@inbook{35836, abstract = {{Digitalisierung ist derzeit ein viel diskutiertes Thema. Mit ihr werden derart tief grei- fende Veränderungen der Gesellschaft und Arbeitswelt erwartet, dass sie häufig als digitale Revolution bezeichnet wird. Gleichzeitig wirft die Auseinandersetzung mit diesen antizipierten Veränderungen viele noch unbeantwortete Fragen auf. Diese umfassen unter anderem Überlegungen hinsichtlich des Substitutionspotenzials menschlicher Arbeit durch die Digitalisierung, die Frage nach der Ausgestaltung der Rolle des Menschen in der Industrie 4.0 und schließlich Erwägungen in Bezug auf die Vorbereitung und Begleitung von Beschäftigten in der digitalen Transformation. Der vorliegende Beitrag gibt Aufschluss über die Dimensionen der Digitalisierung und die derzeit diskutierten Entwicklungslinien; er befasst sich weiterhin mit den sich daraus ergebenden Herausforderungen und Bedeutungen für die industrielle Arbeit und die Beschäftigten. Abschließend werden daraus abzuleitende Implikationen für die berufliche und allgemeine Bildung diskutiert.}}, author = {{Berisha-Gawlowski, Angelina and Caruso, Carina and Goller, Michael and Harteis, Christian}}, booktitle = {{Digitalisierung am Übergang Schule Beruf Ansätze und Perspektiven in Arbeitsdomänen und beruflicher Förderung}}, editor = {{Heisler, Dietmar and Meier, Jörg}}, isbn = {{978-3-7639-6158-0}}, keywords = {{Digitalisierung, Industrie 4.0, Arbeit 4.0, berufliche Aus- und Weiterbildung, allgemeine Bildung / digitalization, industry 4.0, work 4.0, vocational education and training, general education}}, pages = {{33–51}}, publisher = {{wbv}}, title = {{{Auswirkungen der Digitalisierung industrieller Arbeit auf die berufliche und allgemeine Bildung}}}, doi = {{10.3278/6004725w}}, volume = {{56}}, year = {{2020}}, } @article{34091, author = {{Kunnathully, Vinay S. and Riedl, Thomas and Trapp, Alexander and Langer, Timo and Reuter, Dirk and Lindner, Jörg}}, issn = {{0022-0248}}, journal = {{Journal of Crystal Growth}}, keywords = {{Materials Chemistry, Inorganic Chemistry, Condensed Matter Physics}}, publisher = {{Elsevier BV}}, title = {{{InAs heteroepitaxy on nanopillar-patterned GaAs (111)A}}}, doi = {{10.1016/j.jcrysgro.2020.125597}}, volume = {{537}}, year = {{2020}}, } @article{34090, author = {{Riedl, Thomas and Lindner, Jörg}}, issn = {{0038-1098}}, journal = {{Solid State Communications}}, keywords = {{Materials Chemistry, Condensed Matter Physics, General Chemistry}}, publisher = {{Elsevier BV}}, title = {{{Applicability of molecular statics simulation to partial dislocations in GaAs}}}, doi = {{10.1016/j.ssc.2020.113927}}, volume = {{314-315}}, year = {{2020}}, } @article{34089, author = {{Riedl, Thomas and Lindner, Jörg}}, issn = {{0038-1098}}, journal = {{Solid State Communications}}, keywords = {{Materials Chemistry, Condensed Matter Physics, General Chemistry}}, publisher = {{Elsevier BV}}, title = {{{Applicability of molecular statics simulation to partial dislocations in GaAs}}}, doi = {{10.1016/j.ssc.2020.113927}}, volume = {{314-315}}, year = {{2020}}, } @inproceedings{24020, abstract = {{Novel analog-to-digital converter (ADC) architectures are motivated by the demand for rising sampling rates and effective number of bits (ENOB). The main limitation on ENOB in purely electrical ADCs lies in the relatively high jitter of oscillators, in the order of a few tens of fs for state-of-the-art components. When compared to the extremely low jitter obtained with best-in-class Ti:sapphire mode-locked lasers (MLL), in the attosecond range, it is apparent that a mixed electrical-optical architecture could significantly improve the converters' ENOB. We model and analyze the ENOB limitations arising from optical sources in optically enabled, spectrally sliced ADCs, after discussing the system architecture and implementation details. The phase noise of the optical carrier, serving for electro-optic signal transduction, is shown not to propagate to the reconstructed digitized signal and therefore not to represent a fundamental limit. The optical phase noise of the MLL used to generate reference tones for individual slices also does not fundamentally impact the converted signal, so long as it remains correlated among all the comb lines. On the other hand, the timing jitter of the MLL, as also reflected in its RF linewidth, is fundamentally limiting the ADC performance, since it is directly mapped as jitter to the converted signal. The hybrid nature of a photonically enabled, spectrally sliced ADC implies the utilization of a number of reduced bandwidth electrical ADCs to convert parallel slices, resulting in the propagation of jitter from the electrical oscillator supplying their clock. Due to the reduced sampling rate of the electrical ADCs, as compared to the overall system, the overall noise performance of the presented architecture is substantially improved with respect to a fully electrical ADC.