money, many of the additive manufacturing benefits are negated. Thus, the goal of this work was to achieve better isotropy by applying only adapted additive manufacturing process parameters, specifically focusing on the build orientations. In this work, samples orientated in 90°, 45°, and 0° directions relative to the building platform were manufactured and tested. These tests included mechanical (tensile and fatigue tests) as well as microstructural analyses (SEM and EBSD). Subsequently, the results of these tests such as fractography were correlated with the acquired mechanical properties. These showed that 90°-aligned samples performed best under fatigue load and that all requirements specified by the standard regarding monotonic load were met. article_number: '117' author: - first_name: Dennis full_name: Milaege, Dennis id: '35461' last_name: Milaege - first_name: Niklas full_name: Eschemann, Niklas last_name: Eschemann - first_name: Kay-Peter full_name: Hoyer, Kay-Peter id: '48411' last_name: Hoyer - first_name: Mirko full_name: Schaper, Mirko id: '43720' last_name: Schaper citation: ama: Milaege D, Eschemann N, Hoyer K-P, Schaper M. Anisotropic Mechanical and Microstructural Properties of a Ti-6Al-7Nb Alloy for Biomedical Applications Manufactured via Laser Powder Bed Fusion. Crystals. 2024;14(2). doi:10.3390/cryst14020117 apa: Milaege, D., Eschemann, N., Hoyer, K.-P., & Schaper, M. (2024). Anisotropic Mechanical and Microstructural Properties of a Ti-6Al-7Nb Alloy for Biomedical Applications Manufactured via Laser Powder Bed Fusion. Crystals, 14(2), Article 117. https://doi.org/10.3390/cryst14020117 bibtex: '@article{Milaege_Eschemann_Hoyer_Schaper_2024, title={Anisotropic Mechanical and Microstructural Properties of a Ti-6Al-7Nb Alloy for Biomedical Applications Manufactured via Laser Powder Bed Fusion}, volume={14}, DOI={10.3390/cryst14020117}, number={2117}, journal={Crystals}, publisher={MDPI AG}, author={Milaege, Dennis and Eschemann, Niklas and Hoyer, Kay-Peter and Schaper, Mirko}, year={2024} }' chicago: Milaege, Dennis, Niklas Eschemann, Kay-Peter Hoyer, and Mirko Schaper. “Anisotropic Mechanical and Microstructural Properties of a Ti-6Al-7Nb Alloy for Biomedical Applications Manufactured via Laser Powder Bed Fusion.” Crystals 14, no. 2 (2024). https://doi.org/10.3390/cryst14020117. ieee: 'D. Milaege, N. Eschemann, K.-P. Hoyer, and M. Schaper, “Anisotropic Mechanical and Microstructural Properties of a Ti-6Al-7Nb Alloy for Biomedical Applications Manufactured via Laser Powder Bed Fusion,” Crystals, vol. 14, no. 2, Art. no. 117, 2024, doi: 10.3390/cryst14020117.' mla: Milaege, Dennis, et al. “Anisotropic Mechanical and Microstructural Properties of a Ti-6Al-7Nb Alloy for Biomedical Applications Manufactured via Laser Powder Bed Fusion.” Crystals, vol. 14, no. 2, 117, MDPI AG, 2024, doi:10.3390/cryst14020117. short: D. Milaege, N. Eschemann, K.-P. Hoyer, M. Schaper, Crystals 14 (2024). date_created: 2024-03-22T13:46:37Z date_updated: 2024-03-22T14:22:36Z department: - _id: '158' - _id: '321' doi: 10.3390/cryst14020117 intvolume: ' 14' issue: '2' keyword: - Inorganic Chemistry - Condensed Matter Physics - General Materials Science - General Chemical Engineering language: - iso: eng publication: Crystals publication_identifier: issn: - 2073-4352 publication_status: published publisher: MDPI AG quality_controlled: '1' status: public title: Anisotropic Mechanical and Microstructural Properties of a Ti-6Al-7Nb Alloy for Biomedical Applications Manufactured via Laser Powder Bed Fusion type: journal_article user_id: '35461' volume: 14 year: '2024' ... --- _id: '41492' abstract: - lang: eng text: The current investigation shows the feasibility of 316L steel powder production via three different argon gas atomisation routes (closed coupled atomisation, free fall atomisation with and without hot gas), along with subsequent sample production by laser powder bed fusion (PBF-LB). Here, a mixture of pure Fe and atomised 316L steel powder is used for PBF-LB to induce a chemical composition gradient in the microstructure. Optical microscopy and μ-CT investigations proved that the samples processed by PBF-LB exhibit very little porosity. Combined EBSD-EDS measurements show the chemical composition gradient leading to the formation of a local fcc-structure. Upon heat treatment (1100 °C, 14 h), the chemical composition is homogeneous throughout the microstructure. A moderate decrease (1060 to 985 MPa) in the sample’s ultimate tensile strength (UTS) is observed after heat treatment. However, the total elongation of the as-built and heat-treated samples remains the same (≈22%). Similarly, a slight decrease in the hardness from 341 to 307 HV1 is observed upon heat treatment. author: - first_name: Sudipta full_name: Pramanik, Sudipta last_name: Pramanik - first_name: Anatolii full_name: Andreiev, Anatolii id: '50215' last_name: Andreiev - first_name: Kay-Peter full_name: Hoyer, Kay-Peter id: '48411' last_name: Hoyer - first_name: Jan Tobias full_name: Krüger, Jan Tobias id: '44307' last_name: Krüger orcid: 0000-0002-0827-9654 - first_name: Florian full_name: Hengsbach, Florian last_name: Hengsbach - first_name: Alexander full_name: Kircheis, Alexander last_name: Kircheis - first_name: Weiyu full_name: Zhao, Weiyu last_name: Zhao - first_name: Jörg full_name: Fischer-Bühner, Jörg last_name: Fischer-Bühner - first_name: Mirko full_name: Schaper, Mirko id: '43720' last_name: Schaper citation: ama: Pramanik S, Andreiev A, Hoyer K-P, et al. Powder Production via Atomisation and Subsequent Laser Powder Bed Fusion Processing of Fe+316L Steel Hybrid Alloy. Powders. 2023;2(1):59-74. doi:10.3390/powders2010005 apa: Pramanik, S., Andreiev, A., Hoyer, K.-P., Krüger, J. T., Hengsbach, F., Kircheis, A., Zhao, W., Fischer-Bühner, J., & Schaper, M. (2023). Powder Production via Atomisation and Subsequent Laser Powder Bed Fusion Processing of Fe+316L Steel Hybrid Alloy. Powders, 2(1), 59–74. https://doi.org/10.3390/powders2010005 bibtex: '@article{Pramanik_Andreiev_Hoyer_Krüger_Hengsbach_Kircheis_Zhao_Fischer-Bühner_Schaper_2023, title={Powder Production via Atomisation and Subsequent Laser Powder Bed Fusion Processing of Fe+316L Steel Hybrid Alloy}, volume={2}, DOI={10.3390/powders2010005}, number={1}, journal={Powders}, publisher={MDPI AG}, author={Pramanik, Sudipta and Andreiev, Anatolii and Hoyer, Kay-Peter and Krüger, Jan Tobias and Hengsbach, Florian and Kircheis, Alexander and Zhao, Weiyu and Fischer-Bühner, Jörg and Schaper, Mirko}, year={2023}, pages={59–74} }' chicago: 'Pramanik, Sudipta, Anatolii Andreiev, Kay-Peter Hoyer, Jan Tobias Krüger, Florian Hengsbach, Alexander Kircheis, Weiyu Zhao, Jörg Fischer-Bühner, and Mirko Schaper. “Powder Production via Atomisation and Subsequent Laser Powder Bed Fusion Processing of Fe+316L Steel Hybrid Alloy.” Powders 2, no. 1 (2023): 59–74. https://doi.org/10.3390/powders2010005.' ieee: 'S. Pramanik et al., “Powder Production via Atomisation and Subsequent Laser Powder Bed Fusion Processing of Fe+316L Steel Hybrid Alloy,” Powders, vol. 2, no. 1, pp. 59–74, 2023, doi: 10.3390/powders2010005.' mla: Pramanik, Sudipta, et al. “Powder Production via Atomisation and Subsequent Laser Powder Bed Fusion Processing of Fe+316L Steel Hybrid Alloy.” Powders, vol. 2, no. 1, MDPI AG, 2023, pp. 59–74, doi:10.3390/powders2010005. short: S. Pramanik, A. Andreiev, K.-P. Hoyer, J.T. Krüger, F. Hengsbach, A. Kircheis, W. Zhao, J. Fischer-Bühner, M. Schaper, Powders 2 (2023) 59–74. date_created: 2023-02-02T14:24:33Z date_updated: 2023-06-01T14:22:00Z department: - _id: '9' - _id: '158' doi: 10.3390/powders2010005 intvolume: ' 2' issue: '1' language: - iso: eng page: 59-74 publication: Powders publication_identifier: issn: - 2674-0516 publication_status: published publisher: MDPI AG quality_controlled: '1' status: public title: Powder Production via Atomisation and Subsequent Laser Powder Bed Fusion Processing of Fe+316L Steel Hybrid Alloy type: journal_article user_id: '43720' volume: 2 year: '2023' ... --- _id: '45360' alternative_title: - Implementation of optimized surface slitting for eddy current loss reduction on the surface of an additively manufactured pemanent magnet rotor author: - first_name: Michael full_name: Haase, Michael id: '35970' last_name: Haase - first_name: Maximilian full_name: Bieber, Maximilian last_name: Bieber - first_name: Frederik full_name: Tasche, Frederik last_name: Tasche - first_name: Mirko full_name: Schaper, Mirko id: '43720' last_name: Schaper - first_name: Kay-Peter full_name: Hoyer, Kay-Peter id: '48411' last_name: Hoyer - first_name: Bernd full_name: Ponik, Bernd last_name: Ponik - first_name: Balázs full_name: Magyar, Balázs id: '97759' last_name: Magyar citation: ama: 'Haase M, Bieber M, Tasche F, et al. Umsetzung einer optimierten Oberflächenschlitzung zur Wirbelstromverlustreduktion auf der Oberfläche eines additiv gefertigten Permanentmagnet-Rotors. In: Kynast M, Eichmann M, Witt G, eds. Proceedings of the 19th Rapid.Tech 3D Conference Erfurt, Germany, 9–11 May 2023. Carl Hanser Verlag GmbH & Co. KG; 2023.' apa: Haase, M., Bieber, M., Tasche, F., Schaper, M., Hoyer, K.-P., Ponik, B., & Magyar, B. (2023). Umsetzung einer optimierten Oberflächenschlitzung zur Wirbelstromverlustreduktion auf der Oberfläche eines additiv gefertigten Permanentmagnet-Rotors. In M. Kynast, M. Eichmann, & G. Witt (Eds.), Proceedings of the 19th Rapid.Tech 3D Conference Erfurt, Germany, 9–11 May 2023. Carl Hanser Verlag GmbH & Co. KG. bibtex: '@inbook{Haase_Bieber_Tasche_Schaper_Hoyer_Ponik_Magyar_2023, place={München}, title={Umsetzung einer optimierten Oberflächenschlitzung zur Wirbelstromverlustreduktion auf der Oberfläche eines additiv gefertigten Permanentmagnet-Rotors}, booktitle={Proceedings of the 19th Rapid.Tech 3D Conference Erfurt, Germany, 9–11 May 2023}, publisher={Carl Hanser Verlag GmbH & Co. KG}, author={Haase, Michael and Bieber, Maximilian and Tasche, Frederik and Schaper, Mirko and Hoyer, Kay-Peter and Ponik, Bernd and Magyar, Balázs}, editor={Kynast, Michael and Eichmann, Michael and Witt, Gerd}, year={2023} }' chicago: 'Haase, Michael, Maximilian Bieber, Frederik Tasche, Mirko Schaper, Kay-Peter Hoyer, Bernd Ponik, and Balázs Magyar. “Umsetzung einer optimierten Oberflächenschlitzung zur Wirbelstromverlustreduktion auf der Oberfläche eines additiv gefertigten Permanentmagnet-Rotors.” In Proceedings of the 19th Rapid.Tech 3D Conference Erfurt, Germany, 9–11 May 2023, edited by Michael Kynast, Michael Eichmann, and Gerd Witt. München: Carl Hanser Verlag GmbH & Co. KG, 2023.' ieee: 'M. Haase et al., “Umsetzung einer optimierten Oberflächenschlitzung zur Wirbelstromverlustreduktion auf der Oberfläche eines additiv gefertigten Permanentmagnet-Rotors,” in Proceedings of the 19th Rapid.Tech 3D Conference Erfurt, Germany, 9–11 May 2023, M. Kynast, M. Eichmann, and G. Witt, Eds. München: Carl Hanser Verlag GmbH & Co. KG, 2023.' mla: Haase, Michael, et al. “Umsetzung einer optimierten Oberflächenschlitzung zur Wirbelstromverlustreduktion auf der Oberfläche eines additiv gefertigten Permanentmagnet-Rotors.” Proceedings of the 19th Rapid.Tech 3D Conference Erfurt, Germany, 9–11 May 2023, edited by Michael Kynast et al., Carl Hanser Verlag GmbH & Co. KG, 2023. short: 'M. Haase, M. Bieber, F. Tasche, M. Schaper, K.