@article{49868, author = {{Schön, Lena and Graßl, Benjamin and Giese, Henning}}, journal = {{Steuer und Wirtschaft}}, pages = {{71--92}}, title = {{{Die Kriterien und Zusammensetzung der EU-Blacklist als Grundlage des Steueroasen-Abwehrgesetzes – Eine kritische Würdigung}}}, year = {{2024}}, } @article{51116, author = {{Uhe, Benedikt and Kuball, Clara-Maria and Merklein, Marion and Meschut, Gerson}}, journal = {{Production Engineering}}, title = {{{Corrosion behaviour of self-piercing riveted joints with uncoated rivets in high nitrogen steel}}}, doi = {{10.1007/s11740-024-01262-6}}, year = {{2024}}, } @misc{49345, author = {{Breuer, Saskia Rebecca}}, booktitle = {{Encyclopedia of the Bible and its Reception (EBR)}}, title = {{{ Persis}}}, year = {{2024}}, } @article{51121, abstract = {{DNA origami nanostructures are a powerful tool in biomedicine and can be used to combat drug‐resistant bacterial infections. However, the effect of unmodified DNA origami nanostructures on bacteria is yet to be elucidated. With the aim to obtain a better understanding of this phenomenon, the effect of three DNA origami shapes, i.e., DNA origami triangles, six‐helix bundles (6HBs), and 24‐helix bundles (24HBs), on the growth of Gram‐negative Escherichia coli and Gram‐positive Bacillus subtilis is investigated. These results reveal that while triangles and 24HBs can be used as a source of nutrients by E. coli and thereby promote population growth, their effect is much smaller than that of genomic single‐ and double‐stranded DNA. However, no effect on E. coli population growth is observed for the 6HBs. On the other hand, B. subtilis does not show any significant changes in population growth when cultured with the different DNA origami shapes or genomic DNA. The detailed effect of DNA origami nanostructures on bacterial growth thus depends on the competence signals and uptake mechanism of each bacterial species, as well as the DNA origami shape. This should be considered in the development of antimicrobial DNA origami nanostructures.}}, author = {{Garcia-Diosa, Jaime Andres and Grundmeier, Guido and Keller, Adrian}}, issn = {{1439-4227}}, journal = {{ChemBioChem}}, keywords = {{Organic Chemistry, Molecular Biology, Molecular Medicine, Biochemistry}}, publisher = {{Wiley}}, title = {{{Effect of DNA Origami Nanostructures on Bacterial Growth}}}, doi = {{10.1002/cbic.202400091}}, year = {{2024}}, } @inbook{51126, author = {{Raneck-Kuhlmann, A. and Niemann, Jan and Buhl, Heike M. and Eickelmann, Birgit and Drossel, Kerstin}}, booktitle = {{Lehrkräftebildung in der digitalen Welt – zukunftsorientierte Forschungs- und Praxisperspektiven}}, editor = {{Herzig, B. and Eickelmann, Birgit and Schwabl, F. and Schulze, J. and Niemann, Jan}}, publisher = {{Waxmann Verlag GmbH}}, title = {{{Was motiviert CoP-Mitglieder? Motivationale Bedingungsfaktoren für die Mitarbeit in Communities of Practice in der Lehrkräftebildung}}}, year = {{2024}}, } @inbook{51127, author = {{Niemann, Jan and Raneck-Kuhlmann, A. and Eickelmann, Birgit and Drossel, Kerstin and Buhl, Heike M.}}, booktitle = {{Lehrkräftebildung in der digitalen Welt – zukunftsorientierte Forschungs- und Praxisperspektiven}}, editor = {{Herzig, B. and Eickelmann, Birgit and Schwabl, F. and Schulze, J. and Niemann, Jan}}, publisher = {{Waxmann Verlag GmbH}}, title = {{{Determinanten und Typen phasenübergreifenden Transfers in Communities of Practice der Lehrkräftebildung}}}, year = {{2024}}, } @inbook{51125, author = {{Schulze, J. and Eickelmann, Birgit and Drossel, Kerstin}}, booktitle = {{Lehrkräftebildung in der digitalen Welt – zukunftsorientierte Forschungs- und Praxisperspektiven}}, editor = {{Herzig, B. and Eickelmann, Birgit and Schwabl, F. and Schulze, J. and Niemann, J.}}, publisher = {{Waxmann Verlag GmbH}}, title = {{{Schulentwicklung, Chancengerechtigkeit und Digitalität – Verbindung zentraler Metathemen in einer zeitgemäßen Lehrkräftebildung}}}, year = {{2024}}, } @article{51104, author = {{Liang, Qian and Ma, Xuekai and Gu, Chunling and Ren, Jiahuan and An, Cunbin and Fu, Hongbing and Schumacher, Stefan and Liao, Qing}}, journal = {{Journal of the American Chemical Society (JACS)}}, title = {{{Photochemical Reaction Enabling the Engineering of Photonic Spin−Orbit Coupling in Organic-Crystal Optical Microcavities}}}, doi = {{10.1021/jacs.3c11373}}, year = {{2024}}, } @article{51106, author = {{Schneider, Tobias and Gao, Wenlong and Zentgraf, Thomas and Schumacher, Stefan and Ma, Xuekai}}, journal = {{Nanophotonics}}, title = {{{Topological edge and corner states in coupled wave lattices in nonlinear polariton condensates}}}, doi = {{10.1515/nanoph-2023-0556}}, year = {{2024}}, } @book{51129, editor = {{Herzig, Bardo and Eickelmann, Birgit and Schwabl, Franziska and Schulze, J. and Niemann, Jan}}, publisher = {{Waxmann Verlag GmbH}}, title = {{{Lehrkräftebildung in der digitalen Welt – zukunftsorientierte Forschungs- und Praxisperspektiven}}}, year = {{2024}}, }