}}, author = {{Zazzi, Andrea and Müller, Juliana and Gudyriev, Sergiy and Marin-Palomo, Pablo and Fang, Dengyang and Scheytt, Christoph and Koos, Christian and Witzens, Jeremy}}, booktitle = {{21. ITG-Fachtagung Photonische Netze}}, publisher = {{VDE-Verlag}}, title = {{{Mode-locked laser timing jitter limitation in optically enabled frequency-sliced ADCs}}}, year = {{2020}}, } @article{24025, abstract = {{The effect of phase noise introduced by optical sources in spectrally-sliced optically enabled DACs and ADCs is modeled and analyzed in detail. In both data converter architectures, a mode-locked laser is assumed to provide an optical comb whose lines are used to either synthesize or analyze individual spectral slices. While the optical phase noise of the central MLL line as well as of other optical carriers used in the analyzed system architectures have a minor impact on the system performance, the RF phase noise of the MLL fundamentally limits it. In particular, the corresponding jitter of the MLL pulse train is transferred almost one-to-one to the system-level timing jitter of the data converters. While MLL phase noise can in principle be tracked and removed by electronic signal processing, this results in electric oscillator phase noise replacing the MLL jitter and is not conducive in systems leveraging the ultra-low jitter of low-noise mode-locked lasers. Precise analytical models are derived and validated by detailed numerical simulations.}}, author = {{Zazzi, Andrea and Müller, Juliana and Gudyriev, Sergiy and Marin-Palomo, Pablo and Fang, Dengyang and Scheytt, Christoph and Koos, Christian and Witzens, Jeremy}}, journal = {{Opt. Express}}, title = {{{Fundamental limitations of spectrally-sliced optically enabled data converters arising from MLL timing jitter}}}, doi = {{10.1364/OE.382832}}, volume = {{28}}, year = {{2020}}, } @inproceedings{24028, abstract = {{A 28 Gbps NRZ bang-bang clock and data recovery (CDR) chip for 100G PSM4 is presented. It exhibits an adaptable loop filter transfer function with independently tunable proportional and integral parameters. This allows to optimize the jitter transfer, jitter tolerance, and locking range of the CDR according to system requirements. The CDR represents a key component for a single-chip 8-channel electronic-photonic PSM4 transceiver. A CDR chip was manufactured in a 0.25 μm monolithic photonic BiCMOS technology. The core chip area is 0.51 mm 2 and it dissipates 330 mW from 2.5 V and 3.3 V power supplies.}}, author = {{Iftekhar, Mohammed and Gudyriev, Sergiy and Scheytt, Christoph}}, booktitle = {{2020 IEEE 20th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF)}}, publisher = {{IEEE}}, title = {{{28 Gbps Bang-Bang CDR for 100G PSM4 with Independently Tunable Proportional and Integral Parameters of the Loop Filter in 0.25 µm Photonic BiCMOS Technology}}}, doi = {{10.1109/SIRF46766.2020.9040190}}, year = {{2020}}, } @inproceedings{24026, abstract = {{In this paper we present a new system concept for an optoelectronic wireless phased array system. Like in a conventional phased array system with optical carrier distribution, optical fibers are used to distribute the carrier from the basestation to the wireless frontends. However in contrast to prior concepts, we propose to use an optical IQ return path from the wireless frontends back to the basestation. Furthermore, we reuse the optical carrier signal for the IQ return path which allows to avoid local oscillator lasers in the wireless frontends and reduces the hardware effort significantly. The system concept allows to integrate all components of an optoelectronic wireless frontend in a single chip using silicon photonics technology.}}, author = {{Kruse, Stephan and Kress, Christian and Scheytt, Christoph and Kurz, Heiko G. and Schneider, Thomas}}, booktitle = {{GeMiC 2020 - German Microwave Conference}}, title = {{{Analysis and Simulation of a Wireless Phased Array System with Optical Carrier Distribution and an Optical IQ Return Path}}}, year = {{2020}}, } @article{16301, author = {{Atorf, Bernhard and Mühlenbernd, Holger and Zentgraf, Thomas and Kitzerow, Heinz-Siegfried}}, issn = {{1094-4087}}, journal = {{Optics Express}}, number = {{6}}, pages = {{8898--8908}}, title = {{{All-optical switching of a dye-doped liquid crystal plasmonic metasurface}}}, doi = {{10.1364/oe.383877}}, volume = {{28}}, year = {{2020}}, } @inproceedings{24024, abstract = {{Recently it has been demonstrated that an optoelectronic phase-locked loop (OEPLL) using a mode-locked laser as a reference oscillator achieves significantly lower phase noise than conventional electronic frequency synthesizers. In this paper a concept for an OEPLL-based frequency synthesizer is presented and it is investigated how it can be used as a local oscillator (LO) for THz transceivers in order to improve the signal quality in THz wireless communications. The concept of the OEPLL is presented and it's measured phase noise is compared to the phase noise of a laboratory-grade electronic frequency synthesizer. The measured phase noise spectra of both synthesizers at 10 GHz are then used to model LO phase noise at 320 GHz. Based on models of generic zero-IF transmit and receive frontends, THz signals with different modulation formats and Baud rates are simulated at system level using the modeled LO phase noise for the two LO approaches. Finally, the results are compared.}}, author = {{Scheytt, Christoph and Wrana, Dominik and Bahmanian, Meysam and Kallfass, Ingmar}}, booktitle = {{2020 Third International Workshop on Mobile Terahertz Systems (IWMTS)}}, location = {{Essen, Germany }}, title = {{{Ultra-Low Phase Noise Frequency Synthesis for THz Communications Using Optoelectronic PLLs}}}, doi = {{10.1109/IWMTS49292.2020.9166347}}, year = {{2020}}, }