-P. Hoyer, B. Ponik, B. Magyar, in: M. Kynast, M. Eichmann, G. Witt (Eds.), Proceedings of the 19th Rapid.Tech 3D Conference Erfurt, Germany, 9–11 May 2023, Carl Hanser Verlag GmbH & Co. KG, München, 2023.' date_created: 2023-05-30T05:55:15Z date_updated: 2023-06-01T14:21:16Z department: - _id: '146' - _id: '219' - _id: '158' editor: - first_name: Michael full_name: Kynast, Michael last_name: Kynast - first_name: Michael full_name: Eichmann, Michael last_name: Eichmann - first_name: Gerd full_name: Witt, Gerd last_name: Witt language: - iso: ger place: München popular_science: '1' publication: Proceedings of the 19th Rapid.Tech 3D Conference Erfurt, Germany, 9–11 May 2023 publication_identifier: eisbn: - 978-3-446-47942-5 isbn: - 978-3-446-47941-8 publication_status: published publisher: Carl Hanser Verlag GmbH & Co. KG status: public title: Umsetzung einer optimierten Oberflächenschlitzung zur Wirbelstromverlustreduktion auf der Oberfläche eines additiv gefertigten Permanentmagnet-Rotors type: book_chapter user_id: '43720' year: '2023' ... --- _id: '44078' article_number: '117991' author: - first_name: Anatolii full_name: Andreiev, Anatolii id: '50215' last_name: Andreiev - first_name: Kay-Peter full_name: Hoyer, Kay-Peter id: '48411' last_name: Hoyer - first_name: Florian full_name: Hengsbach, Florian last_name: Hengsbach - first_name: Michael full_name: Haase, Michael id: '35970' last_name: Haase - first_name: Lennart full_name: Tasche, Lennart id: '71508' last_name: Tasche - first_name: Kristina full_name: Duschik, Kristina last_name: Duschik - first_name: Mirko full_name: Schaper, Mirko id: '43720' last_name: Schaper citation: ama: Andreiev A, Hoyer K-P, Hengsbach F, et al. Powder bed fusion of soft-magnetic iron-based alloys with high silicon content. Journal of Materials Processing Technology. 2023;317. doi:10.1016/j.jmatprotec.2023.117991 apa: Andreiev, A., Hoyer, K.-P., Hengsbach, F., Haase, M., Tasche, L., Duschik, K., & Schaper, M. (2023). Powder bed fusion of soft-magnetic iron-based alloys with high silicon content. Journal of Materials Processing Technology, 317, Article 117991. https://doi.org/10.1016/j.jmatprotec.2023.117991 bibtex: '@article{Andreiev_Hoyer_Hengsbach_Haase_Tasche_Duschik_Schaper_2023, title={Powder bed fusion of soft-magnetic iron-based alloys with high silicon content}, volume={317}, DOI={10.1016/j.jmatprotec.2023.117991}, number={117991}, journal={Journal of Materials Processing Technology}, publisher={Elsevier BV}, author={Andreiev, Anatolii and Hoyer, Kay-Peter and Hengsbach, Florian and Haase, Michael and Tasche, Lennart and Duschik, Kristina and Schaper, Mirko}, year={2023} }' chicago: Andreiev, Anatolii, Kay-Peter Hoyer, Florian Hengsbach, Michael Haase, Lennart Tasche, Kristina Duschik, and Mirko Schaper. “Powder Bed Fusion of Soft-Magnetic Iron-Based Alloys with High Silicon Content.” Journal of Materials Processing Technology 317 (2023). https://doi.org/10.1016/j.jmatprotec.2023.117991. ieee: 'A. Andreiev et al., “Powder bed fusion of soft-magnetic iron-based alloys with high silicon content,” Journal of Materials Processing Technology, vol. 317, Art. no. 117991, 2023, doi: 10.1016/j.jmatprotec.2023.117991.' mla: Andreiev, Anatolii, et al. “Powder Bed Fusion of Soft-Magnetic Iron-Based Alloys with High Silicon Content.” Journal of Materials Processing Technology, vol. 317, 117991, Elsevier BV, 2023, doi:10.1016/j.jmatprotec.2023.117991. short: A. Andreiev, K.-P. Hoyer, F. Hengsbach, M. Haase, L. Tasche, K. Duschik, M. Schaper, Journal of Materials Processing Technology 317 (2023). date_created: 2023-04-20T10:39:14Z date_updated: 2023-06-01T14:21:45Z department: - _id: '158' - _id: '146' - _id: '219' doi: 10.1016/j.jmatprotec.2023.117991 intvolume: ' 317' keyword: - Industrial and Manufacturing Engineering - Metals and Alloys - Computer Science Applications - Modeling and Simulation - Ceramics and Composites language: - iso: eng publication: Journal of Materials Processing Technology publication_identifier: issn: - 0924-0136 publication_status: published publisher: Elsevier BV quality_controlled: '1' status: public title: Powder bed fusion of soft-magnetic iron-based alloys with high silicon content type: journal_article user_id: '43720' volume: 317 year: '2023' ... --- _id: '46503' abstract: - lang: eng text: "\r\nPurpose\r\nThe purpose of this study is to investigate the manufacturability of Fe-3Si lattice structures and the resulting mechanical properties. This study could lead to the successful processing of squirrel cage conductors (a lattice structure by design) of an induction motor by additive manufacturing in the future.\r\n\r\n\r\nDesign/methodology/approach\r\nThe compression behaviour of two lattice structures where struts are arranged in a face-centred cubic position and vertical edges (FCCZ), and struts are placed at body-centred cubic (BCC) positions, prepared by laser powder bed fusion (LPBF), is explored. The experimental investigations are supported by finite element method (FEM) simulations.\r\n\r\n\r\nFindings\r\nThe FCCZ lattice structure presents a peak in the stress-strain curve, whereas the BCC lattice structure manifests a plateau. The vertical struts aligned along the compression direction lead to a significant increase in the load-carrying ability of FCCZ lattice structures compared to BCC lattice structures. This results in a peak in the stress-strain curve. However, the BCC lattice structure presents the bending of struts with diagonal struts carrying the major loads with struts near the faceplate receiving the least load. A high concentration of geometrically necessary dislocations (GNDs) near the grain boundaries along cell formation is observed in the microstructure.\r\n\r\n\r\nOriginality/value\r\nTo the best of the authors’ knowledge, this is the first study on additive manufacturing of Fe-3Si lattice structures. Currently, there are no investigations in the literature on the manufacturability and mechanical properties of Fe-3Si lattice structures.\r\n" author: - first_name: Sudipta full_name: Pramanik, Sudipta last_name: Pramanik - first_name: Kay-Peter full_name: Hoyer, Kay-Peter id: '48411' last_name: Hoyer - first_name: Mirko full_name: Schaper, Mirko id: '43720' last_name: Schaper citation: ama: Pramanik S, Hoyer K-P, Schaper M. Experimental and finite element method investigation on the compression behaviour of FCCZ and BCC lattice structures of additively manufactured Fe-3Si samples. Rapid Prototyping Journal. 2023;29(6):1257-1269. doi:10.1108/rpj-06-2022-0190 apa: Pramanik, S., Hoyer, K.-P., & Schaper, M. (2023). Experimental and finite element method investigation on the compression behaviour of FCCZ and BCC lattice structures of additively manufactured Fe-3Si samples. Rapid Prototyping Journal, 29(6), 1257–1269. https://doi.org/10.1108/rpj-06-2022-0190 bibtex: '@article{Pramanik_Hoyer_Schaper_2023, title={Experimental and finite element method investigation on the compression behaviour of FCCZ and BCC lattice structures of additively manufactured Fe-3Si samples}, volume={29}, DOI={10.1108/rpj-06-2022-0190}, number={6}, journal={Rapid Prototyping Journal}, publisher={Emerald}, author={Pramanik, Sudipta and Hoyer, Kay-Peter and Schaper, Mirko}, year={2023}, pages={1257–1269} }' chicago: 'Pramanik, Sudipta, Kay-Peter Hoyer, and Mirko Schaper. “Experimental and Finite Element Method Investigation on the Compression Behaviour of FCCZ and BCC Lattice Structures of Additively Manufactured Fe-3Si Samples.” Rapid Prototyping Journal 29, no. 6 (2023): 1257–69. https://doi.org/10.1108/rpj-06-2022-0190.' ieee: 'S. Pramanik, K.-P. Hoyer, and M. Schaper, “Experimental and finite element method investigation on the compression behaviour of FCCZ and BCC lattice structures of additively manufactured Fe-3Si samples,” Rapid Prototyping Journal, vol. 29, no. 6, pp. 1257–1269, 2023, doi: 10.1108/rpj-06-2022-0190.' mla: Pramanik, Sudipta, et al. “Experimental and Finite Element Method Investigation on the Compression Behaviour of FCCZ and BCC Lattice Structures of Additively Manufactured Fe-3Si Samples.” Rapid Prototyping Journal, vol. 29, no. 6, Emerald, 2023, pp. 1257–69, doi:10.1108/rpj-06-2022-0190. short: S. Pramanik, K.-P. Hoyer, M. Schaper, Rapid Prototyping Journal 29 (2023) 1257–1269. date_created: 2023-08-16T06:20:42Z date_updated: 2023-08-16T06:29:57Z department: - _id: '9' - _id: '158' doi: 10.1108/rpj-06-2022-0190 intvolume: ' 29' issue: '6' keyword: - Industrial and Manufacturing Engineering - Mechanical Engineering language: - iso: eng page: 1257-1269 publication: Rapid Prototyping Journal publication_identifier: issn: - 1355-2546 - 1355-2546 publication_status: published publisher: Emerald quality_controlled: '1' status: public title: Experimental and finite element method investigation on the compression behaviour of FCCZ and BCC lattice structures of additively manufactured Fe-3Si samples type: journal_article user_id: '48411' volume: 29 year: '2023' ... --- _id: '46507' author: - first_name: Sudipta full_name: Pramanik, Sudipta last_name: Pramanik - first_name: Dennis full_name: Milaege, Dennis last_name: Milaege - first_name: Maxwell full_name: Hein, Maxwell id: '52771' last_name: Hein orcid: 0000-0002-3732-2236 - first_name: Anatolii full_name: Andreiev, Anatolii id: '50215' last_name: Andreiev - first_name: Mirko full_name: Schaper, Mirko id: '43720' last_name: Schaper - first_name: Kay-Peter full_name: Hoyer, Kay-Peter id: '48411' last_name: Hoyer citation: ama: Pramanik S, Milaege D, Hein M, Andreiev A, Schaper M, Hoyer K-P. An Experimental and Computational Modeling Study on Additively Manufactured Micro‐Architectured Ti–24Nb–4Zr–8Sn Hollow‐Strut Lattice Structures. Advanced Engineering Materials. 