TY - CONF AB - As the emerging digitalization of technical systems offers immense opportunities to be exploited by means of bigdata analysis, ubiquitous computing and largely networked systems, the digital twin comes into focus to combineall these aspects to an attendant model of an individual system during design phase as well as during operation.Since state-of-art technical systems are growing increasingly complex due to inherent intelligence and increasingfunctionality, i. e. autonomous behavior so far, it becomes considerably challenging to ensure reliability for thosesystems. Many methods were developed to support a reliability focused design or reliability-by-design approachesto tackle this challenge during design process. In field, data-based methods, i. e. condition monitoring enabled bythe rise of machine learning approaches, are exploited to ensure a reliable operation based on the current conditionof the monitored system. In order to take advantage of existing models of system reliability during design phaseand condition monitoring systems during operation, a method is proposed to combine both approaches in order toset up a digital twin with focus on system reliability. The base model of the digital twin is taken from the systemreliability model from the design phase and is used during operation and therein updated to the current reliabilitybased on the state estimation of the condition monitoring system. The approach is illustrated with a case study of arolling bearing test rig. AU - Kaul, Thorben AU - Bender, Amelie AU - Sextro, Walter ED - Beer, Michael ED - Zio, Enrico ID - 13461 IS - 29 SN - 978-981-11-2724-3 T2 - Proceedings of the 29th European Safety and Reliability Conference (ESREL2019) TI - Digital Twin for Reliability Analysis During Design and Operation of Mechatronic Systems ER -