@article{44382, abstract = {{The success of engineering complex technical systems is determined by meeting customer requirements and institutional regulations. One example relevant to the automobile industry is the United Nations Economic Commission of Europe (UN ECE), which specifies the homologation of automobile series and requires proof of traceability. The required traceability can be achieved by modeling system artifacts and their relations in a consistent, seamless model—an effect-chain model. Currently, no in-depth methodology exists to support engineers in developing certification-compliant effect-chain models. For this purpose, a new methodology for certification-compliant effect-chain modeling was developed, which includes extensions of an existing method, suitable models, and tools to support engineers in the modeling process. For evaluation purposes, applicability is proven based on the experience of more than 300 workshops at an automotive OEM and an automotive supplier. The following case example is chosen to demonstrate applicability: the development of a window lifter that has to meet the demands of UN ECE Regulations R156 and R21. Results indicate multiple benefits in supporting engineers with the certification-compliant modeling of effect chains. Three benefits are goal-oriented modeling to reduce the necessary modeling capacity, increasing model quality by applying information quality criteria, and the potential to reduce costs through automatable effect-chain analyses for technical changes. Further, companies in the automotive and other industries will benefit from increased modeling capabilities that can be used for architecture modeling and to comply with other regulations such as ASPICE or ISO 26262.}}, author = {{Gräßler, Iris and Wiechel, Dominik and Koch, Anna-Sophie and Sturm, Tim and Markfelder, Thomas}}, issn = {{2079-8954}}, journal = {{Systems}}, keywords = {{Information Systems and Management, Computer Networks and Communications, Modeling and Simulation, Control and Systems Engineering, Software}}, number = {{3}}, publisher = {{MDPI AG}}, title = {{{Methodology for Certification-Compliant Effect-Chain Modeling}}}, doi = {{10.3390/systems11030154}}, volume = {{11}}, year = {{2023}}, } @inproceedings{46502, author = {{Gräßler, Iris and Wiechel, Dominik}}, booktitle = {{2023 18th Annual System of Systems Engineering Conference (SoSe)}}, location = {{Lille}}, publisher = {{IEEE}}, title = {{{Customized impact analyses for technical engineering changes}}}, doi = {{10.1109/sose59841.2023.10178484}}, year = {{2023}}, } @article{48946, abstract = {{inhalt Der verlässliche Betrieb von technischen Produkten wird zunehmend durch bewusste Angriffe bedroht. Vollständige Sicherheit ist dabei nicht möglich, durchschlagende Angriffe sind unvermeidbar (Assume Breach). Dies erfordert einen Paradigmenwechsel in der sicherheitsgerechten Entwicklung mechatronischer und cyber-physischer Systeme hin zu Defense-in-Depth. Systeme müssen so ausgelegt werden, dass sie auch bei gezielten Angriffen möglichst hohe Zuverlässigkeit und Sicherheit gewährleisten. Der hier beschriebene Lösungsansatz erweitert das Systemmodell um Angriffsszenarien und Verteidigungslinien. Diese werden am Beispiel eines industriellen Schließsystems zur Anlagensicherheit erläutert. Entwickler werden sensibilisiert, Angriffe systematisch zu berücksichtigen und interdisziplinär Verteidigungselemente gegenüber Bedrohungen und Angriffen zu spezifizieren.}}, author = {{Gräßler, Iris and Bodden, Eric and Wiechel, Dominik and Pottebaum, Jens}}, issn = {{0720-5953}}, journal = {{Konstruktion}}, keywords = {{Mechanical Engineering, Mechanics of Materials, General Materials Science, Theoretical Computer Science}}, number = {{11-12}}, pages = {{60--65}}, publisher = {{VDI Fachmedien GmbH and Co. KG}}, title = {{{Defense-in-Depth als neues Paradigma der sicherheitsgerechten Produktentwicklung: interdisziplinäre, bedrohungsbewusste und lösungsorientierte Security}}}, doi = {{10.37544/0720-5953-2023-11-12-60}}, volume = {{75}}, year = {{2023}}, } @inproceedings{33889, author = {{Gräßler, Iris and Wiechel, Dominik and Oleff, Christian}}, location = {{Wien}}, title = {{{Extended RFLP for complex technical systems}}}, year = {{2022}}, } @inproceedings{31648, abstract = {{Die Anforderungen an die Entwicklung mechatronischer Systeme sind seit der Erstfassung der VDI Richtlinie 2206 im Jahr 2004 stetig gestiegen. Nach einer umfassenden Überarbeitung ist 2021 die Richtline im Weißdruck neu veröffentlicht worden. Neben dem Systemdenken als gestärktes Kernelement des V-Modells