2023;25(14). doi:10.1002/adem.202201850 apa: Pramanik, S., Milaege, D., Hein, M., Andreiev, A., Schaper, M., & Hoyer, K.-P. (2023). An Experimental and Computational Modeling Study on Additively Manufactured Micro‐Architectured Ti–24Nb–4Zr–8Sn Hollow‐Strut Lattice Structures. Advanced Engineering Materials, 25(14). https://doi.org/10.1002/adem.202201850 bibtex: '@article{Pramanik_Milaege_Hein_Andreiev_Schaper_Hoyer_2023, title={An Experimental and Computational Modeling Study on Additively Manufactured Micro‐Architectured Ti–24Nb–4Zr–8Sn Hollow‐Strut Lattice Structures}, volume={25}, DOI={10.1002/adem.202201850}, number={14}, journal={Advanced Engineering Materials}, publisher={Wiley}, author={Pramanik, Sudipta and Milaege, Dennis and Hein, Maxwell and Andreiev, Anatolii and Schaper, Mirko and Hoyer, Kay-Peter}, year={2023} }' chicago: Pramanik, Sudipta, Dennis Milaege, Maxwell Hein, Anatolii Andreiev, Mirko Schaper, and Kay-Peter Hoyer. “An Experimental and Computational Modeling Study on Additively Manufactured Micro‐Architectured Ti–24Nb–4Zr–8Sn Hollow‐Strut Lattice Structures.” Advanced Engineering Materials 25, no. 14 (2023). https://doi.org/10.1002/adem.202201850. ieee: 'S. Pramanik, D. Milaege, M. Hein, A. Andreiev, M. Schaper, and K.-P. Hoyer, “An Experimental and Computational Modeling Study on Additively Manufactured Micro‐Architectured Ti–24Nb–4Zr–8Sn Hollow‐Strut Lattice Structures,” Advanced Engineering Materials, vol. 25, no. 14, 2023, doi: 10.1002/adem.202201850.' mla: Pramanik, Sudipta, et al. “An Experimental and Computational Modeling Study on Additively Manufactured Micro‐Architectured Ti–24Nb–4Zr–8Sn Hollow‐Strut Lattice Structures.” Advanced Engineering Materials, vol. 25, no. 14, Wiley, 2023, doi:10.1002/adem.202201850. short: S. Pramanik, D. Milaege, M. Hein, A. Andreiev, M. Schaper, K.-P. Hoyer, Advanced Engineering Materials 25 (2023). date_created: 2023-08-16T06:27:19Z date_updated: 2023-08-16T06:29:36Z department: - _id: '9' - _id: '158' doi: 10.1002/adem.202201850 intvolume: ' 25' issue: '14' keyword: - Condensed Matter Physics - General Materials Science language: - iso: eng publication: Advanced Engineering Materials publication_identifier: issn: - 1438-1656 - 1527-2648 publication_status: published publisher: Wiley quality_controlled: '1' status: public title: An Experimental and Computational Modeling Study on Additively Manufactured Micro‐Architectured Ti–24Nb–4Zr–8Sn Hollow‐Strut Lattice Structures type: journal_article user_id: '48411' volume: 25 year: '2023' ... --- _id: '46870' author: - first_name: Dennis full_name: Menge, Dennis id: '29240' last_name: Menge - first_name: Dennis full_name: Milaege, Dennis last_name: Milaege - first_name: Kay-Peter full_name: Hoyer, Kay-Peter id: '48411' last_name: Hoyer - first_name: Hans-Joachim full_name: Schmid, Hans-Joachim id: '464' last_name: Schmid orcid: 000-0001-8590-1921 - first_name: Mirko full_name: Schaper, Mirko id: '43720' last_name: Schaper citation: ama: 'Menge D, Milaege D, Hoyer K-P, Schmid H-J, Schaper M. Case Study IV: Individualized Medical Technology using Additive Manufacturing. In: Horwath I, Schweizer S, eds. Climate Protection, Resource Efficiency, and Sustainable Engineering. transcript Verlag; 2023. doi:10.14361/9783839463772-007' apa: 'Menge, D., Milaege, D., Hoyer, K.-P., Schmid, H.-J., & Schaper, M. (2023). Case Study IV: Individualized Medical Technology using Additive Manufacturing. In I. Horwath & S. Schweizer (Eds.), Climate Protection, Resource Efficiency, and Sustainable Engineering. transcript Verlag. https://doi.org/10.14361/9783839463772-007' bibtex: '@inbook{Menge_Milaege_Hoyer_Schmid_Schaper_2023, place={Bielefeld, Germany}, title={Case Study IV: Individualized Medical Technology using Additive Manufacturing}, DOI={10.14361/9783839463772-007}, booktitle={Climate Protection, Resource Efficiency, and Sustainable Engineering}, publisher={transcript Verlag}, author={Menge, Dennis and Milaege, Dennis and Hoyer, Kay-Peter and Schmid, Hans-Joachim and Schaper, Mirko}, editor={Horwath, Illona and Schweizer, Swetlana}, year={2023} }' chicago: 'Menge, Dennis, Dennis Milaege, Kay-Peter Hoyer, Hans-Joachim Schmid, and Mirko Schaper. “Case Study IV: Individualized Medical Technology Using Additive Manufacturing.” In Climate Protection, Resource Efficiency, and Sustainable Engineering, edited by Illona Horwath and Swetlana Schweizer. Bielefeld, Germany: transcript Verlag, 2023. https://doi.org/10.14361/9783839463772-007.' ieee: 'D. Menge, D. Milaege, K.-P. Hoyer, H.-J. Schmid, and M. Schaper, “Case Study IV: Individualized Medical Technology using Additive Manufacturing,” in Climate Protection, Resource Efficiency, and Sustainable Engineering, I. Horwath and S. Schweizer, Eds. Bielefeld, Germany: transcript Verlag, 2023.' mla: 'Menge, Dennis, et al. “Case Study IV: Individualized Medical Technology Using Additive Manufacturing.” Climate Protection, Resource Efficiency, and Sustainable Engineering, edited by Illona Horwath and Swetlana Schweizer, transcript Verlag, 2023, doi:10.14361/9783839463772-007.' short: 'D. Menge, D. Milaege, K.-P. Hoyer, H.-J. Schmid, M. Schaper, in: I. Horwath, S. Schweizer (Eds.), Climate Protection, Resource Efficiency, and Sustainable Engineering, transcript Verlag, Bielefeld, Germany, 2023.' date_created: 2023-09-08T08:28:27Z date_updated: 2023-09-08T08:32:42Z department: - _id: '9' - _id: '158' - _id: '150' doi: 10.14361/9783839463772-007 editor: - first_name: Illona full_name: Horwath, Illona last_name: Horwath - first_name: Swetlana full_name: Schweizer, Swetlana last_name: Schweizer language: - iso: eng place: Bielefeld, Germany publication: Climate Protection, Resource Efficiency, and Sustainable Engineering publication_identifier: isbn: - '9783837663778' - '9783839463772' issn: - 2703-1543 - 2703-1551 publication_status: published publisher: transcript Verlag status: public title: 'Case Study IV: Individualized Medical Technology using Additive Manufacturing' type: book_chapter user_id: '48411' year: '2023' ... --- _id: '47122' abstract: - lang: eng text: "AbstractFeCo alloys are important materials used in pumps and motors in the offshore oil and gas drilling industry. These alloys are subjected to marine environments with a high NaCl concentration, therefore, corrosion and catastrophic failure are anticipated. So, the surface dissolution of additively manufactured FeCo samples is investigated in a quasi-in situ manner, in particular, the pitting corrosion in 5.0 wt pct NaCl solution. The local dissolution of the same sample region is monitored after 24, 72, and 168 hours. Here, the formation of rectangular and circular pits of ultra-fine dimensions (less than 0.5 µm) is observed with increasing immersion time. In addition, the formation of a corrosion-inhibiting surface layer is detected on the sample surface. Surface dissolution leads to a change in the surface structure, however, no change in grain shape or grain size is noticed. The surface topography after local dissolution is correlated to the grain orientation. Quasi-in situ analysis shows the preferential dissolution of high-angle grain boundaries (HAGBs) leading to a change in the fraction of HAGBs and low-angle grain boundaries fraction (LAGBs). For the FeCo sample, a potentiodynamic polarisation test reveals a corrosion potential (Ecorr) of − 0.475 V referred to the standard hydrogen electrode (SHE) and a corrosion exchange current density (icorr) of 0.0848 A/m2. Furthermore, quasi-in situ experiments showed that grains oriented along certain crystallographic directions are corroding more compared to other grains leading to a significant decrease in the local surface height. Grains with a plane normal close to the $$\\langle {1}00\\rangle$$\r\n \ \r\n \r\n 100\r\n \ \r\n \r\n direction reveal lower surface dissolution and higher corrosion resistance, whereas planes normal close to the $$\\langle {11}0\\rangle$$\r\n \ \r\n \r\n 110\r\n \ \r\n \r\n direction and the $$\\langle {111}\\rangle$$\r\n \ \r\n \r\n 111\r\n \ \r\n \r\n direction exhibit a higher surface dissolution." author: - first_name: Sudipta full_name: Pramanik, Sudipta last_name: Pramanik - first_name: Jan Tobias full_name: Krüger, Jan Tobias id: '44307' last_name: Krüger orcid: 0000-0002-0827-9654 - first_name: Mirko full_name: Schaper, Mirko id: '43720' last_name: Schaper - first_name: Kay-Peter full_name: Hoyer, Kay-Peter id: '48411' last_name: Hoyer citation: ama: Pramanik S, Krüger JT, Schaper M, Hoyer K-P. Quasi-In Situ Localized Corrosion of an Additively Manufactured FeCo Alloy in 5 Wt Pct NaCl Solution. Metallurgical and Materials Transactions A. Published online 2023. doi:10.1007/s11661-023-07186-7 apa: Pramanik, S., Krüger, J. T., Schaper, M., & Hoyer, K.-P. (2023). Quasi-In Situ Localized Corrosion of an Additively Manufactured FeCo Alloy in 5 Wt Pct NaCl Solution. Metallurgical and Materials Transactions A. https://doi.org/10.1007/s11661-023-07186-7 bibtex: '@article{Pramanik_Krüger_Schaper_Hoyer_2023, title={Quasi-In Situ Localized Corrosion of an Additively Manufactured FeCo Alloy in 5 Wt Pct NaCl Solution}, DOI={10.1007/s11661-023-07186-7}, journal={Metallurgical and Materials Transactions A}, publisher={Springer Science and Business Media LLC}, author={Pramanik, Sudipta and Krüger, Jan Tobias and Schaper, Mirko and Hoyer, Kay-Peter}, year={2023} }' chicago: Pramanik, Sudipta, Jan Tobias Krüger, Mirko Schaper, and Kay-Peter Hoyer. “Quasi-In Situ Localized Corrosion of an Additively Manufactured FeCo Alloy in 5 Wt Pct NaCl Solution.” Metallurgical and Materials Transactions A, 2023. https://doi.org/10.1007/s11661-023-07186-7. ieee: 'S. Pramanik, J. T. Krüger, M. Schaper, and K.