--- _id: '30288' abstract: - lang: eng text: Lithium niobate (LiNbO3), a material frequently used in optical applications, hosts different kinds of polarons that significantly affect many of its physical properties. In this study, a variety of electron polarons, namely free, bound, and bipolarons, are analyzed using first-principles calculations. We perform a full structural optimization based on density-functional theory for selected intrinsic defects with special attention to the role of symmetry-breaking distortions that lower the total energy. The cations hosting the various polarons relax to a different degree, with a larger relaxation corresponding to a larger gap between the defect level and the conduction-band edge. The projected density of states reveals that the polaron states are formerly empty Nb 4d states lowered into the band gap. Optical absorption spectra are derived within the independent-particle approximation, corrected by the GW approximation that yields a wider band gap and by including excitonic effects within the Bethe-Salpeter equation. Comparing the calculated spectra with the density of states, we find that the defect peak observed in the optical absorption stems from transitions between the defect level and a continuum of empty Nb 4d states. Signatures of polarons are further analyzed in the reflectivity and other experimentally measurable optical coefficients. author: - first_name: Falko full_name: Schmidt, Falko id: '35251' last_name: Schmidt orcid: 0000-0002-5071-5528 - first_name: Agnieszka L. full_name: Kozub, Agnieszka L. id: '77566' last_name: Kozub orcid: https://orcid.org/0000-0001-6584-0201 - first_name: Uwe full_name: Gerstmann, Uwe id: '171' last_name: Gerstmann orcid: 0000-0002-4476-223X - first_name: Wolf Gero full_name: Schmidt, Wolf Gero id: '468' last_name: Schmidt orcid: 0000-0002-2717-5076 - first_name: Arno full_name: Schindlmayr, Arno id: '458' last_name: Schindlmayr orcid: 0000-0002-4855-071X citation: ama: 'Schmidt F, Kozub AL, Gerstmann U, Schmidt WG, Schindlmayr A. Electron polarons in lithium niobate: Charge localization, lattice deformation, and optical response. In: Corradi G, Kovács L, eds. New Trends in Lithium Niobate: From Bulk to Nanocrystals. MDPI; 2022:231-248. doi:10.3390/books978-3-0365-3339-1' apa: 'Schmidt, F., Kozub, A. L., Gerstmann, U., Schmidt, W. G., & Schindlmayr, A. (2022). Electron polarons in lithium niobate: Charge localization, lattice deformation, and optical response. In G. Corradi & L. Kovács (Eds.), New Trends in Lithium Niobate: From Bulk to Nanocrystals (pp. 231–248). MDPI. https://doi.org/10.3390/books978-3-0365-3339-1' bibtex: '@inbook{Schmidt_Kozub_Gerstmann_Schmidt_Schindlmayr_2022, place={Basel}, title={Electron polarons in lithium niobate: Charge localization, lattice deformation, and optical response}, DOI={10.3390/books978-3-0365-3339-1}, booktitle={New Trends in Lithium Niobate: From Bulk to Nanocrystals}, publisher={MDPI}, author={Schmidt, Falko and Kozub, Agnieszka L. and Gerstmann, Uwe and Schmidt, Wolf Gero and Schindlmayr, Arno}, editor={Corradi, Gábor and Kovács, László}, year={2022}, pages={231–248} }' chicago: 'Schmidt, Falko, Agnieszka L. Kozub, Uwe Gerstmann, Wolf Gero Schmidt, and Arno Schindlmayr. “Electron Polarons in Lithium Niobate: Charge Localization, Lattice Deformation, and Optical Response.” In New Trends in Lithium Niobate: From Bulk to Nanocrystals, edited by Gábor Corradi and László Kovács, 231–48. Basel: MDPI, 2022. https://doi.org/10.3390/books978-3-0365-3339-1.' ieee: 'F. Schmidt, A. L. Kozub, U. Gerstmann, W. G. Schmidt, and A. Schindlmayr, “Electron polarons in lithium niobate: Charge localization, lattice deformation, and optical response,” in New Trends in Lithium