TY - JOUR
AB - In recent years, the success of the Koopman operator in dynamical systems
analysis has also fueled the development of Koopman operator-based control
frameworks. In order to preserve the relatively low data requirements for an
approximation via Dynamic Mode Decomposition, a quantization approach was
recently proposed in [Peitz & Klus, Automatica 106, 2019]. This way, control
of nonlinear dynamical systems can be realized by means of switched systems
techniques, using only a finite set of autonomous Koopman operator-based
reduced models. These individual systems can be approximated very efficiently
from data. The main idea is to transform a control system into a set of
autonomous systems for which the optimal switching sequence has to be computed.
In this article, we extend these results to continuous control inputs using
relaxation. This way, we combine the advantages of the data efficiency of
approximating a finite set of autonomous systems with continuous controls. We
show that when using the Koopman generator, this relaxation --- realized by
linear interpolation between two operators --- does not introduce any error for
control affine systems. This allows us to control high-dimensional nonlinear
systems using bilinear, low-dimensional surrogate models. The efficiency of the
proposed approach is demonstrated using several examples with increasing
complexity, from the Duffing oscillator to the chaotic fluidic pinball.
AU - Peitz, Sebastian
AU - Otto, Samuel E.
AU - Rowley, Clarence W.
ID - 16309
IS - 3
JF - SIAM Journal on Applied Dynamical Systems
TI - Data-Driven Model Predictive Control using Interpolated Koopman Generators
VL - 19
ER -