-P. Hoyer, “Quasi-In Situ Localized Corrosion of an Additively Manufactured FeCo Alloy in 5 Wt Pct NaCl Solution,” Metallurgical and Materials Transactions A, 2023, doi: 10.1007/s11661-023-07186-7.' mla: Pramanik, Sudipta, et al. “Quasi-In Situ Localized Corrosion of an Additively Manufactured FeCo Alloy in 5 Wt Pct NaCl Solution.” Metallurgical and Materials Transactions A, Springer Science and Business Media LLC, 2023, doi:10.1007/s11661-023-07186-7. short: S. Pramanik, J.T. Krüger, M. Schaper, K.-P. Hoyer, Metallurgical and Materials Transactions A (2023). date_created: 2023-09-18T11:43:28Z date_updated: 2023-09-18T11:44:04Z department: - _id: '9' - _id: '158' doi: 10.1007/s11661-023-07186-7 keyword: - Metals and Alloys - Mechanics of Materials - Condensed Matter Physics language: - iso: eng publication: Metallurgical and Materials Transactions A publication_identifier: issn: - 1073-5623 - 1543-1940 publication_status: published publisher: Springer Science and Business Media LLC quality_controlled: '1' status: public title: Quasi-In Situ Localized Corrosion of an Additively Manufactured FeCo Alloy in 5 Wt Pct NaCl Solution type: journal_article user_id: '48411' year: '2023' ... --- _id: '49107' abstract: - lang: eng text: The effect of plaque deposition (atherosclerosis) on blood flow behaviour is investigated via computational fluid dynamics and structural mechanics simulations. To mitigate the narrowing of coronary artery atherosclerosis (stenosis), the computational modelling of auxetic and non-auxetic stents was performed in this study to minimise or even avoid these deposition agents in the future. Computational modelling was performed in unrestricted (open) conditions and restricted (in an artery) conditions. Finally, stent designs were produced by additive manufacturing, and mechanical testing of the stents was undertaken. Auxetic stent 1 and auxetic stent 2 exhibit very little foreshortening and radial recoil in unrestricted deployment conditions compared to non-auxetic stent 3. However, stent 2 shows structural instability (strut failure) during unrestricted deployment conditions. For the restricted deployment condition, stent 1 shows a higher radial recoil compared to stent 3. In the tensile test simulations, short elongation for stent 1 due to strut failure is demonstrated, whereas no structural instability is noticed for stent 2 and stent 3 until 0.5 (mm/mm) strain. The as-built samples show a significant thickening of the struts of the stents resulting in short elongations during tensile testing compared to the simulations (stent 2 and stent 3). A modelling framework for the stent deployment system that enables the selection of appropriate stent designs before in vivo testing is required. This leads to the acceleration of the development process and a reduction in time, resulting in less material wastage. The modelling framework shall be useful for doctors designing patient-specific stents. article_number: '1592' author: - first_name: Sudipta full_name: Pramanik, Sudipta last_name: Pramanik - first_name: Dennis full_name: Milaege, Dennis last_name: Milaege - first_name: Maxwell full_name: Hein, Maxwell id: '52771' last_name: Hein orcid: 0000-0002-3732-2236 - first_name: Kay-Peter full_name: Hoyer, Kay-Peter id: '48411' last_name: Hoyer - first_name: Mirko full_name: Schaper, Mirko id: '43720' last_name: Schaper citation: ama: 'Pramanik S, Milaege D, Hein M, Hoyer K-P, Schaper M. Additive Manufacturing and Mechanical Properties of Auxetic and Non-Auxetic Ti24Nb4Zr8Sn Biomedical Stents: A Combined Experimental and Computational Modelling Approach. Crystals. 2023;13(11). doi:10.3390/cryst13111592' apa: 'Pramanik, S., Milaege, D., Hein, M., Hoyer, K.-P., & Schaper, M. (2023). Additive Manufacturing and Mechanical Properties of Auxetic and Non-Auxetic Ti24Nb4Zr8Sn Biomedical Stents: A Combined Experimental and Computational Modelling Approach. Crystals, 13(11), Article 1592. https://doi.org/10.3390/cryst13111592' bibtex: '@article{Pramanik_Milaege_Hein_Hoyer_Schaper_2023, title={Additive Manufacturing and Mechanical Properties of Auxetic and Non-Auxetic Ti24Nb4Zr8Sn Biomedical Stents: A Combined Experimental and Computational Modelling Approach}, volume={13}, DOI={10.3390/cryst13111592}, number={111592}, journal={Crystals}, publisher={MDPI AG}, author={Pramanik, Sudipta and Milaege, Dennis and Hein, Maxwell and Hoyer, Kay-Peter and Schaper, Mirko}, year={2023} }' chicago: 'Pramanik, Sudipta, Dennis Milaege, Maxwell Hein, Kay-Peter Hoyer, and Mirko Schaper. “Additive Manufacturing and Mechanical Properties of Auxetic and Non-Auxetic Ti24Nb4Zr8Sn Biomedical Stents: A Combined Experimental and Computational Modelling Approach.” Crystals 13, no. 11 (2023). https://doi.org/10.3390/cryst13111592.' ieee: 'S. Pramanik, D. Milaege, M. Hein, K.-P. Hoyer, and M. Schaper, “Additive Manufacturing and Mechanical Properties of Auxetic and Non-Auxetic Ti24Nb4Zr8Sn Biomedical Stents: A Combined Experimental and Computational Modelling Approach,” Crystals, vol. 13, no. 11, Art. no. 1592, 2023, doi: 10.3390/cryst13111592.' mla: 'Pramanik, Sudipta, et al. “Additive Manufacturing and Mechanical Properties of Auxetic and Non-Auxetic Ti24Nb4Zr8Sn Biomedical Stents: A Combined Experimental and Computational Modelling Approach.” Crystals, vol. 13, no. 11, 1592, MDPI AG, 2023, doi:10.3390/cryst13111592.' short: S. Pramanik, D. Milaege, M. Hein, K.-P. Hoyer, M. Schaper, Crystals 13 (2023). date_created: 2023-11-21T15:29:49Z date_updated: 2023-11-21T15:30:57Z department: - _id: '9' - _id: '158' doi: 10.3390/cryst13111592 intvolume: ' 13' issue: '11' keyword: - Inorganic Chemistry - Condensed Matter Physics - General Materials Science - General Chemical Engineering language: - iso: eng publication: Crystals publication_identifier: issn: - 2073-4352 publication_status: published publisher: MDPI AG quality_controlled: '1' status: public title: 'Additive Manufacturing and Mechanical Properties of Auxetic and Non-Auxetic Ti24Nb4Zr8Sn Biomedical Stents: A Combined Experimental and Computational Modelling Approach' type: journal_article user_id: '48411' volume: 13 year: '2023' ... --- _id: '47535' abstract: - lang: eng text: Consistent lightweight construction in the area of vehicle manufacturing requires the increased use of multi-material combinations. This, in turn, requires an adaptation of standard joining techniques. In multi-material combinations, the importance of integral cast components, in particular, is increasing and poses additional technical challenges for the industry. One approach to solve these challenges is adaptable joining elements manufactured by a thermomechanical forming process. By applying an incremental and thermomechanical joining process, it is possible to react immediately and adapt the joining process inline to reduce the number of different joining elements. In the investigation described in this publication, cast plates made of the cast aluminium alloy EN AC-AlSi9 serve as joining partners, which are processed by sand casting. The joining process of hypoeutectic AlSi alloys is challenging as their brittle character leads to cracks in the joint during conventional mechanical joining. To solve this, the frictional heat of the novel joining process applied can provide a finer microstructure in the hypoeutectic AlSi9 cast alloy. In detail, its Si is finer-grained, resulting in higher ductility of the joint. This study reveals the thermomechanical joining suitability of a hypoeutectic cast aluminium alloy in combination with adaptively manufactured auxiliary joining elements. article_number: '169' article_type: original author: - first_name: Thomas full_name: Borgert, Thomas id: '83141' last_name: Borgert - first_name: Moritz full_name: Neuser, Moritz id: '32340' last_name: Neuser - first_name: Kay-Peter full_name: Hoyer, Kay-Peter id: '48411' last_name: Hoyer - first_name: Werner full_name: Homberg, Werner id: '233' last_name: Homberg - first_name: Mirko full_name: Schaper, Mirko id: '43720' last_name: Schaper citation: ama: Borgert T, Neuser M, Hoyer K-P, Homberg W, Schaper M. Thermomechanical Joining of Hypoeutectic Aluminium Cast Plates. Journal of Manufacturing and Materials Processing. 2023;7(5). doi:10.3390/jmmp7050169 apa: Borgert, T., Neuser, M., Hoyer, K.-P., Homberg, W., & Schaper, M. (2023). Thermomechanical Joining of Hypoeutectic Aluminium Cast Plates. Journal of Manufacturing and Materials Processing, 7(5), Article 169. https://doi.org/10.3390/jmmp7050169 bibtex: '@article{Borgert_Neuser_Hoyer_Homberg_Schaper_2023, title={Thermomechanical Joining of Hypoeutectic Aluminium Cast Plates}, volume={7}, DOI={10.3390/jmmp7050169}, number={5169}, journal={Journal of Manufacturing and Materials Processing}, publisher={MDPI AG}, author={Borgert, Thomas and Neuser, Moritz and Hoyer, Kay-Peter and Homberg, Werner and Schaper, Mirko}, year={2023} }' chicago: Borgert, Thomas, Moritz Neuser, Kay-Peter Hoyer, Werner Homberg, and Mirko Schaper. “Thermomechanical Joining of Hypoeutectic Aluminium Cast Plates.” Journal of Manufacturing and Materials Processing 7, no. 5 (2023). https://doi.org/10.3390/jmmp7050169. ieee: 'T. Borgert, M. Neuser, K.-P. Hoyer, W. Homberg, and M. Schaper, “Thermomechanical Joining of Hypoeutectic Aluminium Cast Plates,” Journal of Manufacturing and Materials Processing, vol. 7, no. 5, Art. no. 169, 2023, doi: 10.3390/jmmp7050169.' mla: Borgert, Thomas, et al. “Thermomechanical Joining of Hypoeutectic Aluminium Cast Plates.” Journal of Manufacturing and Materials Processing, vol. 7, no. 5, 169, MDPI AG, 2023, doi:10.3390/jmmp7050169. short: T. Borgert, M. Neuser, K.