Niobate: From Bulk to Nanocrystals, G. Corradi and L. Kovács, Eds. Basel: MDPI, 2022, pp. 231–248.' mla: 'Schmidt, Falko, et al. “Electron Polarons in Lithium Niobate: Charge Localization, Lattice Deformation, and Optical Response.” New Trends in Lithium Niobate: From Bulk to Nanocrystals, edited by Gábor Corradi and László Kovács, MDPI, 2022, pp. 231–48, doi:10.3390/books978-3-0365-3339-1.' short: 'F. Schmidt, A.L. Kozub, U. Gerstmann, W.G. Schmidt, A. Schindlmayr, in: G. Corradi, L. Kovács (Eds.), New Trends in Lithium Niobate: From Bulk to Nanocrystals, MDPI, Basel, 2022, pp. 231–248.' date_created: 2022-03-13T15:28:47Z date_updated: 2023-04-20T15:58:51Z ddc: - '530' department: - _id: '296' - _id: '230' - _id: '429' - _id: '295' - _id: '15' - _id: '170' - _id: '35' - _id: '790' doi: 10.3390/books978-3-0365-3339-1 editor: - first_name: Gábor full_name: Corradi, Gábor last_name: Corradi - first_name: László full_name: Kovács, László last_name: Kovács language: - iso: eng page: 231-248 place: Basel project: - _id: '53' name: 'TRR 142: TRR 142' - _id: '55' name: 'TRR 142 - B: TRR 142 - Project Area B' - _id: '69' name: 'TRR 142 - B4: TRR 142 - Subproject B4' - _id: '54' name: 'TRR 142 - A: TRR 142 - Project Area A' - _id: '166' name: 'TRR 142 - A11: TRR 142 - Subproject A11' - _id: '168' name: 'TRR 142 - B07: TRR 142 - Subproject B07' - _id: '52' name: 'PC2: Computing Resources Provided by the Paderborn Center for Parallel Computing' publication: 'New Trends in Lithium Niobate: From Bulk to Nanocrystals' publication_identifier: eisbn: - 978-3-0365-3339-1 isbn: - 978-3-0365-3340-7 publication_status: published publisher: MDPI quality_controlled: '1' status: public title: 'Electron polarons in lithium niobate: Charge localization, lattice deformation, and optical response' type: book_chapter user_id: '16199' year: '2022' ... --- _id: '44088' abstract: - lang: eng text: 'Hole polarons and defect-bound exciton polarons in lithium niobate are investigated by means of density-functional theory, where the localization of the holes is achieved by applying the +U approach to the oxygen 2p orbitals. We find three principal configurations of hole polarons: (i) self-trapped holes localized at displaced regular oxygen atoms and (ii) two other configurations bound to a lithium vacancy either at a threefold coordinated oxygen atom above or at a two-fold coordinated oxygen atom below the defect. The latter is the most stable and is in excellent quantitative agreement with measured g factors from electron paramagnetic resonance. Due to the absence of mid-gap states, none of these hole polarons can explain the broad optical absorption centered between 2.5 and 2.8 eV that is observed in transient absorption spectroscopy, but such states appear if a free electron polaron is trapped at the same lithium vacancy as the bound hole polaron, resulting in an exciton polaron. The dielectric function calculated by solving the Bethe–Salpeter equation indeed yields an optical peak at 2.6 eV in agreement with the two-photon experiments. The coexistence of hole and exciton polarons, which are simultaneously created in optical excitations, thus satisfactorily explains the reported experimental data.' article_number: '1586' article_type: original author: - first_name: Falko full_name: Schmidt, Falko id: '35251' last_name: Schmidt orcid: 0000-0002-5071-5528 - first_name: Agnieszka L. full_name: Kozub, Agnieszka L. id: '77566' last_name: Kozub orcid: 0000-0001-6584-0201 - first_name: Uwe full_name: Gerstmann, Uwe id: '171' last_name: Gerstmann orcid: 0000-0002-4476-223X - first_name: Wolf Gero full_name: Schmidt, Wolf Gero id: '468' last_name: Schmidt orcid: 0000-0002-2717-5076 - first_name: Arno full_name: Schindlmayr, Arno id: '458' last_name: Schindlmayr orcid: 0000-0002-4855-071X citation: ama: Schmidt F, Kozub AL, Gerstmann U, Schmidt WG, Schindlmayr A. A density-functional theory study of hole and defect-bound exciton polarons in lithium niobate. Crystals. 