OFFeDi - Optoelektronischer Frequenzsynthesizer mit Femtosekunden-Diodenlaser

Project Period: 2017-06-01 – 2021-05-31
Externally Funded
Alternative Name
Monolithically Integrated Opto-Electronic Frequency Synthesizer in Silicon Photonics
Acronym
oFFeDi
Coordinator
J. Christoph Scheytt
Principal Investigator
Meysam Bahmanian, J. Christoph Scheytt, Martin Hofmann
Department(s)
Schaltungstechnik (SCT) / Heinz Nixdorf Institut
Description

Jitterarme Signalquellen werden häufig für Objekterkennung, Navigations- und Ultra-Hochgeschwindigkeits-Datenkommunikationssysteme eingesetzt. Der Jitter der Signalquellen wird von der Referenzsignalquelle dominiert, die ein Oszillator mit Surface-Acoustic-Wave-Resonator (SAW-Resonator) oder mit Quarzresonator ist. Diese rauscharmen Referenzoszillatoren sind derzeit Stand der Technik für Kommunikationssysteme. Jedoch können mit einem Mode Locked Laser (MLL) erzeugte optische Impulsfolgen einen um 2-3 Größenordnungen kleineren Jitter erreichen. Es wurde auch gezeigt [4], dass durch die Verwendung eines optoelektronischen Phasendetektors und einer Phasenregelschleife ein Mikrowellenoszillator an einen MLL gekoppelt werden kann. Solche opto-elektronischen Phasenregelkreise (OEPLL) haben ein großes Potenzial für eine neue Klasse von Frequenzsynthesizern mit extrem niedrigem Jitter.


Phasenrauschvergleich verschiedener Technologien


Die größten Nachteile dieser OEPLLs sind ihre großen und teuren optischen Komponenten. Elektronisch-photonisch integrierte Schaltungen auf Basis der Silizium-Photonik-Technologie bieten das Potenzial für eine extreme Miniaturisierung dieser optischen Komponenten sowie die Integration von Optik und Elektronik und beides bei geringen Kosten.


Ziel dieses Projekts ist die Implementierung eines monolithisch-integrierten OEPLL mit einem extrem niedrigen Phasenrauschen. In Zusammenarbeit mit unseren Projektpartnern an der Ruhr-Universität Bochum entwickeln wir die nächste Generation von jitterarmen Mikrowellensignalquellen. Diese Art von Signalquelle verwendet eine PLL, die die optische Pulsfolge eines MLLs als Referenz verwendet. Um die Vorteile des Referenzsignals im optischen Bereich voll auszuschöpfen, erfolgt die Phasendetektion elektrooptisch mit einem Mach-Zehnder-Modulator (MZM).



Blockdiagramm des optoelektronischen Frequenzsynthesizers


In der ersten Phase wird das Gesamtsystem mit modularen Komponenten realisiert. In der zweiten Phase werden der MZM und die Elektronik in einem einzigen Siliziumchip integriert. Die Arbeit wird von theoretischen Untersuchungen begleitet, die durch Messungen validiert werden.


Ziel des Projekts ist, dass der additive Jitter des OEPLL kleiner als der Referenz-MLL-Jitter ist. Das Mikrowellensignal hätte damit einen In-Band Jitter, der herkömmliche elektronische PLLs bei Weitem übertrifft.


References:


[1] Kim et al, “Sub-100-as timing jitter optical pulse trains from mode-locked Er-fiber lasers,” Optics letters, vol. 36, no. 22, pp. 4443-4445, 2011.


[2] “Ultra Low Phase Noise Oven Controlled Crystal Oscillator,” Vectron, Datasheet OX-305.


[3] “Voltage Controlled SAW Oscillator Surface Mount Model,” Synergy Microwave, Datasheet HFSO1000-5.


[4] Jung et al, “Subfemtosecond synchronization of microwave oscillators with mode-locked Er-fiber lasers,” Optics letters, vol. 37, no. 14, pp. 2958-2960, 2012



Die wesentliche Zielsetzung des Projektantrags ist die Untersuchung von Konzepten für extrem phasenrauscharme, opto-elektronische Phasenregelkreise, bei denen das Ausgangssignal über einen weiten Frequenzbereich (mehr als eine Oktave) kontinuierlich verstimmbar ist, und die mit kompakten Femtosekunden-Diodenlasern als Referenzoszillatoren arbeiten. Weitere Zielsetzungen sind, opto-elektronische Phasendetektor-Prinzipien unter Verwendung von verfügbaren Komponenten aus der Kommunikationstechnik zu untersuchen und den opto-elektronischen Frequenzsynthesizer mit diesen Phasendetektorprinzipien und mit Siliziumphotonik-Technologie weitaus kompakter und kosteneffizienter als bisher zu realisieren. Darüber hinaus soll erstmals ein mathematisches Modell von opto-elektronischen Integer-N und Fractional-N-Phasenregelkreisen mit Femtosekundenlasern erstellt werden, das es erlaubt, dynamisches und statisches Regelverhalten, Phasenrauschen, Stabilität und Erzeugung von Störfrequenzen ("spurios frequencies") zu berechnen.


DFG-Verfahren Sachbeihilfen


Antragsteller Professor Dr. Martin Hofmann; Professor Dr.-Ing. Christoph Scheytt

Grant Number
Funding Organisation
Deutsche Forschungsgemeinschaft
Cooperator
Ruhr-Universität Bochum