-P. Hoyer, W. Homberg, M. Schaper, Journal of Manufacturing and Materials Processing 7 (2023). date_created: 2023-10-02T06:46:53Z date_updated: 2024-03-14T15:22:06Z department: - _id: '156' - _id: '158' doi: 10.3390/jmmp7050169 intvolume: ' 7' issue: '5' keyword: - Industrial and Manufacturing Engineering - Mechanical Engineering - Mechanics of Materials language: - iso: eng project: - _id: '147' name: 'TRR 285 – C03: TRR 285 - Subproject C03' - _id: '136' name: 'TRR 285 – A02: TRR 285 - Subproject A02' publication: Journal of Manufacturing and Materials Processing publication_identifier: issn: - 2504-4494 publication_status: published publisher: MDPI AG quality_controlled: '1' status: public title: Thermomechanical Joining of Hypoeutectic Aluminium Cast Plates type: journal_article user_id: '32340' volume: 7 year: '2023' ... --- _id: '32188' abstract: - lang: eng text: The additive manufacturing (AM) of innovative lattice structures with unique mechanical properties has received widespread attention due to the capability of AM processes to fabricate freeform and intricate structures. The most common way to characterize the additively manufactured lattice structures is via the uniaxial compression test. However, although there are many applications for which lattice structures are designed for bending (e.g., sandwich panels cores and some medical implants), limited attention has been paid toward investigating the flexural behavior of metallic AM lattice structures with tunable internal architectures. The purpose of this study was to experimentally investigate the flexural behavior of AM Ti-6Al-4V lattice structures with graded density and hybrid Poisson’s ratio (PR). Four configurations of lattice structure beams with positive, negative, hybrid PR, and a novel hybrid PR with graded density were manufactured via the laser powder bed fusion (LPBF) AM process and tested under four-point bending. The manufacturability, microstructure, micro-hardness, and flexural properties of the lattices were evaluated. During the bending tests, different failure mechanisms were observed, which were highly dependent on the type of lattice geometry. The best response in terms of absorbed energy was obtained for the functionally graded hybrid PR (FGHPR) structure. Both the FGHPR and hybrid PR (HPR) structured showed a 78.7% and 62.9% increase in the absorbed energy, respectively, compared to the positive PR (PPR) structure. This highlights the great potential for FGHPR lattices to be used in protective devices, load-bearing medical implants, and energy-absorbing applications. article_number: '4072' author: - first_name: Osama full_name: Abdelaal, Osama last_name: Abdelaal - first_name: Florian full_name: Hengsbach, Florian last_name: Hengsbach - first_name: Mirko full_name: Schaper, Mirko id: '43720' last_name: Schaper - first_name: Kay-Peter full_name: Hoyer, Kay-Peter id: '48411' last_name: Hoyer citation: ama: Abdelaal O, Hengsbach F, Schaper M, Hoyer K-P. LPBF Manufactured Functionally Graded Lattice Structures Obtained by Graded Density and Hybrid Poisson’s Ratio. Materials. 2022;15(12). doi:10.3390/ma15124072 apa: Abdelaal, O., Hengsbach, F., Schaper, M., & Hoyer, K.-P. (2022). LPBF Manufactured Functionally Graded Lattice Structures Obtained by Graded Density and Hybrid Poisson’s Ratio. Materials, 15(12), Article 4072. https://doi.org/10.3390/ma15124072 bibtex: '@article{Abdelaal_Hengsbach_Schaper_Hoyer_2022, title={LPBF Manufactured Functionally Graded Lattice Structures Obtained by Graded Density and Hybrid Poisson’s Ratio}, volume={15}, DOI={10.3390/ma15124072}, number={124072}, journal={Materials}, publisher={MDPI AG}, author={Abdelaal, Osama and Hengsbach, Florian and Schaper, Mirko and Hoyer, Kay-Peter}, year={2022} }' chicago: Abdelaal, Osama, Florian Hengsbach, Mirko Schaper, and Kay-Peter Hoyer. “LPBF Manufactured Functionally Graded Lattice Structures Obtained by Graded Density and Hybrid Poisson’s Ratio.” Materials 15, no. 12 (2022). https://doi.org/10.3390/ma15124072. ieee: 'O. Abdelaal, F. Hengsbach, M. Schaper, and K.-P. Hoyer, “LPBF Manufactured Functionally Graded Lattice Structures Obtained by Graded Density and Hybrid Poisson’s Ratio,” Materials, vol. 15, no. 12, Art. no. 4072, 2022, doi: 10.3390/ma15124072.' mla: Abdelaal, Osama, et al. “LPBF Manufactured Functionally Graded Lattice Structures Obtained by Graded Density and Hybrid Poisson’s Ratio.” Materials, vol. 15, no. 12, 4072, MDPI AG, 2022, doi:10.3390/ma15124072. short: O. Abdelaal, F. Hengsbach, M. Schaper, K.-P. Hoyer, Materials 15 (2022). date_created: 2022-06-27T14:50:27Z date_updated: 2023-04-27T16:34:46Z department: - _id: '9' - _id: '158' doi: 10.3390/ma15124072 intvolume: ' 15' issue: '12' keyword: - General Materials Science language: - iso: eng publication: Materials publication_identifier: issn: - 1996-1944 publication_status: published publisher: MDPI AG quality_controlled: '1' status: public title: LPBF Manufactured Functionally Graded Lattice Structures Obtained by Graded Density and Hybrid Poisson’s Ratio type: journal_article user_id: '43720' volume: 15 year: '2022' ... --- _id: '30519' author: - first_name: Sudipta full_name: Pramanik, Sudipta last_name: Pramanik - first_name: Frederik full_name: Tasche, Frederik last_name: Tasche - first_name: Kay-Peter full_name: Hoyer, Kay-Peter id: '48411' last_name: Hoyer - first_name: Mirko full_name: Schaper, Mirko id: '43720' last_name: Schaper citation: ama: 'Pramanik S, Tasche F, Hoyer K-P, Schaper M. Orientation-Dependent Indentation Behaviour of Additively Manufactured FeCo Sample: A Quasi In-Situ Study. Magnetism. 2022;2:88-104. doi:10.3390/magnetism2020007' apa: 'Pramanik, S., Tasche, F., Hoyer, K.-P., & Schaper, M. (2022). Orientation-Dependent Indentation Behaviour of Additively Manufactured FeCo Sample: A Quasi In-Situ Study. Magnetism, 2, 88–104. https://doi.org/10.3390/magnetism2020007' bibtex: '@article{Pramanik_Tasche_Hoyer_Schaper_2022, title={Orientation-Dependent Indentation Behaviour of Additively Manufactured FeCo Sample: A Quasi In-Situ Study}, volume={2}, DOI={10.3390/magnetism2020007}, journal={Magnetism}, publisher={MDPI}, author={Pramanik, Sudipta and Tasche, Frederik and Hoyer, Kay-Peter and Schaper, Mirko}, year={2022}, pages={88–104} }' chicago: 'Pramanik, Sudipta, Frederik Tasche, Kay-Peter Hoyer, and Mirko Schaper. “Orientation-Dependent Indentation Behaviour of Additively Manufactured FeCo Sample: A Quasi In-Situ Study.” Magnetism 2 (2022): 88–104. https://doi.org/10.3390/magnetism2020007.' ieee: 'S. Pramanik, F. Tasche, K.-P. Hoyer, and M. Schaper, “Orientation-Dependent Indentation Behaviour of Additively Manufactured FeCo Sample: A Quasi In-Situ Study,” Magnetism, vol. 2, pp. 88–104, 2022, doi: 10.3390/magnetism2020007.' mla: 'Pramanik, Sudipta, et al. “Orientation-Dependent Indentation Behaviour of Additively Manufactured FeCo Sample: A Quasi In-Situ Study.” Magnetism, vol. 2, MDPI, 2022, pp. 88–104, doi:10.3390/magnetism2020007.' short: S. Pramanik, F. Tasche, K.-P. Hoyer, M. Schaper, Magnetism 2 (2022) 88–104. date_created: 2022-03-25T08:07:15Z date_updated: 2023-04-27T16:34:57Z department: - _id: '9' - _id: '158' doi: 10.3390/magnetism2020007 intvolume: ' 2' language: - iso: eng page: 88-104 publication: Magnetism publication_status: published publisher: MDPI quality_controlled: '1' status: public title: 'Orientation-Dependent Indentation Behaviour of Additively Manufactured FeCo Sample: A Quasi In-Situ Study' type: journal_article user_id: '43720' volume: 2 year: '2022' ... --- _id: '40154' abstract: - lang: eng text: The development of bioresorbable materials for temporary implantation enables progress in medical technology. Iron (Fe)-based degradable materials are biocompatible and exhibit good mechanical properties, but their degradation rate is low. Aside from alloying with Manganese (Mn), the creation of phases with high electrochemical potential such as silver (Ag) phases to cause the anodic dissolution of FeMn is promising. However, to enable residue-free dissolution, the Ag needs to be modified. This concern is addressed, as FeMn modified with a degradable Ag-Calcium-Lanthanum (AgCaLa) alloy is investigated. The electrochemical properties and the degradation behavior are determined via a static immersion test. The local differences in electrochemical potential increase the degradation rate (low pH values), and the formation of gaps around the Ag phases (neutral pH values) demonstrates the benefit of the strategy. Nevertheless, the formation of corrosion-inhibiting layers avoids an increased degradation rate under a neutral pH value. The complete bioresorption of the material is possible since the phases of the degradable AgCaLa alloy dissolve after the FeMn matrix. Cell viability tests reveal biocompatibility, and the antibacterial activity of the degradation supernatant is observed. Thus, FeMn modified with degradable AgCaLa phases is promising as a bioresorbable material if corrosion-inhibiting layers can be diminished. author: - first_name: Jan Tobias full_name: Krüger, Jan Tobias id: '44307' last_name: Krüger orcid: 0000-0002-0827-9654 - first_name: Kay-Peter full_name: Hoyer, Kay-Peter id: '48411' last_name: Hoyer - first_name: Jingyuan full_name: Huang, Jingyuan last_name: Huang - first_name: Viviane full_name: Filor, Viviane last_name: Filor - first_name: Rafael Hernan full_name: Mateus-Vargas, Rafael Hernan last_name: Mateus-Vargas - first_name: Hilke full_name: Oltmanns, Hilke last_name: Oltmanns - first_name: Jessica full_name: Meißner, Jessica last_name: Meißner - first_name: Guido full_name: Grundmeier, Guido id: '194' last_name: Grundmeier - first_name: Mirko full_name: Schaper, Mirko id: '43720' last_name: Schaper citation: ama: Krüger JT, Hoyer K-P, Huang J, et al. FeMn with Phases of a Degradable Ag Alloy for Residue-Free and Adapted Bioresorbability. Journal of Functional Biomaterials. 2022;13(4):185. doi:10.3390/jfb13040185 apa: Krüger, J. T., Hoyer, K.-P., Huang, J., Filor, V., Mateus-Vargas, R. H., Oltmanns, H., Meißner, J., Grundmeier, G., & Schaper, M. (2022). FeMn with Phases of a Degradable Ag Alloy for Residue-Free and Adapted Bioresorbability. Journal of Functional Biomaterials, 13(4), 185. https://doi.org/10.3390/jfb13040185 bibtex: '@article{Krüger_Hoyer_Huang_Filor_Mateus-Vargas_Oltmanns_Meißner_Grundmeier_Schaper_2022, title={FeMn with Phases of a Degradable Ag Alloy for Residue-Free and Adapted Bioresorbability}, volume={13}, DOI={10.3390/jfb13040185}, number={4}, journal={Journal of Functional Biomaterials}, publisher={MDPI AG}, author={Krüger, Jan Tobias and Hoyer, Kay-Peter and Huang, Jingyuan and Filor, Viviane and Mateus-Vargas, Rafael Hernan and Oltmanns, Hilke and Meißner, Jessica and Grundmeier, Guido and Schaper, Mirko}, year={2022}, pages={185} }' chicago: 'Krüger, Jan Tobias, Kay-Peter Hoyer, Jingyuan Huang, Viviane Filor, Rafael Hernan Mateus-Vargas, Hilke Oltmanns, Jessica Meißner, Guido Grundmeier, and Mirko Schaper. “FeMn with Phases of a Degradable Ag Alloy for Residue-Free and Adapted Bioresorbability.” Journal of Functional Biomaterials 13, no. 4 (2022): 185. https://doi.org/10.3390/jfb13040185.' ieee: 'J. T. Krüger et al., “FeMn with Phases of a Degradable Ag Alloy for Residue-Free and Adapted Bioresorbability,” Journal of Functional Biomaterials, vol. 13, no. 4, p. 185, 2022, doi: 10.3390/jfb13040185.' mla: Krüger, Jan Tobias, et al. “FeMn with Phases of a Degradable Ag Alloy for Residue-Free and Adapted Bioresorbability.” Journal of Functional Biomaterials, vol. 13, no. 4, MDPI AG, 2022, p. 185, doi:10.3390/jfb13040185. short: J.T. Krüger, K.