2022;12(11). doi:10.3390/cryst12111586 apa: Schmidt, F., Kozub, A. L., Gerstmann, U., Schmidt, W. G., & Schindlmayr, A. (2022). A density-functional theory study of hole and defect-bound exciton polarons in lithium niobate. Crystals, 12(11), Article 1586. https://doi.org/10.3390/cryst12111586 bibtex: '@article{Schmidt_Kozub_Gerstmann_Schmidt_Schindlmayr_2022, title={A density-functional theory study of hole and defect-bound exciton polarons in lithium niobate}, volume={12}, DOI={10.3390/cryst12111586}, number={111586}, journal={Crystals}, publisher={MDPI AG}, author={Schmidt, Falko and Kozub, Agnieszka L. and Gerstmann, Uwe and Schmidt, Wolf Gero and Schindlmayr, Arno}, year={2022} }' chicago: Schmidt, Falko, Agnieszka L. Kozub, Uwe Gerstmann, Wolf Gero Schmidt, and Arno Schindlmayr. “A Density-Functional Theory Study of Hole and Defect-Bound Exciton Polarons in Lithium Niobate.” Crystals 12, no. 11 (2022). https://doi.org/10.3390/cryst12111586. ieee: 'F. Schmidt, A. L. Kozub, U. Gerstmann, W. G. Schmidt, and A. Schindlmayr, “A density-functional theory study of hole and defect-bound exciton polarons in lithium niobate,” Crystals, vol. 12, no. 11, Art. no. 1586, 2022, doi: 10.3390/cryst12111586.' mla: Schmidt, Falko, et al. “A Density-Functional Theory Study of Hole and Defect-Bound Exciton Polarons in Lithium Niobate.” Crystals, vol. 12, no. 11, 1586, MDPI AG, 2022, doi:10.3390/cryst12111586. short: F. Schmidt, A.L. Kozub, U. Gerstmann, W.G. Schmidt, A. Schindlmayr, Crystals 12 (2022). date_created: 2023-04-20T13:52:44Z date_updated: 2024-03-22T08:47:08Z ddc: - '530' department: - _id: '15' - _id: '296' - _id: '170' - _id: '295' - _id: '35' - _id: '230' - _id: '429' doi: 10.3390/cryst12111586 external_id: isi: - '000895837200001' file: - access_level: open_access content_type: application/pdf creator: schindlm date_created: 2023-06-11T23:59:27Z date_updated: 2023-06-12T00:22:51Z description: Creative Commons Attribution 4.0 International Public License (CC BY 4.0) file_id: '45570' file_name: crystals-12-01586-v2.pdf file_size: 1762554 relation: main_file title: A density-functional theory study of hole and defect-bound exciton polarons in lithium niobate file_date_updated: 2023-06-12T00:22:51Z has_accepted_license: '1' intvolume: ' 12' isi: '1' issue: '11' language: - iso: eng oa: '1' project: - _id: '53' grant_number: '231447078' name: 'TRR 142: TRR 142' - _id: '54' name: 'TRR 142 - A: TRR 142 - Project Area A' - _id: '55' name: 'TRR 142 - B: TRR 142 - Project Area B' - _id: '69' grant_number: '231447078' name: 'TRR 142 - B04: TRR 142 - Subproject B04' - _id: '168' grant_number: '231447078' name: 'TRR 142 - B07: TRR 142 - Subproject B07' - _id: '166' name: 'TRR 142 - A11: TRR 142 - Subproject A11' - _id: '52' name: 'PC2: Computing Resources Provided by the Paderborn Center for Parallel Computing' publication: Crystals publication_identifier: eissn: - 2073-4352 publication_status: published publisher: MDPI AG quality_controlled: '1' status: public title: A density-functional theory study of hole and defect-bound exciton polarons in lithium niobate type: journal_article user_id: '458' volume: 12 year: '2022' ... --- _id: '21946' abstract: - lang: eng text: Lithium niobate (LiNbO3), a material frequently used in optical applications, hosts different kinds of polarons that significantly affect many of its physical properties. In this study, a variety of electron polarons, namely free, bound, and bipolarons, are analyzed using first-principles