und sechs Kontrollpunkten nur Gliederung der sachlogischen Aufgaben ist die durchgängig explizite „Modellierung und Analyse“ eine wesentliche Neuerung der Richtlinie. Da sich die Kontrollfragen nur auf den Entwicklungsprozess im Ganzen beziehen, wird durch die Betrachtung der Modellierung eines Batteriesystems aus einem Entwicklungsprojekt eines deutschen Automobilherstellers die folgende Forschungsfrage betrachtet: Welche spezifischen Kontrollfragen zu Fortschritt und Reifegrad der Modellierung eines Batteriesystems können aus den Kontrollpunkten des V-Modells (VDI 2206:2020) gefolgert werden? Als Ergebnis der Forschung liegen hinsichtlich der Modellierung eines spezifischen Systems detaillierte Kontrollfragen vor, die eine methodische Unterstützung für die modellbasierte Systementwicklung komplexer mechatronischer Systeme bieten. Zusätzlich ermöglichen sie der Projektleitung die Überprüfung des aktuellen Status der Entwicklung und sichern die Vollständigkeit des Systemmodells ab.}}, author = {{Gräßler, Iris and Wiechel, Dominik and Thiele, Henrik}}, booktitle = {{Tagungsband der Fachtagung VDI-Mechatronik}}, editor = {{Bertram, T. and Corves, B. and Janschek, K. and Rinderknecht, S.}}, location = {{Darmstadt}}, publisher = {{TU Darmstadt}}, title = {{{Fortschrittskontrolle der Modellierung mechatronischer Produkte}}}, volume = {{15}}, year = {{2022}}, } @article{31647, abstract = {{AbstractEffect chain modeling approaches are applied to model cause-effect relations and analyze affected elements and dependencies. In this paper a systematic literature research is conducted to derive main characteristics and limitations of existing approaches. Then, the Model-based Effect Chain Analysis (MECA) method is introduced. Evaluation proves applicability of the method by means of a case example. This is done in the context of a project with a German automotive company. In the project 66 workshops were conducted to model certification-compliant effect chains in accordance to the UN ECE 156.}}, author = {{Gräßler, Iris and Wiechel, Dominik and Koch, Anna-Sophie and Preuß, Daniel and Oleff, Christian}}, issn = {{2732-527X}}, journal = {{Proceedings of the Design Society}}, pages = {{1885--1894}}, publisher = {{Cambridge University Press (CUP)}}, title = {{{Model-Based Effect-Chain Analysis for Complex Systems}}}, doi = {{10.1017/pds.2022.191}}, volume = {{2}}, year = {{2022}}, } @inproceedings{33888, author = {{Menninger, Bastian and Wiechel, Dominik and Rackow, Sascha and Höpfner, Gregor and Oleff, Christian and Berroth, Joerg and Gräßler, Iris and Jacobs, Georg}}, booktitle = {{DS 119: Proceedings of the 33rd Symposium Design for X (DFX2022)}}, publisher = {{The Design Society}}, title = {{{Modeling and analysis of functional variance of complex technical systems}}}, doi = {{10.35199/dfx2022.15}}, year = {{2022}}, } @inproceedings{24280, abstract = {{Challenges in decisions on technical changes are the lack of knowledge about the expected impact and change propagation. Currently, no literature study contains a systematic differentiation and evaluation of existing approaches, which is a prerequisite for practitioners to select a suitable approach. This research aims at defining differentiation criteria as well as generally applicable requirements for evaluation. A four-step approach is used: systematic literature review on approaches for impact analysis of engineering changes (1), categorization and prioritization of approaches based on reoccuring elements (2), derivation of context specific requirements for evaluation (3), and evaluation of approaches (4). The result indicates existing potential of object-oriented modeling approaches.}}, author = {{Gräßler, Iris and Wiechel, Dominik}}, booktitle = {{DS 111: Proceedings of the 32nd Symposium Design for X}}, editor = {{Krause, Dieter and Paetzold, Kristin and Wartzack, Sandro}}, keywords = {{Engineering Change Management, Impact Analysis, Engineering Changes, Model-based Systems Engineering, Product Developmen}}, location = {{Tutzing}}, title = {{{Systematische Bewertung von Auswirkungsanalysen des Engineering Change Managements}}}, doi = {{10.35199/dfx2021.12}}, year = {{2021}}, } @inproceedings{26866, author = {{Gräßler, Iris and Roesmann, Daniel and Wiechel, Dominik and Preuß, Daniel and Pottebaum, Jens}}, booktitle = {{54th CIRP Conference on Manufacturing Systems}}, location = {{Athens}}, title = {{{Determine similarity of assembly operations using semantic technology}}}, doi = {{https://doi.org/10.1016/j.procir.2021.11.209 }}, year = {{2021}}, } @inproceedings{23392, author = {{Gräßler, Iris