-P. Hoyer, J. Huang, V. Filor, R.H. Mateus-Vargas, H. Oltmanns, J. Meißner, G. Grundmeier, M. Schaper, Journal of Functional Biomaterials 13 (2022) 185. date_created: 2023-01-26T06:39:42Z date_updated: 2023-04-27T16:39:26Z department: - _id: '302' - _id: '158' doi: 10.3390/jfb13040185 intvolume: ' 13' issue: '4' keyword: - Biomedical Engineering - Biomaterials language: - iso: eng page: '185' publication: Journal of Functional Biomaterials publication_identifier: issn: - 2079-4983 publication_status: published publisher: MDPI AG quality_controlled: '1' status: public title: FeMn with Phases of a Degradable Ag Alloy for Residue-Free and Adapted Bioresorbability type: journal_article user_id: '43720' volume: 13 year: '2022' ... --- _id: '29196' abstract: - lang: eng text: In biomedical engineering, laser powder bed fusion is an advanced manufacturing technology, which enables, for example, the production of patient-customized implants with complex geometries. Ti-6Al-7Nb shows promising improvements, especially regarding biocompatibility, compared with other titanium alloys. The biocompatible features are investigated employing cytocompatibility and antibacterial examinations on Al2O3-blasted and untreated surfaces. The mechanical properties of additively manufactured Ti-6Al-7Nb are evaluated in as-built and heat-treated conditions. Recrystallization annealing (925 °C for 4 h), β annealing (1050 °C for 2 h), as well as stress relieving (600 °C for 4 h) are applied. For microstructural investigation, scanning and transmission electron microscopy are performed. The different microstructures and the mechanical properties are compared. Mechanical behavior is determined based on quasi-static tensile tests and strain-controlled low cycle fatigue tests with total strain amplitudes εA of 0.35%, 0.5%, and 0.8%. The as-built and stress-relieved conditions meet the mechanical demands for the tensile properties of the international standard ISO 5832-11. Based on the Coffin–Manson–Basquin relation, fatigue strength and ductility coefficients, as well as exponents, are determined to examine fatigue life for the different conditions. The stress-relieved condition exhibits, overall, the best properties regarding monotonic tensile and cyclic fatigue behavior. article_number: '122' article_type: original author: - first_name: Maxwell full_name: Hein, Maxwell id: '52771' last_name: Hein orcid: 0000-0002-3732-2236 - first_name: David full_name: Kokalj, David last_name: Kokalj - first_name: Nelson Filipe full_name: Lopes Dias, Nelson Filipe last_name: Lopes Dias - first_name: Dominic full_name: Stangier, Dominic last_name: Stangier - first_name: Hilke full_name: Oltmanns, Hilke last_name: Oltmanns - first_name: Sudipta full_name: Pramanik, Sudipta last_name: Pramanik - first_name: Manfred full_name: Kietzmann, Manfred last_name: Kietzmann - first_name: Kay-Peter full_name: Hoyer, Kay-Peter id: '48411' last_name: Hoyer - first_name: Jessica full_name: Meißner, Jessica last_name: Meißner - first_name: Wolfgang full_name: Tillmann, Wolfgang last_name: Tillmann - first_name: Mirko full_name: Schaper, Mirko id: '43720' last_name: Schaper citation: ama: Hein M, Kokalj D, Lopes Dias NF, et al. Low Cycle Fatigue Performance of Additively Processed and Heat-Treated Ti-6Al-7Nb Alloy for Biomedical Applications. Metals. 2022;12(1). doi:10.3390/met12010122 apa: Hein, M., Kokalj, D., Lopes Dias, N. F., Stangier, D., Oltmanns, H., Pramanik, S., Kietzmann, M., Hoyer, K.-P., Meißner, J., Tillmann, W., & Schaper, M. (2022). Low Cycle Fatigue Performance of Additively Processed and Heat-Treated Ti-6Al-7Nb Alloy for Biomedical Applications. Metals, 12(1), Article 122. https://doi.org/10.3390/met12010122 bibtex: '@article{Hein_Kokalj_Lopes Dias_Stangier_Oltmanns_Pramanik_Kietzmann_Hoyer_Meißner_Tillmann_et al._2022, title={Low Cycle Fatigue Performance of Additively Processed and Heat-Treated Ti-6Al-7Nb Alloy for Biomedical Applications}, volume={12}, DOI={10.3390/met12010122}, number={1122}, journal={Metals}, publisher={MDPI AG}, author={Hein, Maxwell and Kokalj, David and Lopes Dias, Nelson Filipe and Stangier, Dominic and Oltmanns, Hilke and Pramanik, Sudipta and Kietzmann, Manfred and Hoyer, Kay-Peter and Meißner, Jessica and Tillmann, Wolfgang and et al.}, year={2022} }' chicago: Hein, Maxwell, David Kokalj, Nelson Filipe Lopes Dias, Dominic Stangier, Hilke Oltmanns, Sudipta Pramanik, Manfred Kietzmann, et al. “Low Cycle Fatigue Performance of Additively Processed and Heat-Treated Ti-6Al-7Nb Alloy for Biomedical Applications.” Metals 12, no. 1 (2022). https://doi.org/10.3390/met12010122. ieee: 'M. Hein et al., “Low Cycle Fatigue Performance of Additively Processed and Heat-Treated Ti-6Al-7Nb Alloy for Biomedical Applications,” Metals, vol. 12, no. 1, Art. no. 122, 2022, doi: 10.3390/met12010122.' mla: Hein, Maxwell, et al. “Low Cycle Fatigue Performance of Additively Processed and Heat-Treated Ti-6Al-7Nb Alloy for Biomedical Applications.” Metals, vol. 12, no. 1, 122, MDPI AG, 2022, doi:10.3390/met12010122. short: M. Hein, D. Kokalj, N.F. Lopes Dias, D. Stangier, H. Oltmanns, S. Pramanik, M. Kietzmann, K.-P. Hoyer, J. Meißner, W. Tillmann, M. Schaper, Metals 12 (2022). date_created: 2022-01-10T08:25:58Z date_updated: 2023-04-27T16:42:19Z ddc: - '620' department: - _id: '158' doi: 10.3390/met12010122 file: - access_level: closed content_type: application/pdf creator: maxhein date_created: 2022-01-10T08:27:11Z date_updated: 2022-01-10T08:27:11Z file_id: '29197' file_name: Hein et al - 2022 - Low Cycle Fatigue Performance of Additively Processed and Heat-Treated Ti-6Al-7Nb Alloy for Biomedical Applications.pdf file_size: 6222748 relation: main_file success: 1 file_date_updated: 2022-01-10T08:27:11Z has_accepted_license: '1' intvolume: ' 12' issue: '1' keyword: - General Materials Science - Metals and Alloys - laser powder bed fusion - Ti-6Al-7Nb - titanium alloy - biomedical engineering - low cycle fatigue - microstructure - nanostructure language: - iso: eng main_file_link: - open_access: '1' url: https://www.mdpi.com/2075-4701/12/1/122 oa: '1' publication: Metals publication_identifier: issn: - 2075-4701 publication_status: published publisher: MDPI AG quality_controlled: '1' status: public title: Low Cycle Fatigue Performance of Additively Processed and Heat-Treated Ti-6Al-7Nb Alloy for Biomedical Applications type: journal_article user_id: '43720' volume: 12 year: '2022' ... --- _id: '33723' abstract: - lang: eng text: The development of bioresorbable materials for temporary implantation enables progress in medical technology. Iron (Fe)-based degradable materials are biocompatible and exhibit good mechanical properties, but their degradation rate is low. Aside from alloying with Manganese (Mn), the creation of phases with high electrochemical potential such as silver (Ag) phases to cause the anodic dissolution of FeMn is promising. However, to enable residue-free dissolution, the Ag needs to be modified. This concern is addressed, as FeMn modified with a degradable Ag-Calcium-Lanthanum (AgCaLa) alloy is investigated. The electrochemical properties and the degradation behavior are determined via a static immersion test. The local differences in electrochemical potential increase the degradation rate (low pH values), and the formation of gaps around the Ag phases (neutral pH values) demonstrates the benefit of the strategy. Nevertheless, the formation of corrosion-inhibiting layers avoids an increased degradation rate under a neutral pH value. The complete bioresorption of the material is possible since the phases of the degradable AgCaLa alloy dissolve after the FeMn matrix. Cell viability tests reveal biocompatibility, and the antibacterial activity of the degradation supernatant is observed. Thus, FeMn modified with degradable AgCaLa phases is promising as a bioresorbable material if corrosion-inhibiting layers can be diminished. article_number: '185' author: - first_name: Jan Tobias full_name: Krüger, Jan Tobias id: '44307' last_name: Krüger orcid: 0000-0002-0827-9654 - first_name: Kay-Peter full_name: Hoyer, Kay-Peter id: '48411' last_name: Hoyer - first_name: Jingyuan full_name: Huang, Jingyuan last_name: Huang - first_name: Viviane full_name: Filor, Viviane last_name: Filor - first_name: Rafael Hernan full_name: Mateus-Vargas, Rafael Hernan last_name: Mateus-Vargas - first_name: Hilke full_name: Oltmanns, Hilke last_name: Oltmanns - first_name: Jessica full_name: Meißner, Jessica last_name: Meißner - first_name: Guido full_name: Grundmeier, Guido id: '194' last_name: Grundmeier - first_name: Mirko full_name: Schaper, Mirko id: '43720' last_name: Schaper citation: ama: Krüger JT, Hoyer K-P, Huang J, et al. FeMn with Phases of a Degradable Ag Alloy for Residue-Free and Adapted Bioresorbability. Journal of Functional Biomaterials. 2022;13(4). doi:10.3390/jfb13040185 apa: Krüger, J. T., Hoyer, K.-P., Huang, J., Filor, V., Mateus-Vargas, R. H., Oltmanns, H., Meißner, J., Grundmeier, G., & Schaper, M. (2022). FeMn with Phases of a Degradable Ag Alloy for Residue-Free and Adapted Bioresorbability. Journal of Functional Biomaterials, 13(4), Article 185. https://doi.org/10.3390/jfb13040185 bibtex: '@article{Krüger_Hoyer_Huang_Filor_Mateus-Vargas_Oltmanns_Meißner_Grundmeier_Schaper_2022, title={FeMn with Phases of a Degradable Ag Alloy for Residue-Free and Adapted Bioresorbability}, volume={13}, DOI={10.3390/jfb13040185}, number={4185}, journal={Journal of Functional Biomaterials}, publisher={MDPI AG}, author={Krüger, Jan Tobias and Hoyer, Kay-Peter and Huang, Jingyuan and Filor, Viviane and Mateus-Vargas, Rafael Hernan and Oltmanns, Hilke and Meißner, Jessica and Grundmeier, Guido and Schaper, Mirko}, year={2022} }' chicago: Krüger, Jan Tobias, Kay-Peter Hoyer, Jingyuan Huang, Viviane Filor, Rafael Hernan Mateus-Vargas, Hilke Oltmanns, Jessica Meißner, Guido Grundmeier, and Mirko Schaper. “FeMn with Phases of a Degradable Ag Alloy for Residue-Free and Adapted Bioresorbability.” Journal of Functional Biomaterials 13, no. 4 (2022). https://doi.org/10.3390/jfb13040185. ieee: 'J. T. Krüger et al., “FeMn with Phases of a Degradable Ag Alloy for Residue-Free and Adapted Bioresorbability,” Journal of Functional Biomaterials, vol. 13, no. 4, Art. no. 185, 2022, doi: 10.3390/jfb13040185.' mla: Krüger, Jan Tobias, et al. “FeMn with Phases of a Degradable Ag Alloy for Residue-Free and Adapted Bioresorbability.” Journal of Functional Biomaterials, vol. 13, no. 4, 185, MDPI AG, 2022, doi:10.3390/jfb13040185. short: J.T. Krüger, K.