calculations. We perform a full structural optimization based on density-functional theory for selected intrinsic defects with special attention to the role of symmetry-breaking distortions that lower the total energy. The cations hosting the various polarons relax to a different degree, with a larger relaxation corresponding to a larger gap between the defect level and the conduction-band edge. The projected density of states reveals that the polaron states are formerly empty Nb 4d states lowered into the band gap. Optical absorption spectra are derived within the independent-particle approximation, corrected by the GW approximation that yields a wider band gap and by including excitonic effects within the Bethe-Salpeter equation. Comparing the calculated spectra with the density of states, we find that the defect peak observed in the optical absorption stems from transitions between the defect level and a continuum of empty Nb 4d states. Signatures of polarons are further analyzed in the reflectivity and other experimentally measurable optical coefficients. article_type: original author: - first_name: Falko full_name: Schmidt, Falko id: '35251' last_name: Schmidt orcid: 0000-0002-5071-5528 - first_name: Agnieszka L. full_name: Kozub, Agnieszka L. id: '77566' last_name: Kozub orcid: https://orcid.org/0000-0001-6584-0201 - first_name: Uwe full_name: Gerstmann, Uwe id: '171' last_name: Gerstmann orcid: 0000-0002-4476-223X - first_name: Wolf Gero full_name: Schmidt, Wolf Gero id: '468' last_name: Schmidt orcid: 0000-0002-2717-5076 - first_name: Arno full_name: Schindlmayr, Arno id: '458' last_name: Schindlmayr orcid: 0000-0002-4855-071X citation: ama: 'Schmidt F, Kozub AL, Gerstmann U, Schmidt WG, Schindlmayr A. Electron polarons in lithium niobate: Charge localization, lattice deformation, and optical response. Crystals. 2021;11:542. doi:10.3390/cryst11050542' apa: 'Schmidt, F., Kozub, A. L., Gerstmann, U., Schmidt, W. G., & Schindlmayr, A. (2021). Electron polarons in lithium niobate: Charge localization, lattice deformation, and optical response. Crystals, 11, 542. https://doi.org/10.3390/cryst11050542' bibtex: '@article{Schmidt_Kozub_Gerstmann_Schmidt_Schindlmayr_2021, title={Electron polarons in lithium niobate: Charge localization, lattice deformation, and optical response}, volume={11}, DOI={10.3390/cryst11050542}, journal={Crystals}, publisher={MDPI}, author={Schmidt, Falko and Kozub, Agnieszka L. and Gerstmann, Uwe and Schmidt, Wolf Gero and Schindlmayr, Arno}, year={2021}, pages={542} }' chicago: 'Schmidt, Falko, Agnieszka L. Kozub, Uwe Gerstmann, Wolf Gero Schmidt, and Arno Schindlmayr. “Electron Polarons in Lithium Niobate: Charge Localization, Lattice Deformation, and Optical Response.” Crystals 11 (2021): 542. https://doi.org/10.3390/cryst11050542.' ieee: 'F. Schmidt, A. L. Kozub, U. Gerstmann, W. G. Schmidt, and A. Schindlmayr, “Electron polarons in lithium niobate: Charge localization, lattice deformation, and optical response,” Crystals, vol. 11, p. 542, 2021, doi: 10.3390/cryst11050542.' mla: 'Schmidt, Falko, et al. “Electron Polarons in Lithium Niobate: Charge Localization, Lattice Deformation, and Optical Response.” Crystals, vol. 11, MDPI, 2021, p. 542, doi:10.3390/cryst11050542.' short: F. Schmidt, A.L. Kozub, U. Gerstmann, W.G. Schmidt, A. Schindlmayr, Crystals 11 (2021) 542. date_created: 2021-05-03T09:36:13Z date_updated: 2023-04-21T11:20:15Z ddc: - '530' department: - _id: '296' - _id: '230' - _id: '429' - _id: '295' - _id: '15' - _id: '170' - _id: '35' - _id: '790' doi: 10.3390/cryst11050542 external_id: isi: - '000653822700001' file: - access_level: open_access content_type: application/pdf creator: schindlm date_created: 2021-05-13T16:47:11Z date_updated: 