Consistent Atomic Geometries and Electronic Structure of Five Phases of Potassium Niobate from Density-Functional Theory

F. Schmidt, M. Landmann, E. Rauls, N. Argiolas, S. Sanna, W.G. Schmidt, A. Schindlmayr, Advances in Materials Science and Engineering (2017) 1–13.

Download
No fulltext has been uploaded.
Journal Article | Published | English
Author
; ; ; ; ; ;
Abstract
<jats:p>We perform a comprehensive theoretical study of the structural and electronic properties of potassium niobate (<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">K</mml:mi><mml:mi mathvariant="normal">N</mml:mi><mml:mi mathvariant="normal">b</mml:mi><mml:mi mathvariant="normal">O</mml:mi></mml:mrow><mml:mrow><mml:mn mathvariant="normal">3</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>) in the cubic, tetragonal, orthorhombic, monoclinic, and rhombohedral phase, based on density-functional theory. The influence of different parametrizations of the exchange-correlation functional on the investigated properties is analyzed in detail, and the results are compared to available experimental data. We argue that the PBEsol and AM05 generalized gradient approximations as well as the RTPSS meta-generalized gradient approximation yield consistently accurate structural data for both the external and internal degrees of freedom and are overall superior to the local-density approximation or other conventional generalized gradient approximations for the structural characterization of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M2"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">K</mml:mi><mml:mi mathvariant="normal">N</mml:mi><mml:mi mathvariant="normal">b</mml:mi><mml:mi mathvariant="normal">O</mml:mi></mml:mrow><mml:mrow><mml:mn mathvariant="normal">3</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>. Band-structure calculations using a HSE-type hybrid functional further indicate significant near degeneracies of band-edge states in all phases which are expected to be relevant for the optical response of the material.</jats:p>
Publishing Year
Journal Title
Advances in Materials Science and Engineering
Page
1-13
Financial disclosure
Article Processing Charge funded by the Deutsche Forschungsgemeinschaft and the Open Access Publication Fund of LibreCat University.
LibreCat-ID

Cite this

Schmidt F, Landmann M, Rauls E, et al. Consistent Atomic Geometries and Electronic Structure of Five Phases of Potassium Niobate from Density-Functional Theory. Advances in Materials Science and Engineering. 2017:1-13. doi:10.1155/2017/3981317
Schmidt, F., Landmann, M., Rauls, E., Argiolas, N., Sanna, S., Schmidt, W. G., & Schindlmayr, A. (2017). Consistent Atomic Geometries and Electronic Structure of Five Phases of Potassium Niobate from Density-Functional Theory. Advances in Materials Science and Engineering, 1–13. https://doi.org/10.1155/2017/3981317
@article{Schmidt_Landmann_Rauls_Argiolas_Sanna_Schmidt_Schindlmayr_2017, title={Consistent Atomic Geometries and Electronic Structure of Five Phases of Potassium Niobate from Density-Functional Theory}, DOI={10.1155/2017/3981317}, journal={Advances in Materials Science and Engineering}, author={Schmidt, Falko and Landmann, Marc and Rauls, Eva and Argiolas, Nicola and Sanna, Simone and Schmidt, Wolf Gero and Schindlmayr, Arno}, year={2017}, pages={1–13} }
Schmidt, Falko, Marc Landmann, Eva Rauls, Nicola Argiolas, Simone Sanna, Wolf Gero Schmidt, and Arno Schindlmayr. “Consistent Atomic Geometries and Electronic Structure of Five Phases of Potassium Niobate from Density-Functional Theory.” Advances in Materials Science and Engineering, 2017, 1–13. https://doi.org/10.1155/2017/3981317.
F. Schmidt et al., “Consistent Atomic Geometries and Electronic Structure of Five Phases of Potassium Niobate from Density-Functional Theory,” Advances in Materials Science and Engineering, pp. 1–13, 2017.
Schmidt, Falko, et al. “Consistent Atomic Geometries and Electronic Structure of Five Phases of Potassium Niobate from Density-Functional Theory.” Advances in Materials Science and Engineering, 2017, pp. 1–13, doi:10.1155/2017/3981317.

Export

Marked Publications

Open Data LibreCat

Search this title in

Google Scholar