@inproceedings{20960, abstract = {{Heutige Steuergeraete im Automobilbereich zeichnen sich durch eine hohe Funktionsvielfalt und eine hohe Vernetzung untereinander aus. Dies fuehrt zu immer komplexeren Systemen, wobei auch immer mehr sicherheitskritische Funktionen durch Software realisiert werden. Damit die Qualitaet der Software entsprechend hoch und zufriedenstellend ist, erfordert die Entwicklung ein systematisches und prozesskonformes Vorgehen. Der fuer die Softwarearchitektur entwickelte AUTOSAR Standard ist allerdings nicht fuer die fruehen Entwicklungsphasen wie die Anforderungsanalyse und das Systemarchitekturdesign gedacht, welche von Prozessbewertungsmodellen – wie Automotive SPICE – gefordert werden. Als Loesung fuer die Analyse bietet sich die Nutzung der Systems Modeling Language (SysML) mit Anpassungen bzw. Erweiterungen an die Beduerfnisse der Automobilindustrie, an. Damit aber keine Luecke im Entwicklungsprozess entsteht, wird bei der hier vorgestellten Methode ein wohldefinierter uebergang zur AUTOSAR Architektur, und zwar zur Applikations- und zur Basissoftware, definiert. }}, author = {{Meyer, Jan and Holtmann, Jörg}}, booktitle = {{Tagungsband des Dagstuhl-Workshop MBEES: Modellbasierte Entwicklung eingebetteter Systeme VII}}, pages = {{21--30}}, publisher = {{fortiss GmbH}}, title = {{{Eine durchgängige Entwicklungsmethode von der Systemarchitektur bis zur Softwarearchitektur mit AUTOSAR}}}, year = {{2011}}, } @inproceedings{20975, abstract = {{Software maintenance tasks require knowledge about the software’s design. Several tools help to identify implementations of software patterns, e.g. Design Patterns, in source code and thus help to reveal the underlying design. In case of the reverse engineering tool suite Reclipse, detection algorithms are generated from manually created, formal pattern specifications. Due to numerous variants that have to be considered, the pattern specification is error-prone. Because of this, the complex, step-wise generation process has to be traceable backwards to identify specification mistakes. To increase the traceability, we directly interpret the detection algorithm models (story diagrams) instead of executing code generated from these models. This way, a reverse engineer no longer has to relate generated code to the story diagrams to find mistakes in pattern specifications. }}, author = {{Fockel, Markus and Travkin, Dietrich and von Detten, Markus}}, booktitle = {{Proceedings of the 8th International Fujaba Days}}, title = {{{Interpreting Story Diagrams for the Static Detection of Software Patterns}}}, year = {{2011}}, } @article{21045, author = {{Brecht, Benjamin and Eckstein, Andreas and Christ, Andreas and Suche, Hubertus and Silberhorn, Christine}}, issn = {{1367-2630}}, journal = {{New Journal of Physics}}, title = {{{From quantum pulse gate to quantum pulse shaper—engineered frequency conversion in nonlinear optical waveguides}}}, doi = {{10.1088/1367-2630/13/6/065029}}, volume = {{13}}, year = {{2011}}, } @article{21046, author = {{Eckstein, Andreas and Brecht, Benjamin and Silberhorn, Christine}}, issn = {{1094-4087}}, journal = {{Optics Express}}, number = {{15}}, title = {{{A quantum pulse gate based on spectrally engineered sum frequency generation}}}, doi = {{10.1364/oe.19.013770}}, volume = {{19}}, year = {{2011}}, } @article{21047, author = {{Brecht, Benjamin and Eckstein, Andreas and Silberhorn, Christine}}, issn = {{1862-6351}}, journal = {{physica status solidi (c)}}, number = {{4}}, pages = {{1235--1238}}, title = {{{Controlling the correlations in frequency upconversion in PPLN and PPKTP waveguides}}}, doi = {{10.1002/pssc.201000872}}, volume = {{8}}, year = {{2011}}, } @inproceedings{21489, author = {{Hein, David and Meschut, Gerson and Hahn, Ortwin}}, booktitle = {{1. Fügetechnisches Gemeinschaftskolloquium}}, location = {{Garbsen}}, title = {{{Experimentelle Untersuchung und Simulation des Crashverhaltens mechanisch gefügter Verbindungen}}}, year = {{2011}}, } @article{1725, author = {{Liu, Ming and Yin, Xiaobo and Ulin-Avila, Erick and Geng, Baisong and Zentgraf, Thomas and Ju, Long and Wang, Feng and Zhang, Xiang}}, issn = {{0028-0836}}, journal = {{Nature}}, number = {{7349}}, pages = {{64--67}}, publisher = {{Springer Nature}}, title = {{{A graphene-based broadband optical modulator}}}, doi = {{10.1038/nature10067}}, volume = {{474}}, year = {{2011}}, } @article{1726, author = {{Utikal, Tobias and Zentgraf, Thomas and Paul, Thomas and Rockstuhl, Carsten and Lederer, Falk and Lippitz, Markus and Giessen, Harald}}, issn = {{0031-9007}}, journal = {{Physical Review Letters}}, number = {{13}}, publisher = {{American Physical Society (APS)}}, title = {{{Towards the Origin of the Nonlinear Response in Hybrid Plasmonic Systems}}}, doi = {{10.1103/physrevlett.106.133901}}, volume = {{106}}, year = {{2011}}, } @article{1727, author = {{Valentine, Jason and Zhang, Shuang and Zentgraf, Thomas and Zhang, Xiang}}, issn = {{0018-9219}}, journal = {{Proceedings of the IEEE}}, number = {{10}}, pages = {{1682--1690}}, publisher = {{Institute of Electrical and Electronics Engineers (IEEE)}}, title = {{{Development of Bulk Optical Negative Index Fishnet Metamaterials: Achieving a Low-Loss and Broadband Response Through Coupling}}}, doi = {{10.1109/jproc.2010.2094593}}, volume = {{99}}, year = {{2011}}, } @article{1728, author = {{Zentgraf, Thomas and Liu, Yongmin and Mikkelsen, Maiken H. and Valentine, Jason and Zhang, Xiang}}, issn = {{1748-3387}}, journal = {{Nature Nanotechnology}}, number = {{3}}, pages = {{151--155}}, publisher = {{Springer Nature}}, title = {{{Plasmonic Luneburg and Eaton lenses}}}, doi = {{10.1038/nnano.2010.282}}, volume = {{6}}, year = {{2011}}, }