2021-05-13T16:51:41Z description: Creative Commons Attribution 4.0 International Public License (CC BY 4.0) file_id: '22163' file_name: crystals-11-00542.pdf file_size: 3042827 relation: main_file title: 'Electron polarons in lithium niobate: Charge localization, lattice deformation, and optical response' file_date_updated: 2021-05-13T16:51:41Z funded_apc: '1' has_accepted_license: '1' intvolume: ' 11' isi: '1' language: - iso: eng oa: '1' page: '542' project: - _id: '53' name: TRR 142 - _id: '55' name: TRR 142 - Project Area B - _id: '69' name: TRR 142 - Subproject B4 - _id: '52' name: Computing Resources Provided by the Paderborn Center for Parallel Computing - _id: '52' name: 'PC2: Computing Resources Provided by the Paderborn Center for Parallel Computing' publication: Crystals publication_identifier: eissn: - 2073-4352 publication_status: published publisher: MDPI quality_controlled: '1' status: public title: 'Electron polarons in lithium niobate: Charge localization, lattice deformation, and optical response' type: journal_article user_id: '171' volume: 11 year: '2021' ... --- _id: '23418' abstract: - lang: eng text: Density-functional theory within a Berry-phase formulation of the dynamical polarization is used to determine the second-order susceptibility χ(2) of lithium niobate (LiNbO3). Defect trapped polarons and bipolarons are found to strongly enhance the nonlinear susceptibility of the material, in particular if localized at NbV–VLi defect pairs. This is essentially a consequence of the polaronic excitation resulting in relaxation-induced gap states. The occupation of these levels leads to strongly enhanced χ(2) coefficients and allows for the spatial and transient modification of the second-harmonic generation of macroscopic samples. article_type: original author: - first_name: Agnieszka L. full_name: Kozub, Agnieszka L. id: '77566' last_name: Kozub orcid: https://orcid.org/0000-0001-6584-0201 - first_name: Arno full_name: Schindlmayr, Arno id: '458' last_name: Schindlmayr orcid: 0000-0002-4855-071X - first_name: Uwe full_name: Gerstmann, Uwe id: '171' last_name: Gerstmann orcid: 0000-0002-4476-223X - first_name: Wolf Gero full_name: Schmidt, Wolf Gero id: '468' last_name: Schmidt orcid: 0000-0002-2717-5076 citation: ama: Kozub AL, Schindlmayr A, Gerstmann U, Schmidt WG. Polaronic enhancement of second-harmonic generation in lithium niobate. Physical Review B. 2021;104:174110. doi:10.1103/PhysRevB.104.174110 apa: Kozub, A. L., Schindlmayr, A., Gerstmann, U., & Schmidt, W. G. (2021). Polaronic enhancement of second-harmonic generation in lithium niobate. Physical Review B, 104, 174110. https://doi.org/10.1103/PhysRevB.104.174110 bibtex: '@article{Kozub_Schindlmayr_Gerstmann_Schmidt_2021, title={Polaronic enhancement of second-harmonic generation in lithium niobate}, volume={104}, DOI={10.1103/PhysRevB.104.174110}, journal={Physical Review B}, publisher={American Physical Society}, author={Kozub, Agnieszka L. and Schindlmayr, Arno and Gerstmann, Uwe and Schmidt, Wolf Gero}, year={2021}, pages={174110} }' chicago: 'Kozub, Agnieszka L., Arno Schindlmayr, Uwe Gerstmann, and Wolf Gero Schmidt. “Polaronic Enhancement of Second-Harmonic Generation in Lithium Niobate.” Physical Review B 104 (2021): 174110. https://doi.org/10.1103/PhysRevB.104.174110.' ieee: 'A. L. Kozub, A. Schindlmayr, U. Gerstmann, and W. G. Schmidt, “Polaronic enhancement of second-harmonic generation in lithium niobate,” Physical Review B, vol. 104, p. 174110, 2021, doi: 10.1103/PhysRevB.104.174110.' mla: Kozub, Agnieszka L., et al. “Polaronic Enhancement of Second-Harmonic Generation in Lithium Niobate.” Physical Review B, vol. 104, American Physical Society, 2021, p. 174110, doi:10.1103/PhysRevB.104.174110. short: A.L. Kozub, A. Schindlmayr, U. Gerstmann, W.G. Schmidt, Physical Review B 104 (2021) 174110. date_created: 2021-08-16T19:09:46Z date_updated: 2023-04-21T11:15:30Z ddc: - '530' department: - _id: '296' - _id: '230' - _id: '429' - _id: '295' - _id: '15' - _id: '170' - _id: '790' doi: 10.1103/PhysRevB.104.174110 external_id: arxiv: - '2106.01145' isi: - '000720931400007' file: - access_level: open_access content_type: application/pdf creator: schindlm date_created: 2021-11-18T20:49:19Z date_updated: 2021-11-18T20:49:19Z description: © 2021 American Physical Society file_id: '27577' file_name: PhysRevB.104.174110.pdf file_size: 804012 relation: main_file title: Polaronic enhancement of second-harmonic generation in lithium niobate file_date_updated: 2021-11-18T20:49:19Z has_accepted_license: '1' intvolume: ' 104' isi: '1' language: - iso: eng oa: '1' page: '174110' project: - _id: '53' name: TRR 142 - _id: '55' name: TRR 142 - Project Area B - _id: '69' name: TRR 142 - Subproject B4 - _id: '52' name: 'PC2: Computing Resources Provided by the Paderborn Center for Parallel Computing' publication: Physical Review B publication_identifier: eissn: - 2469-9969 issn: - 2469-9950 publication_status: published publisher: American Physical Society quality_controlled: '1' status: public title: Polaronic enhancement of second-harmonic generation in lithium niobate type: journal_article user_id: '171' volume: 104 year: '2021' ... --- _id: '19190' abstract: - lang: eng text: "Polarons in dielectric crystals play a crucial role for applications in integrated electronics and optoelectronics. In this work, we use density-functional theory and Green's function methods to explore the microscopic structure and spectroscopic signatures of electron polarons in lithium niobate (LiNbO3). Total-energy calculations and the comparison of calculated electron paramagnetic resonance data with available measurements reveal the formation of bound \r\npolarons at Nb_Li antisite defects with a quasi-Jahn-Teller distorted, tilted configuration. The defect-formation energies further indicate that (bi)polarons may form not only at \r\nNb_Li antisites but also at structures where the antisite Nb atom moves into a neighboring empty oxygen octahedron. Based on these structure models, and on the calculated charge-transition levels and potential-energy barriers, we propose two mechanisms for the optical and thermal splitting of bipolarons, which provide a natural explanation for the reported two-path recombination of bipolarons. Optical-response calculations based on the Bethe-Salpeter equation, in combination with available experimental data and new measurements of the optical absorption spectrum, further corroborate the geometries proposed here for free and defect-bound (bi)polarons." article_number: '043002' article_type: original author: - first_name: Falko full_name: Schmidt, Falko id: '35251' last_name: Schmidt orcid: 0000-0002-5071-5528 - first_name: Agnieszka L. full_name: Kozub, Agnieszka L. id: '77566' last_name: Kozub orcid: https://orcid.org/0000-0001-6584-0201 - first_name: Timur full_name: Biktagirov, Timur id: '65612' last_name: Biktagirov - first_name: Christof full_name: Eigner, Christof id: '13244' last_name: Eigner orcid: https://orcid.org/0000-0002-5693-3083 - first_name: Christine full_name: Silberhorn, Christine id: '26263' last_name: Silberhorn - first_name: Arno full_name: Schindlmayr, Arno id: '458' last_name: Schindlmayr orcid: 0000-0002-4855-071X - first_name: Wolf Gero full_name: Schmidt, Wolf Gero id: '468' last_name: Schmidt orcid: 0000-0002-2717-5076 - first_name: Uwe full_name: Gerstmann, Uwe id: '171' last_name: Gerstmann orcid: 0000-0002-4476-223X citation: ama: 'Schmidt F, Kozub AL, Biktagirov T, et al. Free and defect-bound (bi)polarons in LiNbO3: Atomic structure and spectroscopic signatures from ab initio calculations. Physical Review Research. 