{"_id":"16296","publication_identifier":{"isbn":["978-3-030-79392-0"]},"year":"2022","author":[{"full_name":"Banholzer, Stefan","last_name":"Banholzer","first_name":"Stefan"},{"last_name":"Gebken","full_name":"Gebken, Bennet","first_name":"Bennet","id":"32643"},{"last_name":"Dellnitz","full_name":"Dellnitz, Michael","first_name":"Michael"},{"last_name":"Peitz","full_name":"Peitz, Sebastian","first_name":"Sebastian","orcid":"https://orcid.org/0000-0002-3389-793X","id":"47427"},{"full_name":"Volkwein, Stefan","last_name":"Volkwein","first_name":"Stefan"}],"status":"public","publication":"Non-Smooth and Complementarity-Based Distributed Parameter Systems","date_created":"2020-03-13T12:45:31Z","page":"43-76","type":"book_chapter","oa":"1","place":"Cham","doi":"10.1007/978-3-030-79393-7_3","abstract":[{"lang":"eng","text":"Multiobjective optimization plays an increasingly important role in modern\r\napplications, where several objectives are often of equal importance. The task\r\nin multiobjective optimization and multiobjective optimal control is therefore\r\nto compute the set of optimal compromises (the Pareto set) between the\r\nconflicting objectives. Since the Pareto set generally consists of an infinite\r\nnumber of solutions, the computational effort can quickly become challenging\r\nwhich is particularly problematic when the objectives are costly to evaluate as\r\nis the case for models governed by partial differential equations (PDEs). To\r\ndecrease the numerical effort to an affordable amount, surrogate models can be\r\nused to replace the expensive PDE evaluations. Existing multiobjective\r\noptimization methods using model reduction are limited either to low parameter\r\ndimensions or to few (ideally two) objectives. In this article, we present a\r\ncombination of the reduced basis model reduction method with a continuation\r\napproach using inexact gradients. The resulting approach can handle an\r\narbitrary number of objectives while yielding a significant reduction in\r\ncomputing time."}],"language":[{"iso":"eng"}],"date_updated":"2022-03-14T13:04:51Z","title":"ROM-Based Multiobjective Optimization of Elliptic PDEs via Numerical Continuation","citation":{"short":"S. Banholzer, B. Gebken, M. Dellnitz, S. Peitz, S. Volkwein, in: H. Michael, H. Roland, K. Christian, U. Michael, U. Stefan (Eds.), Non-Smooth and Complementarity-Based Distributed Parameter Systems, Springer, Cham, 2022, pp. 43–76.","ama":"Banholzer S, Gebken B, Dellnitz M, Peitz S, Volkwein S. ROM-Based Multiobjective Optimization of Elliptic PDEs via Numerical Continuation. In: Michael H, Roland H, Christian K, Michael U, Stefan U, eds. Non-Smooth and Complementarity-Based Distributed Parameter Systems. Springer; 2022:43-76. doi:10.1007/978-3-030-79393-7_3","chicago":"Banholzer, Stefan, Bennet Gebken, Michael Dellnitz, Sebastian Peitz, and Stefan Volkwein. “ROM-Based Multiobjective Optimization of Elliptic PDEs via Numerical Continuation.” In Non-Smooth and Complementarity-Based Distributed Parameter Systems, edited by Hintermüller Michael, Herzog Roland, Kanzow Christian, Ulbrich Michael, and Ulbrich Stefan, 43–76. Cham: Springer, 2022. https://doi.org/10.1007/978-3-030-79393-7_3.","bibtex":"@inbook{Banholzer_Gebken_Dellnitz_Peitz_Volkwein_2022, place={Cham}, title={ROM-Based Multiobjective Optimization of Elliptic PDEs via Numerical Continuation}, DOI={10.1007/978-3-030-79393-7_3}, booktitle={Non-Smooth and Complementarity-Based Distributed Parameter Systems}, publisher={Springer}, author={Banholzer, Stefan and Gebken, Bennet and Dellnitz, Michael and Peitz, Sebastian and Volkwein, Stefan}, editor={Michael, Hintermüller and Roland, Herzog and Christian, Kanzow and Michael, Ulbrich and Stefan, Ulbrich}, year={2022}, pages={43–76} }","mla":"Banholzer, Stefan, et al. “ROM-Based Multiobjective Optimization of Elliptic PDEs via Numerical Continuation.” Non-Smooth and Complementarity-Based Distributed Parameter Systems, edited by Hintermüller Michael et al., Springer, 2022, pp. 43–76, doi:10.1007/978-3-030-79393-7_3.","ieee":"S. Banholzer, B. Gebken, M. Dellnitz, S. Peitz, and S. Volkwein, “ROM-Based Multiobjective Optimization of Elliptic PDEs via Numerical Continuation,” in Non-Smooth and Complementarity-Based Distributed Parameter Systems, H. Michael, H. Roland, K. Christian, U. Michael, and U. Stefan, Eds. Cham: Springer, 2022, pp. 43–76.","apa":"Banholzer, S., Gebken, B., Dellnitz, M., Peitz, S., & Volkwein, S. (2022). ROM-Based Multiobjective Optimization of Elliptic PDEs via Numerical Continuation. In H. Michael, H. Roland, K. Christian, U. Michael, & U. Stefan (Eds.), Non-Smooth and Complementarity-Based Distributed Parameter Systems (pp. 43–76). Springer. https://doi.org/10.1007/978-3-030-79393-7_3"},"publisher":"Springer","user_id":"47427","department":[{"_id":"101"},{"_id":"655"}],"editor":[{"full_name":"Michael, Hintermüller","last_name":"Michael","first_name":"Hintermüller"},{"last_name":"Roland","full_name":"Roland, Herzog","first_name":"Herzog"},{"first_name":"Kanzow","full_name":"Christian, Kanzow","last_name":"Christian"},{"last_name":"Michael","full_name":"Michael, Ulbrich","first_name":"Ulbrich"},{"first_name":"Ulbrich","full_name":"Stefan, Ulbrich","last_name":"Stefan"}],"main_file_link":[{"url":"https://arxiv.org/pdf/1906.09075.pdf","open_access":"1"}]}