@book{32394, editor = {{Karsten, Andrea and Haacke-Werron, Stefanie}}, publisher = {{wbv}}, title = {{{40 Begriffe für eine Schreibwissenschaft. Konzeptuelle Perspektiven auf Praxis und Praktiken des Schreibens}}}, year = {{2024}}, } @article{32097, author = {{Weich, Tobias and Guedes Bonthonneau, Yannick and Guillarmou, Colin}}, journal = {{Journal of Differential Geometry (to appear) -- arXiv:2103.12127}}, title = {{{SRB Measures of Anosov Actions}}}, year = {{2024}}, } @book{49720, editor = {{Verhulst, Pim and Mildorf, Jarmila}}, isbn = {{978-90-04-54960-9 }}, pages = {{365}}, publisher = {{Brill}}, title = {{{Word, Sound and Music in Radio Drama}}}, volume = {{21}}, year = {{2024}}, } @inbook{44862, author = {{Peckhaus, Volker}}, booktitle = {{New Perspectives on Neo-Kantianism and the Sciences}}, editor = {{Pulte, Helmut and Nickel, Gregor}}, publisher = {{Routledge}}, title = {{{(Neo-)Kantian Foundation of Foundations: The Göttingen Case}}}, year = {{2024}}, } @inbook{35902, author = {{Böttger, Lydia and Mischendahl, Anne and Niederhaus, Constanze}}, booktitle = {{Mehrsprachigkeit in der Schule: Sprachbildung im und durch Sachunterricht}}, editor = {{Blumberg, Eva and Niederhaus, Constanze and Mischendahl, Anne}}, isbn = {{978-3-17-037202-3}}, publisher = {{Kohlhammer}}, title = {{{Konzepte sprachlicher Bildung im Fachunterricht – Gemeinsamkeiten und Unterschiede}}}, year = {{2024}}, } @inbook{44861, author = {{Peckhaus, Volker}}, booktitle = {{Geschichte der Tagungen am MFO, 1944 bis 1960er Jahre}}, editor = {{Remenyi, Maria and Remmert, Volker and Schappacher , Norbert }}, title = {{{Die Neuformierung der Mathematischen Logik im Nachkriegsdeutschland}}}, year = {{2024}}, } @misc{37062, author = {{Peckhaus, Volker}}, booktitle = {{Neue Deutsche Biographie Deutschland Online }}, title = {{{Fraenkel, Abraham A. }}}, year = {{2024}}, } @inbook{44860, author = {{Peckhaus, Volker}}, booktitle = {{Der Geist der kritischen Schule. Kantisches Denken in der Tradition von Jakob Friedrich Fries und Leonard Nelson im 20. Jahrhundert: Wirkungen und Aktualität}}, editor = {{Hermann, Kay and Schwitzer, Boris}}, publisher = {{SpringerNature}}, title = {{{Kritische Mathematik und die Axiomatik Hilberts}}}, year = {{2024}}, } @inbook{33429, author = {{Kißling, Magdalena and Seidel, Nadine}}, booktitle = {{Literatur der Postmigration: Grundzüge, Formen und Vertreter_innen}}, editor = {{Hodaie, Nazli and Hofmann, Michael}}, pages = {{i.Dr.}}, publisher = {{Metzler Verlag}}, title = {{{Vexierbilder als gegenhegemoniales Moment. Strategien postmigrantischen Erzählens bei Andrea Karimé}}}, year = {{2024}}, } @unpublished{50272, abstract = {{Despite the fundamental role the Quantum Satisfiability (QSAT) problem has played in quantum complexity theory, a central question remains open: At which local dimension does the complexity of QSAT transition from "easy" to "hard"? Here, we study QSAT with each constraint acting on a $k$-dimensional and $l$-dimensional qudit pair, denoted $(k,l)$-QSAT. Our first main result shows that, surprisingly, QSAT on qubits can remain $\mathsf{QMA}_1$-hard, in that $(2,5)$-QSAT is $\mathsf{QMA}_1$-complete. In contrast, $2$-SAT on qubits is well-known to be poly-time solvable [Bravyi, 2006]. Our second main result proves that $(3,d)$-QSAT on the 1D line with $d\in O(1)$ is also $\mathsf{QMA}_1$-hard. Finally, we initiate the study of 1D $(2,d)$-QSAT by giving a frustration-free 1D Hamiltonian with a unique, entangled ground state. Our first result uses a direct embedding, combining a novel clock construction with the 2D circuit-to-Hamiltonian construction of [Gosset, Nagaj, 2013]. Of note is a new simplified and analytic proof for the latter (as opposed to a partially numeric proof in [GN13]). This exploits Unitary Labelled Graphs [Bausch, Cubitt, Ozols, 2017] together with a new "Nullspace Connection Lemma", allowing us to break low energy analyses into small patches of projectors, and to improve the soundness analysis of [GN13] from $\Omega(1/T^6)$ to $\Omega(1/T^2)$, for $T$ the number of gates. Our second result goes via black-box reduction: Given an arbitrary 1D Hamiltonian $H$ on $d'$-dimensional qudits, we show how to embed it into an effective null-space of a 1D $(3,d)$-QSAT instance, for $d\in O(1)$. Our approach may be viewed as a weaker notion of "simulation" (\`a la [Bravyi, Hastings 2017], [Cubitt, Montanaro, Piddock 2018]). As far as we are aware, this gives the first "black-box simulation"-based $\mathsf{QMA}_1$-hardness result, i.e. for frustration-free Hamiltonians.}}, author = {{Rudolph, Dorian and Gharibian, Sevag and Nagaj, Daniel}}, booktitle = {{arXiv:2401.02368}}, title = {{{Quantum 2-SAT on low dimensional systems is $\mathsf{QMA}_1$-complete: Direct embeddings and black-box simulation}}}, year = {{2024}}, }