2020;2(4). doi:10.1103/PhysRevResearch.2.043002' apa: 'Schmidt, F., Kozub, A. L., Biktagirov, T., Eigner, C., Silberhorn, C., Schindlmayr, A., Schmidt, W. G., & Gerstmann, U. (2020). Free and defect-bound (bi)polarons in LiNbO3: Atomic structure and spectroscopic signatures from ab initio calculations. Physical Review Research, 2(4), Article 043002. https://doi.org/10.1103/PhysRevResearch.2.043002' bibtex: '@article{Schmidt_Kozub_Biktagirov_Eigner_Silberhorn_Schindlmayr_Schmidt_Gerstmann_2020, title={Free and defect-bound (bi)polarons in LiNbO3: Atomic structure and spectroscopic signatures from ab initio calculations}, volume={2}, DOI={10.1103/PhysRevResearch.2.043002}, number={4043002}, journal={Physical Review Research}, publisher={American Physical Society}, author={Schmidt, Falko and Kozub, Agnieszka L. and Biktagirov, Timur and Eigner, Christof and Silberhorn, Christine and Schindlmayr, Arno and Schmidt, Wolf Gero and Gerstmann, Uwe}, year={2020} }' chicago: 'Schmidt, Falko, Agnieszka L. Kozub, Timur Biktagirov, Christof Eigner, Christine Silberhorn, Arno Schindlmayr, Wolf Gero Schmidt, and Uwe Gerstmann. “Free and Defect-Bound (Bi)Polarons in LiNbO3: Atomic Structure and Spectroscopic Signatures from Ab Initio Calculations.” Physical Review Research 2, no. 4 (2020). https://doi.org/10.1103/PhysRevResearch.2.043002.' ieee: 'F. Schmidt et al., “Free and defect-bound (bi)polarons in LiNbO3: Atomic structure and spectroscopic signatures from ab initio calculations,” Physical Review Research, vol. 2, no. 4, Art. no. 043002, 2020, doi: 10.1103/PhysRevResearch.2.043002.' mla: 'Schmidt, Falko, et al. “Free and Defect-Bound (Bi)Polarons in LiNbO3: Atomic Structure and Spectroscopic Signatures from Ab Initio Calculations.” Physical Review Research, vol. 2, no. 4, 043002, American Physical Society, 2020, doi:10.1103/PhysRevResearch.2.043002.' short: F. Schmidt, A.L. Kozub, T. Biktagirov, C. Eigner, C. Silberhorn, A. Schindlmayr, W.G. Schmidt, U. Gerstmann, Physical Review Research 2 (2020). date_created: 2020-09-09T09:35:21Z date_updated: 2023-04-20T16:06:21Z ddc: - '530' department: - _id: '296' - _id: '230' - _id: '429' - _id: '295' - _id: '288' - _id: '15' - _id: '170' - _id: '35' - _id: '790' doi: 10.1103/PhysRevResearch.2.043002 external_id: isi: - '000604206300002' file: - access_level: open_access content_type: application/pdf creator: schindlm date_created: 2020-10-02T07:27:38Z date_updated: 2020-10-02T07:37:24Z description: Creative Commons Attribution 4.0 International Public License (CC BY 4.0) file_id: '19843' file_name: PhysRevResearch.2.043002.pdf file_size: 1955183 relation: main_file title: 'Free and defect-bound (bi)polarons in LiNbO3: Atomic structure and spectroscopic signatures from ab initio calculations' file_date_updated: 2020-10-02T07:37:24Z has_accepted_license: '1' intvolume: ' 2' isi: '1' issue: '4' language: - iso: eng oa: '1' project: - _id: '53' name: TRR 142 - _id: '55' name: TRR 142 - Project Area B - _id: '69' name: TRR 142 - Subproject B4 - _id: '52' name: Computing Resources Provided by the Paderborn Center for Parallel Computing - _id: '52' name: 'PC2: Computing Resources Provided by the Paderborn Center for Parallel Computing' publication: Physical Review Research publication_identifier: eissn: - 2643-1564 publication_status: published publisher: American Physical Society quality_controlled: '1' status: public title: 'Free and defect-bound (bi)polarons in LiNbO3: Atomic structure and spectroscopic signatures from ab initio calculations' type: journal_article user_id: '16199' volume: 2 year: '2020' ...