Vibrational Fingerprints of LiNbO3-LiTaO3Mixed Crystals
Atomistic simulations in the framework of the density functional theory have been used to model morphologic and vibrational properties of lithium niobate–lithium tantalate mixed crystals as a function of the [Nb]/[Ta] ratio. Structural parameters such as the crystal volume and the lattice parameters a and c vary roughly linearly from LiTaO3 to LiNbO3, showing only minor deviations from the Vegard behavior. Our ab initio calculations demonstrate that the TO1, TO2 and TO4 vibrational modes become harder with increasing Nb concentration. TO3 becomes softer with increasing Nb content, instead. Furthermore, the investigated zone center A1 -TO phonon modes are characterized by a pronounced stoichiometry dependence. Frequency shifts as large as 30 cm−1 are expected as the [Nb]/[Ta] ratio grows from 0 to 1. Therefore, spectroscopic techniques sensitive to the A1 modes (such as Raman spectroscopy), can be employed for a direct and non-destructive determination of the crystal composition.
447
1
63-68
63-68