and Wiechel, Dominik and Pottebaum, Jens}}, booktitle = {{Proceedings of 19th Drive Train Technology Conference (ATK 2021), 9. - 11. Mrz. 2021}}, publisher = {{ IOP Publishing}}, title = {{{Role model of model-based systems engineering application}}}, year = {{2021}}, } @inproceedings{24080, abstract = {{Challenges of the development of mechatronic systems and corresponding production systems have increased steadily. Changes are primarily due to increased product complexity and the connection to the internet of things and services, enabling Cyber-Physical Systems (CPS) and Cyber-Physical Production Systems (CPPS). Major innovations of the revised VDI guideline 2206 for developing mechatronic systems are systems thinking as a core element and six checkpoints for structuring deliverables along the V-Model. These checkpoints serve for orientation in result progress and thus enable a structured and complete development process. However, tasks and checkpoints of the new guideline focus on the product development itself without integrating the development of related CPPS, enabling optimization simultaneously to system development. Implications are derived by a three-step analysis. The paper at hand contributes fundamental extensions of the checkpoint questions regarding integrated CPPS development. These questions provide methodical support for system developers of CPPS for CPS by enabling the project manager to check the status, schedule further development steps and evaluate the maturity of the whole, integrated development.}}, author = {{Gräßler, Iris and Wiechel, Dominik and Roesmann, Daniel and Thiele, Henrik}}, booktitle = {{Procedia CIRP}}, issn = {{2212-8271}}, keywords = {{Cyber-Physical Production System (CPPS), V-Model, Product System Development, Integrated Development, VDI 2206}}, pages = {{253--258}}, title = {{{V-model based development of cyber-physical systems and cyber-physical production systems}}}, doi = {{10.1016/j.procir.2021.05.119}}, year = {{2021}}, } @inproceedings{24281, abstract = {{In order to optimize production processes and to avoid errors, it is not only necessary to automate processes, but also to integrate workers with their individual personality and skill profiles. For this purpose, human factors should be considered in the entire design process. The integrated view of mental human models, the cognitive demand of the working environment and the automation design is essential. Human-System Integration (HSI) constitutes a promising approach. Current model-based approaches offer possibilities to analyze and optimize tasks within an overall system, but they still lack integration. This leads to the research question: How can human factors be integrated into a system model of a socio-technical, Cyber-Physical Production System? The paper at hand contributes an approach of human factor integration into the procedure of Model-Based Systems Engineering for Cyber-Physical Production Systems (CPPS). The approach combines a system model of a CPPS with HSI concepts. In accordance to the benefits of MBSE, SysML is selected to integrate human factors in the development process of a CPPS. The approach is divided into five steps, which includes the extension of the SysML meta model. This allows the optimization of skill-based human-machine interaction. Defined HSI-Profiles enable system developers to integrate employee requirements at early stages within the development process. The approach is demonstrated by the maintenance of a 3D-Printer as a case example. This research enables system developers to depict individual workers with the help of the developed concepts and systematically integrate them into the development process of a CPPS.}}, author = {{Gräßler, Iris and Wiechel, Dominik and Roesmann, Daniel}}, booktitle = {{Procedia CIRP}}, issn = {{2212-8271}}, pages = {{518--523}}, title = {{{Integrating human factors in the model based development of cyber-physical production systems}}}, doi = {{10.1016/j.procir.2021.05.113}}, year = {{2021}}, } @misc{27680, author = {{Gräßler, Iris and Hentze, Julian and Hesse, Philipp and Preuß, Daniel and Thiele, Henrik and Wiechel, Dominik and Bothen, Martin and Bruckmann, Tobias and Dattner, Michael and Ehl, Thomas and Hawlas, Martin and Krimpmann, Christoph and Lachmayer, Roland and Knöchelmann, Marvin and Mock, Randolf and Mozgova, Iryna and Schneider, Maximilian and Stollt, Guido}}, pages = {{67}}, publisher = {{Ed.: VDI/VDE-Gesellschaft Mess- und Automatisierungstechnik}}, title = {{{VDI/VDE 2206 - Entwicklung mechatronischer und cyber-physischer Systeme}}}, year = {{2021}}, }