-P. Hoyer, J. Huang, V. Filor, R.H. Mateus-Vargas, H. Oltmanns, J. Meißner, G. Grundmeier, M. Schaper, Journal of Functional Biomaterials 13 (2022). date_created: 2022-10-14T07:18:50Z date_updated: 2023-04-27T16:41:07Z department: - _id: '9' - _id: '158' doi: 10.3390/jfb13040185 intvolume: ' 13' issue: '4' keyword: - Biomedical Engineering - Biomaterials language: - iso: eng publication: Journal of Functional Biomaterials publication_identifier: issn: - 2079-4983 publication_status: published publisher: MDPI AG quality_controlled: '1' status: public title: FeMn with Phases of a Degradable Ag Alloy for Residue-Free and Adapted Bioresorbability type: journal_article user_id: '43720' volume: 13 year: '2022' ... --- _id: '31076' article_number: '132384' author: - first_name: Wolfgang full_name: Tillmann, Wolfgang last_name: Tillmann - first_name: Nelson Filipe full_name: Lopes Dias, Nelson Filipe last_name: Lopes Dias - first_name: David full_name: Kokalj, David last_name: Kokalj - first_name: Dominic full_name: Stangier, Dominic last_name: Stangier - first_name: Maxwell full_name: Hein, Maxwell id: '52771' last_name: Hein orcid: 0000-0002-3732-2236 - first_name: Kay-Peter full_name: Hoyer, Kay-Peter id: '48411' last_name: Hoyer - first_name: Mirko full_name: Schaper, Mirko id: '43720' last_name: Schaper - first_name: Daria full_name: Gödecke, Daria last_name: Gödecke - first_name: Hilke full_name: Oltmanns, Hilke last_name: Oltmanns - first_name: Jessica full_name: Meißner, Jessica last_name: Meißner citation: ama: Tillmann W, Lopes Dias NF, Kokalj D, et al. Tribo-functional PVD thin films deposited onto additively manufactured Ti6Al7Nb for biomedical applications. Materials Letters. Published online 2022. doi:10.1016/j.matlet.2022.132384 apa: Tillmann, W., Lopes Dias, N. F., Kokalj, D., Stangier, D., Hein, M., Hoyer, K.-P., Schaper, M., Gödecke, D., Oltmanns, H., & Meißner, J. (2022). Tribo-functional PVD thin films deposited onto additively manufactured Ti6Al7Nb for biomedical applications. Materials Letters, Article 132384. https://doi.org/10.1016/j.matlet.2022.132384 bibtex: '@article{Tillmann_Lopes Dias_Kokalj_Stangier_Hein_Hoyer_Schaper_Gödecke_Oltmanns_Meißner_2022, title={Tribo-functional PVD thin films deposited onto additively manufactured Ti6Al7Nb for biomedical applications}, DOI={10.1016/j.matlet.2022.132384}, number={132384}, journal={Materials Letters}, publisher={Elsevier BV}, author={Tillmann, Wolfgang and Lopes Dias, Nelson Filipe and Kokalj, David and Stangier, Dominic and Hein, Maxwell and Hoyer, Kay-Peter and Schaper, Mirko and Gödecke, Daria and Oltmanns, Hilke and Meißner, Jessica}, year={2022} }' chicago: Tillmann, Wolfgang, Nelson Filipe Lopes Dias, David Kokalj, Dominic Stangier, Maxwell Hein, Kay-Peter Hoyer, Mirko Schaper, Daria Gödecke, Hilke Oltmanns, and Jessica Meißner. “Tribo-Functional PVD Thin Films Deposited onto Additively Manufactured Ti6Al7Nb for Biomedical Applications.” Materials Letters, 2022. https://doi.org/10.1016/j.matlet.2022.132384. ieee: 'W. Tillmann et al., “Tribo-functional PVD thin films deposited onto additively manufactured Ti6Al7Nb for biomedical applications,” Materials Letters, Art. no. 132384, 2022, doi: 10.1016/j.matlet.2022.132384.' mla: Tillmann, Wolfgang, et al. “Tribo-Functional PVD Thin Films Deposited onto Additively Manufactured Ti6Al7Nb for Biomedical Applications.” Materials Letters, 132384, Elsevier BV, 2022, doi:10.1016/j.matlet.2022.132384. short: W. Tillmann, N.F. Lopes Dias, D. Kokalj, D. Stangier, M. Hein, K.-P. Hoyer, M. Schaper, D. Gödecke, H. Oltmanns, J. Meißner, Materials Letters (2022). date_created: 2022-05-07T12:31:45Z date_updated: 2023-04-27T16:41:45Z department: - _id: '9' - _id: '158' doi: 10.1016/j.matlet.2022.132384 keyword: - Mechanical Engineering - Mechanics of Materials - Condensed Matter Physics - General Materials Science language: - iso: eng publication: Materials Letters publication_identifier: issn: - 0167-577X publication_status: published publisher: Elsevier BV quality_controlled: '1' status: public title: Tribo-functional PVD thin films deposited onto additively manufactured Ti6Al7Nb for biomedical applications type: journal_article user_id: '43720' year: '2022' ... --- _id: '31075' author: - first_name: Zhenjie full_name: Teng, Zhenjie last_name: Teng - first_name: Haoran full_name: Wu, Haoran last_name: Wu - first_name: Sudipta full_name: Pramanik, Sudipta last_name: Pramanik - first_name: Kay-Peter full_name: Hoyer, Kay-Peter id: '48411' last_name: Hoyer - first_name: Mirko full_name: Schaper, Mirko id: '43720' last_name: Schaper - first_name: Hanlon full_name: Zhang, Hanlon last_name: Zhang - first_name: Christian full_name: Boller, Christian last_name: Boller - first_name: Peter full_name: Starke, Peter last_name: Starke citation: ama: Teng Z, Wu H, Pramanik S, et al. Characterization and analysis of plastic instability in an ultrafine‐grained medium Mn TRIP steel. Advanced Engineering Materials. Published online 2022. doi:10.1002/adem.202200022 apa: Teng, Z., Wu, H., Pramanik, S., Hoyer, K.-P., Schaper, M., Zhang, H., Boller, C., & Starke, P. (2022). Characterization and analysis of plastic instability in an ultrafine‐grained medium Mn TRIP steel. Advanced Engineering Materials. https://doi.org/10.1002/adem.202200022 bibtex: '@article{Teng_Wu_Pramanik_Hoyer_Schaper_Zhang_Boller_Starke_2022, title={Characterization and analysis of plastic instability in an ultrafine‐grained medium Mn TRIP steel}, DOI={10.1002/adem.202200022}, journal={Advanced Engineering Materials}, publisher={Wiley}, author={Teng, Zhenjie and Wu, Haoran and Pramanik, Sudipta and Hoyer, Kay-Peter and Schaper, Mirko and Zhang, Hanlon and Boller, Christian and Starke, Peter}, year={2022} }' chicago: Teng, Zhenjie, Haoran Wu, Sudipta Pramanik, Kay-Peter Hoyer, Mirko Schaper, Hanlon Zhang, Christian Boller, and Peter Starke. “Characterization and Analysis of Plastic Instability in an Ultrafine‐grained Medium Mn TRIP Steel.” Advanced Engineering Materials, 2022. https://doi.org/10.1002/adem.202200022. ieee: 'Z. Teng et al., “Characterization and analysis of plastic instability in an ultrafine‐grained medium Mn TRIP steel,” Advanced Engineering Materials, 2022, doi: 10.1002/adem.202200022.' mla: Teng, Zhenjie, et al. “Characterization and Analysis of Plastic Instability in an Ultrafine‐grained Medium Mn TRIP Steel.” Advanced Engineering Materials, Wiley, 2022, doi:10.1002/adem.202200022. short: Z. Teng, H. Wu, S. Pramanik, K.-P. Hoyer, M. Schaper, H. Zhang, C. Boller, P. Starke, Advanced Engineering Materials (2022). date_created: 2022-05-07T12:29:54Z date_updated: 2023-04-27T16:43:36Z department: - _id: '9' - _id: '158' doi: 10.1002/adem.202200022 keyword: - Condensed Matter Physics - General Materials Science language: - iso: eng publication: Advanced Engineering Materials publication_identifier: issn: - 1438-1656 - 1527-2648 publication_status: published publisher: Wiley quality_controlled: '1' status: public title: Characterization and analysis of plastic instability in an ultrafine‐grained medium Mn TRIP steel type: journal_article user_id: '43720' year: '2022' ... --- _id: '33498' article_number: '2201008' author: - first_name: Jan Tobias full_name: Krüger, Jan Tobias id: '44307' last_name: Krüger orcid: 0000-0002-0827-9654 - first_name: Kay-Peter full_name: Hoyer, Kay-Peter id: '48411' last_name: Hoyer - first_name: Anatolii full_name: Andreiev, Anatolii id: '50215' last_name: Andreiev - first_name: Mirko full_name: Schaper, Mirko id: '43720' last_name: Schaper - first_name: Carolin full_name: Zinn, Carolin last_name: Zinn citation: ama: Krüger JT, Hoyer K-P, Andreiev A, Schaper M, Zinn C. Modification of Iron with Degradable Silver Phases Processed via Laser Beam Melting for Implants with Adapted Degradation Rate. Advanced Engineering Materials. Published online 2022. doi:https://doi.org/10.1002/adem.202201008 apa: Krüger, J. T., Hoyer, K.-P., Andreiev, A., Schaper, M., & Zinn, C. (2022). Modification of Iron with Degradable Silver Phases Processed via Laser Beam Melting for Implants with Adapted Degradation Rate. Advanced Engineering Materials, Article 2201008. https://doi.org/10.1002/adem.202201008 bibtex: '@article{Krüger_Hoyer_Andreiev_Schaper_Zinn_2022, title={Modification of Iron with Degradable Silver Phases Processed via Laser Beam Melting for Implants with Adapted Degradation Rate}, DOI={https://doi.org/10.1002/adem.202201008}, number={2201008}, journal={Advanced Engineering Materials}, author={Krüger, Jan Tobias and Hoyer, Kay-Peter and Andreiev, Anatolii and Schaper, Mirko and Zinn, Carolin}, year={2022} }' chicago: Krüger, Jan Tobias, Kay-Peter Hoyer, Anatolii Andreiev, Mirko Schaper, and Carolin Zinn. “Modification of Iron with Degradable Silver Phases Processed via Laser Beam Melting for Implants with Adapted Degradation Rate.” Advanced Engineering Materials, 2022. https://doi.org/10.1002/adem.202201008. ieee: 'J. T. Krüger, K.-P. Hoyer, A. Andreiev, M. Schaper, and C. Zinn, “Modification of Iron with Degradable Silver Phases Processed via Laser Beam Melting for Implants with Adapted Degradation Rate,” Advanced Engineering Materials, Art. no. 2201008, 2022, doi: https://doi.org/10.1002/adem.202201008.' mla: Krüger, Jan Tobias, et al. “Modification of Iron with Degradable Silver Phases Processed via Laser Beam Melting for Implants with Adapted Degradation Rate.” Advanced Engineering Materials, 2201008, 2022, doi:https://doi.org/10.1002/adem.202201008. short: J.T. Krüger, K.-P. Hoyer, A. Andreiev, M. Schaper, C. Zinn, Advanced Engineering Materials (2022). date_created: 2022-09-29T08:40:55Z date_updated: 2023-04-27T16:41:20Z department: - _id: '9' - _id: '158' doi: https://doi.org/10.1002/adem.202201008 language: - iso: eng publication: Advanced Engineering Materials quality_controlled: '1' status: public title: Modification of Iron with Degradable Silver Phases Processed via Laser Beam Melting for Implants with Adapted Degradation Rate type: journal_article user_id: '43720' year: '2022' ... --- _id: '41497' abstract: - lang: eng text: In this study, the design, additive manufacturing and experimental as well as simulation investigation of mechanical and thermal properties of cellular solids are addressed. For this, two cellular solids having nested and non-nested structures are designed and additively manufactured via laser powder bed fusion. The primary objective is to design cellular solids which absorb a significant amount of energy upon impact loading without transmitting a high amount of stress into the cellular solids. Therefore, compression testing of the two cellular solids is performed. The nested and non-nested cellular solids show similar energy absorption properties; however, the nested cellular solid transmits a lower amount of stress in the cellular structure compared to the non-nested cellular solid. The experimentally measured strain (by DIC) in the interior region of the nested cellular solid is lower despite a higher value of externally imposed compressive strain. The second objective of this study is to determine the thermal insulation properties of cellular solids. For measuring the thermal insulation properties, the samples are placed on a hot plate; and the surface temperature distribution is measured by an infrared camera. The thermal insulating performance of both cellular types is sufficient for temperatures exceeding 100 °C. However, the thermal insulating performance of a non-nested cellular solid is slightly better than that of the nested cellular solid. Additional thermal simulations predict a relatively higher temperature distribution on the cellular solid surfaces compared to experimental results. The simulated residual stress shows a similar distribution for both types, but the magnitude of residual stress is different for the cellular solids upon cooling from different temperatures of the hot plate. article_number: '1217' author: - first_name: Sudipta full_name: Pramanik, Sudipta last_name: Pramanik - first_name: Dennis full_name: Milaege, Dennis last_name: Milaege - first_name: Kay-Peter full_name: Hoyer, Kay-Peter id: '48411' last_name: Hoyer - first_name: Mirko full_name: Schaper, Mirko id: '43720' last_name: Schaper citation: ama: 'Pramanik S, Milaege D, Hoyer K-P, Schaper M. Additively Manufactured Nested and Non-Nested Cellular Solids for Effective Stress Distribution and Thermal Insulation Applications: An Experimental and Finite Element Analysis Study. Crystals. 2022;12(9). doi:10.3390/cryst12091217' apa: 'Pramanik, S., Milaege, D., Hoyer, K.-P., & Schaper, M. (2022). Additively Manufactured Nested and Non-Nested Cellular Solids for Effective Stress Distribution and Thermal Insulation Applications: An Experimental and Finite Element Analysis Study. Crystals, 12(9), Article 1217. https://doi.org/10.3390/cryst12091217' bibtex: '@article{Pramanik_Milaege_Hoyer_Schaper_2022, title={Additively Manufactured Nested and Non-Nested Cellular Solids for Effective Stress Distribution and Thermal Insulation Applications: An Experimental and Finite Element Analysis Study}, volume={12}, DOI={10.3390/cryst12091217}, number={91217}, journal={Crystals}, publisher={MDPI AG}, author={Pramanik, Sudipta and Milaege, Dennis and Hoyer, Kay-Peter and Schaper, Mirko}, year={2022} }' chicago: 'Pramanik, Sudipta, Dennis Milaege, Kay-Peter Hoyer, and Mirko Schaper. “Additively Manufactured Nested and Non-Nested Cellular Solids for Effective Stress Distribution and Thermal Insulation Applications: An Experimental and Finite Element Analysis Study.” Crystals 12, no. 9 (2022). https://doi.org/10.3390/cryst12091217.' ieee: 'S. Pramanik, D. Milaege, K.-P. Hoyer, and M. Schaper, “Additively Manufactured Nested and Non-Nested Cellular Solids for Effective Stress Distribution and Thermal Insulation Applications: An Experimental and Finite Element Analysis Study,” Crystals, vol. 12, no. 9, Art. no. 1217, 2022, doi: 10.3390/cryst12091217.' mla: 'Pramanik, Sudipta, et al. “Additively Manufactured Nested and Non-Nested Cellular Solids for Effective Stress Distribution and Thermal Insulation Applications: An Experimental and Finite Element Analysis Study.” Crystals, vol. 12, no. 9, 1217, MDPI AG, 2022, doi:10.3390/cryst12091217.' short: S. Pramanik, D. Milaege, K.-P. Hoyer, M. Schaper, Crystals 12 (2022). date_created: 2023-02-02T14:27:40Z date_updated: 2023-04-27T16:45:48Z department: - _id: '9' - _id: '158' doi: 10.3390/cryst12091217 intvolume: ' 12' issue: '9' keyword: - Inorganic Chemistry - Condensed Matter Physics - General Materials Science - General Chemical Engineering language: - iso: eng publication: Crystals publication_identifier: issn: - 2073-4352 publication_status: published publisher: MDPI AG quality_controlled: '1' status: public title: 'Additively Manufactured Nested and Non-Nested Cellular Solids for Effective Stress Distribution and Thermal Insulation Applications: An Experimental and Finite Element Analysis Study' type: journal_article user_id: '43720' volume: 12 year: '2022' ... --- _id: '41494' abstract: - lang: eng text: The development of bioresorbable materials for temporary implantation enables progress in medical technology. Iron (Fe)-based degradable materials are biocompatible and exhibit good mechanical properties, but their degradation rate is low. Aside from alloying with Manganese (Mn), the creation of phases with high electrochemical potential such as silver (Ag) phases to cause the anodic dissolution of FeMn is promising. However, to enable residue-free dissolution, the Ag needs to be modified. This concern is addressed, as FeMn modified with a degradable Ag-Calcium-Lanthanum (AgCaLa) alloy is investigated. The electrochemical properties and the degradation behavior are determined via a static immersion test. The local differences in electrochemical potential increase the degradation rate (low pH values), and the formation of gaps around the Ag phases (neutral pH values) demonstrates the benefit of the strategy. Nevertheless, the formation of corrosion-inhibiting layers avoids an increased degradation rate under a neutral pH value. The complete bioresorption of the material is possible since the phases of the degradable AgCaLa alloy dissolve after the FeMn matrix. Cell viability tests reveal biocompatibility, and the antibacterial activity of the degradation supernatant is observed. Thus, FeMn modified with degradable AgCaLa phases is promising as a bioresorbable material if corrosion-inhibiting layers can be diminished. article_number: '185' author: - first_name: Jan Tobias full_name: Krüger, Jan Tobias id: '44307' last_name: Krüger orcid: 0000-0002-0827-9654 - first_name: Kay-Peter full_name: Hoyer, Kay-Peter id: '48411' last_name: Hoyer - first_name: Jingyuan full_name: Huang, Jingyuan last_name: Huang - first_name: Viviane full_name: Filor, Viviane last_name: Filor - first_name: Rafael Hernan full_name: Mateus-Vargas, Rafael Hernan last_name: Mateus-Vargas - first_name: Hilke full_name: Oltmanns, Hilke last_name: Oltmanns - first_name: Jessica full_name: Meißner, Jessica last_name: Meißner - first_name: Guido full_name: Grundmeier, Guido id: '194' last_name: Grundmeier - first_name: Mirko full_name: Schaper, Mirko id: '43720' last_name: Schaper citation: ama: Krüger JT, Hoyer K-P, Huang J, et al. FeMn with Phases of a Degradable Ag Alloy for Residue-Free and Adapted Bioresorbability. Journal of Functional Biomaterials. 2022;13(4). doi:10.3390/jfb13040185 apa: Krüger, J. T., Hoyer, K.-P., Huang, J., Filor, V., Mateus-Vargas, R. H., Oltmanns, H., Meißner, J., Grundmeier, G., & Schaper, M. (2022). FeMn with Phases of a Degradable Ag Alloy for Residue-Free and Adapted Bioresorbability. Journal of Functional Biomaterials, 13(4), Article 185. https://doi.org/10.3390/jfb13040185 bibtex: '@article{Krüger_Hoyer_Huang_Filor_Mateus-Vargas_Oltmanns_Meißner_Grundmeier_Schaper_2022, title={FeMn with Phases of a Degradable Ag Alloy for Residue-Free and Adapted Bioresorbability}, volume={13}, DOI={10.3390/jfb13040185}, number={4185}, journal={Journal of Functional Biomaterials}, publisher={MDPI AG}, author={Krüger, Jan Tobias and Hoyer, Kay-Peter and Huang, Jingyuan and Filor, Viviane and Mateus-Vargas, Rafael Hernan and Oltmanns, Hilke and Meißner, Jessica and Grundmeier, Guido and Schaper, Mirko}, year={2022} }' chicago: Krüger, Jan Tobias, Kay-Peter Hoyer, Jingyuan Huang, Viviane Filor, Rafael Hernan Mateus-Vargas, Hilke Oltmanns, Jessica Meißner, Guido Grundmeier, and Mirko Schaper. “FeMn with Phases of a Degradable Ag Alloy for Residue-Free and Adapted Bioresorbability.” Journal of Functional Biomaterials 13, no. 4 (2022). https://doi.org/10.3390/jfb13040185. ieee: 'J. T. Krüger et al., “FeMn with Phases of a Degradable Ag Alloy for Residue-Free and Adapted Bioresorbability,” Journal of Functional Biomaterials, vol. 13, no. 4, Art. no. 185, 2022, doi: 10.3390/jfb13040185.' mla: Krüger, Jan Tobias, et al. “FeMn with Phases of a Degradable Ag Alloy for Residue-Free and Adapted Bioresorbability.” Journal of Functional Biomaterials, vol. 13, no. 4, 185, MDPI AG, 2022, doi:10.3390/jfb13040185. short: J.T. Krüger, K.-P. Hoyer, J. Huang, V. Filor, R.H. Mateus-Vargas, H. Oltmanns, J. Meißner, G. Grundmeier, M. Schaper, Journal of Functional Biomaterials 13 (2022). date_created: 2023-02-02T14:26:25Z date_updated: 2023-04-27T16:45:32Z department: - _id: '9' - _id: '158' doi: 10.3390/jfb13040185 intvolume: ' 13' issue: '4' keyword: - Biomedical Engineering - Biomaterials language: - iso: eng publication: Journal of Functional Biomaterials publication_identifier: issn: - 2079-4983 publication_status: published publisher: MDPI AG quality_controlled: '1' status: public title: FeMn with Phases of a Degradable Ag Alloy for Residue-Free and Adapted Bioresorbability type: journal_article user_id: '43720' volume: 13 year: '2022' ...